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Abstract

Note segmentation of vocal pitch tracks is
an inherently difficult problem, on which hu-
man judgments often disagree. We propose
a novel note segmentation method that lever-
ages phonemic information. Phonemes and
pitch tracks are automatically extracted and
jointly utilised to estimate note transition re-
gions. Note onsets are determined within these
regions using an onset detection function. Fi-
nally, an HMM-based note tracker adds further
note boundaries for the case where multiple
notes are sung on the same vowel. Our note
segmentation method outperforms the previ-
ous best method on a standard public test set,
and is shown to be somewhat robust against
different types of lyrical content. Because
its performance is less convincing on another
dataset, we analyse problem cases and suggest
possible confounding issues.

1 Introduction

Automatic music transcription refers to converting
an acoustic waveform into a symbolic representa-
tion. While monophonic instrument transcription
is often considered to be a solved problem in mu-
sic information retrieval (Benetos et al., 2013), this
is not the case for singing, where pitch is rarely
stable (Dai and Dixon, 2019).

A singing transcription system usually consists
of two main steps: pitch tracking and note seg-
mentation. Firstly, the pitch and voicing are esti-
mated at each time point in the audio; secondly,
the continuous pitch track is segmented into notes
which have onset, offset and an indicative pitch.
For the first step, we use the PYIN algorithm
(Mauch and Dixon, 2014), which improves on the
widely used YIN algorithm (de Cheveigné and
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Kawahara, 2002) for estimating the fundamental
frequency and voicing (presence or absence of
pitch) of a monophonic signal. As PYIN works
well for monophonic pitch estimation, we only fo-
cus on note segmentation in this paper.

Despite the high level of research activity in this
area, the average F-measures of note-level tran-
scription metrics (Correct Onset, Pitch and Offset,
COnPOff (Molina et al., 2014)) obtained by state-
of-the-art systems are all lower than 60%. Detec-
tion of “soft” onsets and offsets is still an unsolved
problem in note segmentation. Soft onsets and off-
sets occur when adjacent notes are smoothly con-
nected without obvious loudness variations. In
most cases, however, there is a phonetic change
between notes. Various spectral features have been
used to detect timbre changes, either by selecting
as boundaries peaks above a threshold in the mea-
sure of timbre change (Gémez and Bonada, 2013;
Yang et al., 2017), or by modelling vowels and
their transitions using an HMM (Hsuan-Huei Shih
et al., 2002; Heo and Lee, 2017). More recently,
utilising the flexibility of deep neural networks,
Fu and Su (2019) augmented their input data with
onset- and offset-related features to improve note
segmentation and transcription performance.

To solve the problem of soft onsets and off-
sets, this paper investigates whether phonemes
extracted by a state-of-the-art automatic lyrics
transcription system (Demirel et al., 2020) can
make a positive contribution. We hypothesise that
phoneme information can be used to narrow down
the range of frames where onsets and offsets are
likely to occur. In particular, consonants are possi-
ble indicators of note boundaries, whereas vowels,
unless there is a significant change of pitch or of
the vowel, indicate the body of a note.

2 Method

Based on the annotation approach of Molina et al.
(2014), our method assumes that note boundaries
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Figure 1: Proposed 3-step note segmentation method.

can be categorised into three types: (1) the begin-
nings and ends of voiced segments; (2) phonetic
changes; (3) pitch! and amplitude changes. We
detect these types of note boundaries and segment
the vocal track in a three-step cascading approach
which produces successively finer segmentations
at each step (Figure 1).

In Step 1, voiced segments (segments of contin-
uous pitch activity) are determined, based on the
PYIN pitch track. In Step 2, the voiced segments
are further segmented based on phonetic change,
to create what we call extended vowel regions,
as described in Section 2.1. In Step 3, extended
vowel segments are further divided based on pitch
and amplitude changes given by the PYIN algo-
rithm. The main novelty of this approach is the
incorporation of phonetic information into an ex-
isting framework for note segmentation, through
the introduction of the second step, which we now
describe in detail. 2

2.1 Step 2: Phoneme-Informed Segmentation

In order to detect phonetic change, the phonemes
are automatically transcribed and temporally
aligned using a state of the art lyrics transcription
system (Demirel et al., 2020). The Spectral Reflux
onset detection function (Sapp, 2006) is then used
to estimate the note boundaries more precisely.
Demirel et al.’s system provides a transcribed
phoneme sequence with aligned timings, but it
claims a boundary accuracy tolerance of 50 ms.
To detect note boundaries more precisely, we fine-
tune the phonetic output with a simple additional
signal processing step. First, we categorise the
phonemes into vowels and consonants, determin-

"We follow PYIN (Mauch et al., 2015) in setting the
threshold of pitch change required for a note boundary to %
of a semitone.

2Step 1 is simple and does not require further description.

3We use non-integer values to represent continuous pitch.

(a) Adjacent vowels with similar pitches erroneously merged
into a single note.

(b) Successive notes sung on similar pitches with voiced
phonemes between vowels, leading to multiple merge errors.

