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Preface

This volume consists of papers presented at the first and second workshops entitled NAtural LOgic
Meets MAchine Learning (NALOMA). Both workshops were held online; the first with the Web
Summer School in Logic, Language, and Information (WeSSLLI) in 2020, and the second with the
14th International Conference on Computational Semantics (IWCS) in 2021.

NALOMA aims to bridge the gap between machine learning/deep learning and symbolic/logic-based
approaches to Natural Language Inference (NLI), and it is one of the only workshops organized to do so.
The workshop also lays focus on theoretical notions of NLI which influence the way approaches to NLI
can and should operate.

We thank everyone who submitted papers to the meeting, including the authors who submitted non-
archival extended abstracts. These contributions are not part of the proceedings but can be found
within the schedule and on our website (https://typo.uni-konstanz.de/naloma21/) The
meetings were enriched by the inspiring talks of our invited speakers: Lauri Karttunen and Ignacio Cases,
Ellie Pavlick, and Mark Steedman, in 2020; Vered Shwartz, and Benjamin Van Durme in 2021.

We also thank all and everyone who served on the program committee (most served twice): Lasha
Abziniadize, Stergios Chatzikyriakidis, Katrin Erk, Hai Hu, Thomas Icard, Valeria de Paiva, and Hitomi
Yanaka. We are also thankful to the Research Unit FOR 2111 “Questions at the Interfaces" of the
University of Konstanz, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation), for its support and for hosting our web pages, and also the Indiana University Program
in Pure and Applied Logic. The meeting would not have been possible without the encouragement and
organizational support that we received from Sophia Malamud and James Pustejovsky in 2020, and from
Rik van Noord and Lasha Abziniadize in 2021.

When people combine research communities, the intent is not merely to talk together but also to find joint
intellectual projects. NALOMA’s parents are logic and symbolic AI on one side, and machine learning
on the other side. As we welcome NALOMA to its third year, we watch expectantly for those joint
projects.

Aikaterini-Lida Kalouli and Lawrence S. Moss
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Learning General Event Schemas with Episodic Logic

Lane Lawley and Benjamin Kuehnert and Lenhart Schubert
University of Rochester

Department of Computer Science
{llawley@cs, bkuehner@u, schubert@cs}.rochester.edu

Abstract

We present a system for learning gener-
alized, stereotypical patterns of events—or
“schemas”—from natural language stories,
and applying them to make predictions about
other stories. Our schemas are represented
with Episodic Logic, a logical form that
closely mirrors natural language. By begin-
ning with a “head start” set of protoschemas—
schemas that a 1- or 2-year-old child would
likely know—we can obtain useful, gen-
eral world knowledge with very few story
examples—often only one or two. Learned
schemas can be combined into more complex,
composite schemas, and used to make predic-
tions in other stories where only partial infor-
mation is available.

1 Introduction

We present a novel approach to learning rich, sym-
bolic event schemas from natural language texts.
While most modern approaches to automated script
learning (e.g. (Chambers and Jurafsky, 2011; Pi-
chotta and Mooney, 2016a; Yuan et al., 2018)) learn
linear sequences of simple tuple representations of
events, our schema representation allows for typed
and interrelated participating entities; multiple tem-
porally related subevents; specification of goals,
preconditions, and postconditions; and nesting of
subschemas as steps in another schema.

We mitigate the “brittleness” of past sym-
bolic approaches (e.g., GENESIS (Mooney, 1990)
and IPP (Lebowitz, 1980)) by parsing stories
into Episodic Logical Form (ELF) (Schubert and
Hwang, 2000), a logical representation that closely
resembles natural English, but allows for complex
event representation and powerful inference proce-
dures. As Stratos et al. (2011) argue, Episodic
Logic facilitates “Natural Logic-like inference
while also providing greater generality”. EL, and

its underspecified variant ULF, facilitate NLog-
like inferences using a combination of lexical and
semantic knowledge (Schubert, 2014; Kim et al.,
2019). Because most nouns and verbs are preserved
as predicates in ELFs, we also utilize existing lexi-
cal resources, like WordNet’s hypernym hierarchy
for generalizing schema predicates (e.g. DOG.N
and ELEPHANT.N to PLACENTAL MAMMAL.N),
and semantic word embeddings for retrieving rel-
evant schema candidates for a story from a large
number of known schemas.

We also bypass the need for large amounts
of data by giving the system a “head start” in
the form of a relatively small number of initial
schemas targeting the commonsense knowledge
of a very young child, from which more complex
schemas can be learned and composed. These “pro-
toschemas” describe basic action types—e.g., eat-
ing, searching, moving from place to place, trans-
ferring possession of objects—at a very general
level, along with their underlying motivations and
pre- and postconditions. More complex schemas—
e.g., “a monkey climbs a tree, gets a coconut, and
eats the coconut”—can be composed by “chaining”
these simpler ones together after matching them to
a story.

From a corpus of several hundred short chil-
dren’s stories, we have acquired dozens of schema
matches, generalized them into new schemas, auto-
matically composed some of them into more com-
plex schemas, and used those generalized schemas
to make predictions on unseen stories with only
partial information.

2 Episodic Logic

Our schema representation is based on Episodic
Logic (EL) (Schubert and Hwang, 2000), a formal
knowledge representation with semantic types and
operators common to many natural languages. EL
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uses first-order quantification, but has type-shifting
and reification operators to map predicate and sen-
tence intensions to domain individuals, allowing it
to represent higher-order propositions.

EL is a good fit for schemas in part be-
cause of its characterizing operator **, which
relates an EL formula to a situational argu-
ment, an “episode” that it characterizes. For ex-
ample, the EL formula ((I.PRO EAT.V (K
STEAK.N)) ** E1) says that E1 is a (pos-
sibly repetitive, habitual) episode of me eating
steak1. Episodes can have multiple formulas
“true in” them, where these formulas characterize
subepisodes with limited temporal bounds. This
makes them ideal for representing entire schemas,
which are “packages” of formulas all true together
within some span of time.

2.1 Overview

Although an adequate explanation of the features
and syntax of EL would not fit within these
margins—please refer to (Schubert and Hwang,
2000) for more detail—we offer a brief guide to un-
derstanding some of the formulas in, e.g., Figure 2.

2.1.1 Propositions

An atomic EL proposition has a prefix argument
(sentential subject), an infixed predicate, and zero
or more postfix arguments. In exact EL syntax,
if there are postfixed arguments then the monadic
predicate formed by the infix predicate together
with its postfixed arguments is bracketed (e.g., see
Figure 1. Monadic predicates as well as com-
plete formulas may have modifiers applied to them.
In the formula (I.PRO (QUICKLY.ADV-A
(EAT.V (K STEAK.N)))), the prefix argu-
ment is the individual I.PRO, the infix predicate is
the verbal predicate EAT.V, the postfix argument is
the kind-level individual (K STEAK.N), and the
modifier is the adverb QUICKLY.ADV-A. When
there are no predicate modifiers, atomic formulas
with postfix arguments can be “flattened”, as in
the formula (I.PRO EAT.V (K STEAK.N))
above.

Not all EL formulas use verbal predicates: type
constraint formulas, like (?X STEAK.N) or ?D
RED.A, are examples of formulas with nominal
and adjectival predicates.

1Here, the STEAK.N predicate is reified into an abstract
individual—the kind of food, steak—by the K operator so it
can be used as an argument of the EAT.V predicate.

2.1.2 Quantifiers
Although explicit quantifiers are not present in the
schemas we present here—a schema’s variables
are implicitly Skolem functions of the schema’s
head episode—we will note that EL supports the
standard first-order quantifiers ∃ and ∀. It also
has nonstandard quantifiers like Most and Few,
to represent sentences like “Most students who
have studied here have gone on to be successful”.
Nonstandard quantifiers use “restrictors” to filter
the quantified variables with an arbitrary predicate.

3 Schema Representation

In this section, we will describe our schema repre-
sentation. Although sequential and causally con-
nected events play a large role in our schemas,
our schema language is differentiated from causal
representations such as (Luo et al., 2016) and se-
quential script representations such as (Pichotta
and Mooney, 2016b) by the expressiveness and
interconnectedness of its constituent logical for-
mulas. The language is designed to model the
schema’s Steps, the Roles (types) of participating
entities, and the motivating Goals, Preconditions,
and Postconditions of the schema as a whole.

An example schema our system has learned can
be seen in Figure 1. The EL formulas specifying
the semantic contents of a schema organized into
sections; we describe the sections below.

1 (EPI-SCHEMA ((?X_D EAT.379.V ?X_C)
2 ** ?X_E)
3 :ROLES
4 !R1 (?X_D AGENT.N)
5 !R2 (?X_C FOOD.N)
6 !R3 (?X_C GRASS.N)
7 !R4 (?X_D COW.N)
8 :GOALS
9 ?G1 (?X_D (WANT.V (THAT (NOT

10 (?X_D HUNGRY.A)))))
11 :PRECONDS
12 ?I1 (?X_D HAVE.V ?X_C)
13 ?I2 (?X_D HUNGRY.A)
14 :POSTCONDS
15 ?P1 (NOT (?X_D (HAVE.V ?X_C)))
16 ?P2 (NOT (?X_D HUNGRY.A))
17 :EPISODE-RELATIONS
18 !W1 (?P1 AFTER ?X_E)
19 !W2 (?I1 BEFORE ?X_E)
20 :NECESSITIES
21 !N1 (!R1 NECESSARY-TO-DEGREE 1.0)
22 )
23 )

Figure 1: A schema learned by applying the eating pro-
toschema to the sentence “The cow ate the grass”.
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3.1 Overall Structure

A schema is represented by its header, seen in
line 1 of Figure 2. A schema’s header is an EL
proposition and an episode characterized by the
proposition, here ?E. The header episode summa-
rizes the entire schema, and can be used to embed
a schema as a step inside another schema.