Figure 2: Examples of common errors made by the
Tony software (Mauch et al., 2015). The ground truth
segmentation (red) is labelled with median pitch in
semitones (MIDI).> The PYIN pitch track is yellow,
the note region extracted by Tony is bright green, de-
tected phoneme boundaries are orange, and spectral
flux is represented by the brightness of vertical lines.

ing the inter-vowel regions. We expand the inter-
vowel regions by 50 ms each side to account for
the system’s tolerance. Finally, the maximum of
spectral reflux in the expanded inter-vowel region
determines the exact note boundary. The pitch of
each segment is calculated as the median of the
pitch track within the segment.

Figure 2 illustrates the need for this step,
showing examples where Tony, a benchmark
method for monophonic singing voice transcrip-
tion (Mauch et al., 2015), makes the systematic
error of under-segmentation of successive notes
having continuous steady pitch tracks during note
transitions. These instances occur when consec-
utive notes are sung either with no consonants or
silent gaps (breathing, articulation, etc.), or with
short voiced consonants, between the successive
vowels. When there are two adjacent vowels with
no gap in between (Figure 2a), the note boundary
is determined by the timing of the vowel transi-
tion. Where there is a gap between consecutive
vowels (Figure 2b), we determine the note bound-
ary as the location of the local maximum of the
spectral reflux between the vowels in question.

2.2 Step 3: Pitch and Amplitude Changes

Steps 1 and 2 detect inter-vowel note boundaries,
but there are also note boundaries within vowels
that are communicated via pitch and amplitude
changes. In such cases, phoneme-based segmen-



tation is unable to determine the note boundaries.
To estimate the timings of such boundaries, we ap-
ply the HMM-based segmentation method of Tony
(Mauch et al., 2015) within the extended vowel re-
gions resulting from steps 1 and 2 (Fig. 2).

3 Evaluation

For evaluation, we use the framework proposed by
Molina et al. (2014), including their monophonic
singing dataset (38 recordings with total duration
1154 seconds). We first show results from an ab-
lation study using standard metrics on this dataset,
and then follow this up with a comparison with re-
cently published systems. We then examine the ef-
fect of linguistic properties of the data on segmen-
tation results, and test on another publicly avail-
able dataset (Dai et al., 2015).

3.1 Ablation Experiments

To illustrate the contribution of each step in our
approach to the overall performance, we report re-
sults for different combinations of the steps de-
scribed in Section 2. Table 1 lists the methods,
the features used, and their performance on three
metrics. Since we consider voicing analysis (Step
1) as fundamental to any singing segmentation ap-
proach, we always include this feature, and test
different combinations of Steps 2 and 3.

The first three evaluation metrics (columns) in
Table 1 are the F-measures of COnPOff, COnP
and COn, as used in MIREX, and the other three
are the count proportions for various types of seg-
mentation errors (Molina et al., 2014). COnPOff
measures the rate of transcribed notes with correct
onset (50 ms), pitch (+0.5 semitones) and offset
(450 ms or +20% of the duration of the reference
note). COnP represents correct onset and pitch,
and COn evaluates correct onset only. A “Split”
error means the ground truth note is split into mul-
tiple notes in the transcription, while a “Merged”
error is the opposite. A “Spurious” note error oc-
curs when a transcribed note does not overlap in
time with any ground truth note. The results indi-
cate that the various components of our approach
each contribute positively to the overall perfor-
mance on all three note-level metrics. In partic-
ular, disabling either Step 2 or 3 reduces perfor-
mance by ~9% on the strictest measure, with Step
2 making the greater contribution to the results.

In addition, for all versions of the system, re-
laxing the requirement of correct offset detection
results in 15-20% better results, whereas relaxing
the requirement to estimate the correct pitch only

contributes a further 5% to the results. The re-
maining errors (relating to the onset) account for
20-25% of the results, so it is clear that a high
proportion of errors relate to onsets and offsets, or
in other words, the segmentation.

3.2 Comparison to the State-of-the-Art

In Table 2 we compare our results to published
work on singing transcription. We tested our
three-step method on Molina et al’s dataset*
(Molina et al., 2014), and compared its perfor-
mance with six of the previous best sung note seg-
mentation and transcription methods.

Overall, the results demonstrate that our pro-
posed method achieves the best overall perfor-
mance (F-measure), by a small margin over Fu and
Su’s recent work (Fu and Su, 2019). In addition,
we have the lowest rates of merged and spurious
note errors, and only on the split error metric are
our results inferior to other systems. This means
that the system has a tendency to over-segment
the sung notes, compared to other published work.
Looking more closely at the results, however, we
see that most of the systems with lower split errors
have very high rates of merged errors, so they are
in fact under-segmenting the signal.

3.3 The Effect of Language

In this subsection, we investigate the robustness
of the proposed system to various types of lyric
content, including different languages and non-
linguistic content. In addition, we discuss the
sources of errors made by our system. We cate-
gorised the dataset by Molina et al. (2014) into the
five groups represented by the columns of Table
3. Melodies in this dataset are sung either in En-
glish, Spanish and/or the following isolated sylla-
bles: /Na/, /Da/ and /La/. Using the F-measure of
COnPOff, we compare performance of three ver-
sions of our system.

Several surprising results appear in Table 3.
Starting with the complete system (the final row),
the results for Spanish are about 19% higher than
those for English. It is not entirely unexpected that
Spanish is easier to segment, but this should be
weighed against the fact that the phoneme predic-
tions come from a lyrics transcriber that is trained
on English language songs (Demirel et al., 2020).

“For methodological correctness, we exclude 3 sam-
ples during evaluation which had been used during analysis
and development, even though we did not tune any hyper-
parameters on these samples. The results do not change sub-
stantially between the two versions of the dataset.



Methods Features Used COnPOff | COnP | COn | Split | Merged | Spurious

Steps 1+2 voicing(1), phoneme(2), onset(2) 0.525 0.712 | 0.761 | 0.013 | 0.235 0.128

Steps 1+3 voicing(1), pitch(3), amplitude(3) 0.520 0.683 | 0.741 | 0.079 | 0.233 0.114
Steps 1+2+43 | voicing(1), phoneme(2), onset(2), pitch(3), amplitude(3) 0.610 0.762 | 0.807 | 0.093 | 0.078 0.035

Table 1: Transcription performance (F-measure) on the Molina dataset for three versions of our approach. Columns
represent correct (C) onset (On), pitch (P) and/or offset (Off), respectively, and three types of error (see Sec. 3.1).

Method Precision | Recall | F-measure | Split | Merged | Spurious
Ryynénen & Klapuri (Ryynédnen and Klapuri, 2004) 0.304 0.315 0.308 0.105 | 0.248 0.116
Gomez & Bonada (Gémez and Bonada, 2013) 0.430 0.373 0.398 0.140 | 0.167 0.071
Molina et al. (SiPTH) (Molina et al., 2015) 0.397 0.440 0.415 0.074 | 0.309 0.157
Yang et al. (Yang et al., 2017) 0.409 0.436 0.421 0.064 | 0.230 0.120
Mauch et al. (Tony) (Mauch et al., 2015) 0.510 0.534 0.520 0.079 | 0.230 0.112
Fu and Su (Fu and Su, 2019) 0.625 0.569 0.594 0.048 | 0.080 0.044
Steps 1+2+3 (whole dataset) 0.626 0.597 0.610 0.093 | 0.078 0.035
Steps 14243 (test set) 0.634 0.606 0.618 0.090 | 0.080 0.035

Table 2: Transcription and segmentation performance on the whole dataset of Molina et al. (2014), compared
with published results (best results in bold). The first three rows are reported by Molina et al. (2015), and the
following two are quoted from Yang et al. (2017). The final row compares performance evaluated on the smaller
test set. The first three columns refer to COnPOff (correct pitch, onset and offset) results; the remaining columns
are segmentation error types (see Sec. 3.1).

English | Spanish | /Na/ and /La/ | /Da/ and /La/ | Syllable and Lyrics Mixed
Number of recordings 10 15 7 1 5
Steps 1+2 0.612 0.609 0.325 0.178 0.448
Steps 1+3 0.443 0.602 0.396 0.652 0.575
Steps 1+2+3 0.523 0.709 0.520 0.677 0.596

Table 3: Comparison of transcription performance (F-measure of COnPOff) for different categories of lyrics.

Methods COnPOff (F-measure) | Merged | Split
Step 1 0.645 0.023 | 0.004
Steps 1+2 0.603 0.018 | 0.045
Steps 1+2+3 0.614 0.005 | 0.069

Table 4: Transcription and segmentation performance comparison for the dataset of Dai et al. (2015).

Since the English language songs match the train-
ing data quite well, there are very few merge errors
in these songs after Step 2, and the subsequent seg-
mentation causes over-segmentation and degrades
performance. In other cases, Step 3 improves per-
formance, especially for non-linguistic samples.
For non-linguistic content, we are wary of mak-
ing strong claims as the amount of data is quite
small. We observe that the Step 2 output is con-
siderably worse with non-linguistic syllables than
on songs with linguistic content, but this differ-
ence is diminished when Step 3 is included in the
pipeline. Overall, Table 3 shows that the inclusion
of phonetic information is consistently beneficial
for segmentation in various linguistic scenarios.
We also test our methods on data from another
dataset (Dai et al., 2015), in which singers per-
form three tunes using the syllable /Ta/. In Ta-
ble 4, we show results for 12 recordings (singers
1,2,4,7). Step 1 performs relatively well because

in this case each musical note comprises a voiced
segment preceded by a voiceless consonant, so
the voicing-based segmentation reflects the note
boundaries. In this context Steps 2 and 3 cause
split errors and reduce performance.

By analysing specific examples, we identified
two sources of errors made by our system. Firstly,
there are unrecognized phonemes that lead to
merged errors, which could potentially be due to
the constraints exerted by the pronunciation and
language models of the lyrics transcriber. Sec-
ondly, the input pitch track is inactive during
voiceless consonants, while the ground truth anno-
tations of the dataset usually include the voiceless
consonant at the end of a syllable, resulting in a
longer duration note. This disagreement causes a
number of offset errors. Despite these errors, we
obtained state-of-the-art results on a public dataset
for the task of sung note segmentation.
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