The rest of the schema is laid out in two
types of sections: fluent and nonfluent sec-
tions. Nonfluent sections such as Roles and
Episode-relations contain formulas that
hold true regardless of time, such as the types
or physical properties of objects. Fluent sections
such as Steps and Preconds contain formulas
whose truth values are time-dependent, such as an
action taken by someone. We will now examine
these sections, and what they’re used for, in more
detail.

3.2 Roles

The Roles section of a schema is a nonfluent sec-
tion meant for putting “eternal” type constraints
on the participating entities in the schema. In
addition to type constraints, e.g. (?X DOG.N),
nonfluent relational constraints between entities
can also be specified in this section, e.g. (?X
PERTAINS TO.N ?Y).

When individuals from story formulas are bound
to slot variables in the schema, these “type” con-
straints are evaluated to judge how well the in-
dividuals fit those slots. Some constraints may
be broken—this is a key part of the generaliza-
tion process—but the soft scoring metric in Sec-
tion 4.3.1 helps identify good matches.

3.3 Preconditions, Postconditions, and Goals

Schemas specify preconditions, postconditions,
and goals characterize the motivations of the agents
involved. Fluent constraints in the precondition sec-
tion are tacitly assumed to start before the schema’s
header episode (adjoining or overlapping it), and
those in the postcondition section extend beyond
the header episode (post-adjoining or overlapping
it). Schema matches can be “chained together” into
composite, multi-step schemas by unifying their
pre- and postconditions, or their goals and post-
conditions. The schema in Figure 2 examplifies a
learned “chained” schema.

3.4 Temporal Relations

The episodes characterized by fluent formulas
within the body of a schema can all be complexly
interrelated using constraints from the Allen Inter-
val Algebra (Allen, 1983) as well as causal and
quantitative temporal constraints. Pre- and post-
conditions are implicitly constrained to be true at
the start and end of the schema’s header episode,
respectively, and steps, by default, are ordered
sequentially as listed in the schema, but addi-
tional constraints can be specified in the Episode-
relations section of each schema. To evaluate these
interval constraint propositions, we implemented a
time graph specialist module (Gerevini and Schu-
bert, 1993). The time graph models the tempo-
ral projection of each episode as a pair of time
points, corresponding to the beginning and end of
the episode. The time graph has time points as
vertices, and an edge between t1 and t2 if t1 ≤ t2.
Then, querying the graph for propositions can be
done with a graph transversal. The time graph also
keeps track of “chains”, which are long consecu-
tive sequences of time points in the graph. This
allows the module to exploit the often linear struc-
ture of stories, and it achieves high efficiecy on the
subalgebra of Allen’s Interval Algebra that can be
expressed in terms of ≤ point-relations.

4 Schema Learning

In this section, we describe how our system learns
new schemas from natural language stories. We
describe our story parsing process, the process of
matching parsed stories to schemas, how schema
matches can be generalized to create new schemas,
and how partial schema matches can be used to pre-
dict events in similar stories with missing details.

4.1 The Protoschema Approach

As noted, we generate new schemas from stories by
starting with an initial set of protoschemas that we
would expect a 1- or 2-year-old child to have; these
encode very general knowledge about physical and
communicative actions, with their preconditions
and effects. Examples of protoschemas we’ve al-
ready written include movement of an agent from
one location to another, consumption of food, and
possession and transfer of possession. These pro-
toschemas are then invoked by actions in stories—
for example, the “travel” protoschema matched a
“climb” action in a story to yield a “monkey climbs
a tree” schema, which was eventually incorporated
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as the first step of the chained schema in Figure 2.
2

4.2 Story Parsing

We first process raw stories with the AllenNLP
coreference analyzer (Gardner et al., 2017), and
then use the first stage of the BLLIP parser (Char-
niak, 2000) for an initial syntactic parse. The syn-
tactic parse is then converted to Unscoped Log-
ical Form (ULF) (Kim and Schubert, 2019), an
underspecified variant of EL, by tree transductions,
and then a second transduction phase processes the
ULF into full EL.

Our current parsing pipeline converts about 50
percent of (very brief, typically 2-5 sentence) sto-
ries to valid Episodic Logic formulas; our rules
cannot transduce some grammatical features into
ULF, including quotations and rhetorical questions.
Kim (2019) is investigating direct English-to-ULF
conversion using a cache transition parser, and we
hope that this approach will boost our parsing ac-
curacy.

4.3 Matching

Matching formulas in semantically parsed stories
to formulas in schemas underlies both learning and
prediction. The formulas comprising a schema
are intended to be relatively simple—with com-
plex conjunctions split into separate formulas—and
unifiable with formulas parsed from real stories.
Unification of a story formula with a schema for-
mula binds individual constants from the former to
variables in the latter. These bindings are then sub-
stituted in the rest of the schema instance, thereby
“filling in” some of the missing information. This
information is likely to be correct if the story events
and participant types matched to the schema can
be assumed to provide good evidence for an oc-
currence of the stereotyped pattern of events the
schema captures. We refer to any schema instance
with one or more bound variables as a match.

Using EL formula unification as a primitive, we
implement schema matching by iterating through
the formulas in an EL parse of a story, matching
each formula to any schema formula retrieved as a
candidate, and applying the bindings to the schema.
When the story has been fully iterated through, or
all schema variables have been bound, the match is
complete.

2“travel” was invoked by “climb” by way of the WordNet
hypernym hierarchy.

We randomly permute story formulas and unify
them, in the randomized order, with schema for-
mulas. We try multiple permutations to explore
the space of possible matches, and cache low-level
unification results to speed up the process.

4.3.1 Partial Matches and Scoring
When a schema is matched to a story, some con-
straints may be broken; this is a natural part of the
learning process. A schema for a cow eating grass
matched to a story about a dog eating grass vio-
lates the cow constraint on a participating entity,
but is a valuable source of knowledge if properly
generalized. On the other hand, too many broken
constraints are indicative of a poor match between
a schema candidate and a story.

Schema matches are heuristically scored by
counting satisfied constraints, weighted by con-
straint type. Confirmed Role constraints are worth
half as many points as confirmed events in the Steps
section. Confirming the schema’s header formula
is worth twice the points of any other event.

For inexact matches—e.g., (?X COW.N) and
(ROVER.NAME DOG.N)—the score of the bind-
ing is further weighted by the approximate seman-
tic similarity of the two words. If one subsumes
the other in a hypernym hierarchy, the strength is
scaled by the distance of the two in that hierarchy.
If neither subsumes the other, but they share a com-
mon ancestor hypernym, the strength is half their
average distance to that ancestor.

The hypernym score accounts for half of the
overall weight of an inexact match; the other half
is provided by their semantic similarity according
to a pre-trained word embedding model. 3

4.4 Generalizing Matches
To generalize a match into a new, “learned” schema,
we need to incorporate incidental information about
the matched value. For example, the variables
of the travel.v protoschema can be bound by
the constants in the formula ((MONKEY27.SK
(CLIMB.V TREE28.SK)) ** E34.SK) in
a story about a monkey climbing a tree, but re-
generalizing the constants MONKEY27.SK and
TREE28.SK into unconstrained variables would
remove all the information we learned. How-
ever, if we incorporate formulas about the types
of those objects into our new schema—such as
the formulas (MONKEY27.SK MONKEY.N) and

3GoogleNews-vectors-negative300.bin, Mikolov et al.
(2013)
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(TREE28.SK TREE.N)—we can then general-
ize the constants but maintain knowledge of their
types.

4.4.1 Re-Matching Learned Schemas
Once a protoschema has been matched to a story
and generalized into a learned schema, it may con-
tain extraneous details or overly specific constraints.
To filter out such details or constraints, we search
for at least one more match of the learned schema to
another story, downgrading details and constraints
that were not matched again. To learn (potentially)
more abstract versions of learned schemas, we re-
tain both basic types and generalized types in the
abstract versions, with certainties reflecting their
match frequencies.

4.5 Prediction

Prediction is relatively straightforward: Given a
story, we try to identify a similar schema, such as
the learned schema in Figure 2, and match as many
formulas as we can to it. We find similar schemas
by average pairwise distance between story words
and schema word predicates in the pre-trained word
vector space. After we’ve substituted story entities
for variables, we may fill in other formulas in the
schema. Schema formulas whose variables have
all been filled in, but are not present in the story,
are predictions: in effect, we guess that the schema
underlies the observed events, and infer further
aspects of the situation from its explicitly provided
aspects.

5 Results

Using 511 simple stories taken from a children’s
first reader (McGuffey, 1901) and the ROCstories
corpus (Mostafazadeh et al., 2017), and 13 proto-
schemas4, we obtained 665 schemas, with a mean
score of -0.899, a median score of 0.292, a mini-
mum score of -19.304, and a maximum score of 4.5
according to the scoring metric in Section 4.3.1. Af-
ter filtering out the 314 negative-scoring schemas,
we obtained 314 “specified” schemas, including
six multi-step schemas, examples of which can be
found in Figure 1 and Figure 2.

4These 13 protoschemas, including traveling from place
to place, eating food, taking possession of an object, and
searching for something, were selected to cover a large number
of sentences in a “development set” of 50 held-out stories from
our corpus of 561 stories; 511 were used in the test set. We
intend to eventually construct dozens to hundreds of initial
protoschemas.

1 (EPI-SCHEMA ((?X_B CLIMB_GET_EAT.PR
2 ?X_A ?X_C) ** ?E)
3 :ROLES
4 !R1 (?X_A TREE.N)
5 !R2 (?X_C INANIMATE_OBJECT.N)
6 !R3 (?X_B MONKEY.N)
7 !R4 (?X_C FOOD.N)
8 !R5 (?X_C COCOANUT.N)
9 :STEPS

10 ?E1 (?X_B CLIMB.481.V
11 (FROM.P-ARG ?L1) ?X_A)
12 ?E2 (?X_B GET.511.V ?X_C
13 (AT.P-ARG ?X_A))
14 ?E3 (?X_B EAT.541.V ?X_C)
15 :EPISODE-RELATIONS
16 !W1 (?E1 BEFORE ?E2)
17 !W2 (?E2 BEFORE ?E3)
18 !W3 (?E1 DURING ?E)
19 !W4 (?E2 DURING ?E)
20 !W5 (?E3 DURING ?E)
21 )

Figure 2: An example of a multi-step schema learned
by our system from protoschema matches to a story
about a monkey climbing a tree to get and eat a co-
coanut.

The schema in Figure 2 inferred, given the sen-
tences “Simeon can climb the tree” and “He gets
the cocoanuts for his mother”, that Simeon was a
monkey, that he got the cocoanuts in the tree, and
that he later ate the cocoanuts. The schema in Fig-
ure 1 inferred, given the sentences “The bees like
it”, “They find sweet nectar in the clover flowers”,
and “It grows in the fields”, that the bees went to
the fields to find the nectar. These predictions about
unseen stories are reasonable and fill in details ab-
sent in the stories themselves.

6 Future Work

The schemas learned and predictions generated by
the system with only 13 protoschemas are encour-
aging; we’ve obtained many simple schemas, like
“person sits in a chair” or “dogs run around out-
side”, as well as complex, multi-step schemas used
for predictions like the ones in Section 5. Because
complex schemas are made by stringing together
protoschema matches, we plan to develop more
protoschemas—possibly dozens to hundreds—to
more fully cover the general knowledge of a two-
year-old child. With those protoschemas as a base,
we expect to generate many more useful, multi-step
schemas, use them to generate predictions about
stories, and have human judges evaluate those pre-
dictions.
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Abstract

Logical Observation Identifiers Names and
Codes (LOINC) is a standard set of codes that
enable clinicians to communicate about med-
ical tests. Laboratories depend on LOINC
to identify what tests a doctor orders for a
patient. However, clinicians often use site-
specific, custom codes in their medical records
systems that can include shorthand, spelling
mistakes, and invented acronyms. Software so-
lutions must map from these custom codes to
the LOINC standard to support data interoper-
ability. A key challenge is that LOINC is com-
prised of six elements. Mapping requires not
only extracting those elements, but also com-
bining them according to LOINC logic. We
found that character-based deep learning ex-
cels at extracting LOINC elements while logic-
based methods are more effective for combin-
ing those elements into complete LOINC val-
ues. In this paper, we present an ensemble
of machine learning and logic that is currently
used in several medical facilities to map from
custom codes to standard LOINC values.

1 Introduction

LOINC supports several use cases in the medical
domain. For instance, a doctor can use LOINC
codes to precisely indicate which blood tests they
want a laboratory to perform. A major challenge
is that clinicians often use custom codes when en-
tering data into medical records systems. Custom
codes may be more intuitive for humans to un-
derstand but also suffer from personal nuance and
error. They can contain misspellings, shorthand,
and invented acronyms. Further, custom codes are
site-specific such that the codes in one facility may
differ from those in another. These differences
make it difficult for facilities to communicate. For
instance, if a doctor uses one set of codes to order
tests, and a laboratory uses a different set of codes
to perform tests, then the laboratory may not be

able to correctly identify which tests to perform
what tests the doctor is ordering. It is necessary
for software solutions to map from custom codes
to standards like LOINC to eliminate differences
between the codes that facilities use and support
data interoperability.

2 The Task

There are around 40,000 LOINC codes. Each code
contains six elements as shown in Table 1. Our
task is to first extract the six elements from a noisy
input string (e.g. custom code), then combine those
elements to form a standard LOINC output. Equa-
tion (1) shows a real-world example with a cus-
tom hospital code on the left mapped to a stan-
dard LOINC code on the right. The following are
five additional input strings from different hospi-
tals that refer to the exact same LOINC code: {”Ur
Leukocyte Esterase”, ”LEUK ESTER”, ”UR Leuko
Est–Clinitek”, ”LEUKOCYTE E URINE”, ”Leuk
Est Test Strip U”}. One can readily see the dif-
ferences that complicate communication and data
interoperability.

U Leuk Est→





5799-2 Leukocyte esterase,
Urine, Ordinal, PT,
Test Strip, Presence

(1)

3 Data

The data for our project came from prior mappings
that were performed manually by clinical infor-
maticists. The distribution of LOINC values was
skewed, with ten codes making up 87.7% of the
data. The remaining codes made up a long tail dis-
tribution but not all possible LOINC codes were
present. Table 3 shows the possible unique LOINC
element values along with the coverage of those val-
ues in the available data. If we treat each LOINC
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Element Example Description
Component Leukocyte Esterase What is being measured, observed, or evaluated
Specimen Urine specimen type collected for measurement
Scale Ordinal the scale of measure such as ordinal or nominal
Timing PT interval of time for measurement or observation
Method Test Strip Method of measurement
Property Presence Property of what is being measured such as mass or volume

Table 1: The six LOINC elements with examples.

Challenge Example
Invented acronyms
and missing letters

Lkct for Leukocyte

Misspellings Luykocite

Missing delimiters UrLeukEst

Missing LOINC el-
ements

Leuk Est (compo-
nent only)

Parsing and input /
output errors

00001

Table 2: Challenges of mapping custom codes to
LOINC standards.

code as a class, then the data distribution corre-
sponds with severe class imbalance.

Medical facilities rarely have local codes for ev-
ery possible LOINC. Instead, they maintain a sub-
set of codes that are most commonly used in their
practice. As a result, custom codes at a facility of-
ten exclude LOINC elements that are irrelevant to
their practice. For example, a blood laboratory may
exclude specimen because they implicitly know the
value is always ”blood”. Our data, therefore, con-
tained many codes with only a subset of the ele-
ments necessary to specify a full LOINC. Efforts
to map custom codes to LOINC standards must
contend with several challenges as enumerated in
Table 2.

4 Related Research

Both machine learning and logic-based methods
for NLP struggle with noisy text inputs. Vectoriza-
tion methods including Term Frequency – Inverse
Document Frequency (TF-IDF) vectorization (Xu
et al., 2009) and word embeddings (Kim, 2014;
Pennington et al., 2014) are particularly sensitive,
though the use of sub-words (i.e. n-grams of char-
acters) can somewhat ameliorate the issue (Edizel

et al., 2019). Pre-trained transformer models have
recently topped some NLP benchmarks but are also
sensitive to noisy text (Devlin et al., 2018; Wang
et al., 2019; Rajpurkar et al., 2018). Pruthi, Dhin-
gra, and Lipton have shown that misspellings re-
duce BERT performance by significant margins and
propose an independent model for spelling correc-
tion (Pruthi et al., 2019). Luong and Manning have
used hybrids of character and word based recurrent
neural networks (RNN) to address unknown words
in translation (Luong and Manning, 2016). Zhang
and Yang have used a lattice of Long Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU)
models (variants of RNNs) at the character and
word level to improve performance of named entity
extraction (Zhang and Yang, 2018). We evaluated
multiple methods and determined to use a similar
hybrid approach for extracting canonical LOINC
terms from noisy text inputs.

5 Hybrid Solution for LOINC Mapping

We evaluated several methods for addressing noisy
text inputs. Logic-based methods were paired with
fuzzy matching, word frequency analysis, and syn-
onym dictionaries. Only around 3% of incom-
ing strings could be mapped in this manner. We
found that character-based GRUs excelled at ex-
tracting LOINC elements from noisy text inputs
but plateaued around 60% accuracy when com-
bining those elements into a final code. A com-
bination of machine learning and logic-based ap-
proaches achieved much higher accuracy and cover-
age. The resulting hybrid model is shown in Figure
1. A given input string is first processed by six,
character-based GRUs for each of the LOINC el-
ements (though the figure shows only three). The
outputs of these models are then input to logic that
combines them in a final LOINC code. The fol-
lowing sections describe these processing steps and
provide a final evaluation.
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Name Unique Possible Values Unique Values in Data Coverage
Component 19,507 4,783 25%
Specimen 344 143 42%
Scale 6 6 100%
Timing 668 380 57%
Method 504 212 42%
Property 116 91 78%

LOINC Codes 46,156 11,190 24%

Table 3: Data coverage of possible LOINC values.

Figure 1: Hybrid solution combining machine learning
models with logic for LOINC mapping.

5.1 Extracting Terms with Deep Learning

A character-based GRU was trained for each of
the six LOINC elements using the scikit-learn and
Keras packages (Pedregosa et al., 2011). The out-
put classes for each element model were the possi-
ble values for that element. For instance, the model
for the component element was trained to output
19,507 possible classes. A softmax activation func-
tion was used with categorical cross-entropy for
the loss function. This approach enabled the model
to output a probability between 0 and 1 for each
of the possible class values. Table 4 shows the top
three predictions for the component element given
the input string ”Ur Leukocyte Esterase”. Table 5
shows the top predictions for each LOINC element
for the same input string.

5.2 Combining Terms with Logic

We hypothesize that several factors contribute to
the poor performance of machine learning when
predicting a final code from the LOINC elements:

Prediction Conf
LEUKOCYTE
ESTERASE

0.875

LEUKOCYTES
ESTERASE
NITRITE

0.81

ALBUMIN 0.002

Table 4: Example component predictions for the input
string ”Ur Leukocyte Esterase”.

Element Prediction Conf

Component
LEUKOCYTE
ESTERASE

.875

Specimen URINE .95

Scale ORD .86

Method NONE .84

Timing NONE .856

Property PRTHR .763

Table 5: Example predictions for each of the 6 LOINC
elements for the input string ”Ur Leukocyte Esterase”.
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Figure 2: Character-based RNN for extracting a
LOINC element.

Class imbalance was severe. While there were
sufficient samples of LOINC elements, there were
insufficient and imbalanced samples for complete
LOINC codes. Machine learning methods are sensi-
tive to class imbalance, whereas logic-based meth-
ods are not.

LOINC logic dictates that some elements can
be combined while others cannot. For instance,
liquid units of measure cannot be combined with
specimen that are not liquids. It is easier to explic-
itly represent these constraints than train models to
adhere to them.

Implicit knowledge about the relative impor-
tance of LOINC elements is only revealed through
conversations with clinical informaticists. For ex-
ample, clinicians often prioritize the component
LOINC element over other elements. A code that
has the correct component but incorrect specimen
may be acceptable for certain use cases. Because
of this implicit prioritization, it is useful to weight
elements based on use case rather than taking a
completely data-driven approach that treats each
element equally in a classifier.

An inference engine was built to combine ele-
ment predictions into a final LOINC code. The
general processing steps are as follows:

1. Start with the highest priority element and gen-
erate all candidate LOINC codes that contain
the predicted value for that element.

2. Go to the next highest priority element and
filter out any candidates that do not have the
predicted value for that element.

3. Repeat for all elements, then sort the remain-
ing candidates by a priority weighted average
of element confidence values.

For example, the component GRU predicts ”Leuko-
cyte Esterase” for the example input string ”Ur
Leukocyte Esterase”. If we start with component

Bin Accuracy % Coverage %
H R H R

c >.99 90 71 10 4

.99≤ c <0.75 85 62 81 63

.75≤ c <.5 80 37 8 23

c ≤.5 56 18 2 11

Table 6: Accuracy and coverage percentages binned
according to confidence intervals for hybrid and rules-
only models. H columns represent hybrid models and
R columns represent rules-only models.

as the most essential element, we generate a candi-
date list of LOINC codes with the predicted value
for component: {2563 − 5, 27297 − 1, 5799 −
2, 59262 − 6, 60026 − 2, 77563 − 5}. We then
filter out candidates that do not contain the pre-
dicted specimen (or top n predicted specimen). We
continue filtering for the rest of the elements in
order of priority. Note that it is entirely possible
for an input string to be lacking any value for one
of the six elements.

5.3 Evaluation
Clinical informaticists average 80% accuracy in a
completely manual mapping process. Initial ap-
proaches to automate mapping were purely rules-
based. Approaches using purely machine learning
scored high for element prediction but were less
than 70% accurate at predicting final LOINC codes.
A hybrid approach combining logic and machine
learning provided a dramatic increase in accuracy
and coverage. Table 6 shows a comparison. Ac-
curacy metrics are broken into bins based on con-
fidence intervals where c = confidence. Binning
was performed to simplify decisions for clinicians.
By accepting predictions with a confidence higher
than .5, we can achieve human performance of 80%
accuracy on a combined coverage of the top three
bins or 98% of all incoming custom codes.

5.4 Conclusion
Practical applications of artificial intelligence often
require an ensemble of approaches. Combining the
multiple approaches can overcome their respective
weaknesses in particular use cases. We found that
machine learning approaches were best equipped
to extract LOINC elements from noisy text inputs,
whereas logic-based methods were better at com-
bining those elements into final LOINC codes.
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Abstract

Many state-of-art neural models designed
for monotonicity reasoning perform poorly
on downward inference. To address this
shortcoming, we developed an attentive tree-
structured neural network. It consists of a tree-
based long-short-term-memory network (Tree-
LSTM) with soft attention. It is designed
to model the syntactic parse tree information
from the sentence pair of a reasoning task. A
self-attentive aggregator is used for aligning
the representations of the premise and the hy-
pothesis. We present our model and evaluate
it using the Monotonicity Entailment Dataset
(MED). We show and attempt to explain that
our model outperforms existing models on
MED.

1 Introduction

In this paper, we present and evaluate a tree-
structured long-short-term-memory (LSTM) net-
work in which the syntactic information of a sen-
tence is encoded and the alignment between the
premise-hypothesis pair is calculated through a
self-attention mechanism. Our work builds on the
Child-Sum Tree-LSTM from Tai et al. (2015). We
evaluate our model on several datasets to show that
it performs well on both upward and downward
inference. Particularly, our model demonstrated
good performance on downward inference, which
is a difficult task for most NLI models.

Natural language inference (NLI), also known as
recognizing textual entailment (RTE) is one of the
important benchmark tasks for natural language un-
derstanding. Many other language tasks can benefit
from NLI, such as question answering, text sum-
marization, and machine reading comprehension.
The goal of NLI is to determine whether a given
premise P semantically entails a given hypothe-
sis H (Dagan et al., 2013). Consider the example
below:

• P: An Irishman won the Nobel prize for literature.

• H: An Irishman won the Nobel prize.

The hypothesis can be inferred from the premise
and therefore the premise entails the hypothesis.
To arrive at a correct determination, an NLI model
often needs to perform different inferences includ-
ing various types of lexical and logical inferences.
In this paper, we are concerned with monotonic-
ity reasoning, a type of logical inference that is
based on word replacement. Below is an example
of monotonicity reasoning:

1. (a) All students↓ carry a MacBook↑.

(b) All students carry a laptop.

(c) All new students carry a MacBook.

2. (a) Not All new students↑ carry a laptop.

(b) Not All students carry a laptop.

An upward entailing phrase (↑) can allow infer-
ence from (1a) to (1b), where a more general con-
cept laptop replaces the more specific MacBook. A
downward entailing phrase (↓) allows an inference
from (1a) to (1c), where a more specific context
new students replaces the word students. The direc-
tion of the monotonicity can be reversed by adding
a downward entailing phrase like ”Not”; thus (2a)
entails (2b).

Recently, Yanaka et al. (2019a) constructed a
new dataset called the Monotonicity Entailment
Dataset (MED). The purpose of that dataset is to
evaluate the ability of a neural inference model
to perform monotonicity reasoning. It is the first
dataset ever created for such purpose. While many
neural language models have shown state-of-art
performance on large annotated NLI dataset such
as the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015a; Chen et al., 2017;
Parikh et al., 2016), many of these models did not
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perform well on monotonicity reasoning. In partic-
ular, they had low accuracy when performing down-
ward monotonicity inference. Additionally, most
of the state-of-art inference models that do well on
upward monotonicity inference perform poorly on
downward inference (Yanaka et al., 2019a).

2 Related Work

Existing work in this area has adopted a recursive
tree-structured neural network for natural language
inference. Bowman et al. (2015b) proposed a tree-
structured neural tensor network (TreeRNTNs) that
can learn representations to correctly identify logi-
cal relationships such as entailment.

Zhou et al. (2016) extended the recursive neu-
ral tensor networks to a recursive long-short term
memory network, a tree-LSTM, which combines
the advantages of both the recursive neural net-
work structure and the sequential recurrent neural
network structure. The tree-LSTM can learn mem-
ory cells that reflect the historical memories of the
descendant cells and thus improved the model’s
ability to process long-distance interaction over hi-
erarchies, such as the language parse information.

Parikh et al. (2016) proposed a simple decom-
pose attention model for natural language inference.
Their model relies on the attention to decompose
the problem into sub-problems so that the smaller
problems can be solved separately and in parallel.

Chen et al. (2017), proposed the Enhanced Se-
quential Inference Model (ESIM) for natural lan-
guage inference task. It incorporated the sequential
LSTM encoder with the syntactic parsing infor-
mation from the tree-LSTM structure to form a
hybrid neural inference mode. They found that in-
corporating the parsing information can improve
the performance of the model.

A new type of inference model that relies on
external knowledge called the knowledge-based in-
ference model (KIM) was introduced by Chen et al.
(2018). They incorporated neural NLI models with
external knowledge in co-attention, local inference
collection, and inference composition components.
The KIM model achieved state-of-art performance
on the SNLI and MNLI datasets.

3 Our Model

In this section we present an attentive tree
structured network (AttentiveTreeNet) with self-
attention based aggregation. This model is com-
posed of the following main components: input

Figure 1: Architecture of our model.

sentence embedding, attentive tree-LSTM encoder,
self-attention aggregator and a multi-layer percep-
tron (MLP) classifier. Figure 1 shows the architec-
ture of our model. Given an input sentence pair,
consisting of a premise P and a hypothesis H, the
objective of the model is to determine whether P
entails H. Our model takes in four inputs: the word
embeddings of the premise and hypothesis and the
dependency parse trees of the premise and hypoth-
esis. The model initializes the embedding of P
and H with some pre-trained word embedding; the
parse trees are produced by a dependency parser.
Our model forms a Siamese neural network struc-
ture (Mueller and Thyagarajan, 2016), in which
the premise and the hypothesis are passed into a
pair of identical tree-LSTMs that share the same
parameters and weights. The main idea is to find
a function that can map the input sentences into
a target space such that we can approximate the
semantic distance in the input space.

3.1 Attentive Tree-LSTM Encoder

Child-Sum Tree-LSTM We employ Child-Sum
Tree-LSTMs (Tai et al., 2015) as the basic building
blocks for our model. A standard sequential LSTM
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network only permits sequential information prop-
agation. However, the lingistic principle of com-
positionality states that an expression’s meaning
is derived from the meanings of its parts and of
the way they are syntactically combined (Partee,
2007). A tree-structured LSTM network allows
each LSTM unit to be able to incorporate infor-
mation from multiple children units. This takes
advantage of the fact that sentences are syntacti-
cally formed bottom-up tree-structures.

A Child-Sum Tree-LSTM is a type of tree-
LSTM which contains units that conditioned their
components on the sum of their children’s hidden
states. While a standard sequential LSTM network
computes the current hidden state from the current
input and the previous hidden state, a child-sum
tree-LSTM computes the hidden state from the in-
put and the hidden states of an arbitrary number
of children nodes. This property allows relation
representations of non-leaf nodes to be recursively
computed by composing the relations of the chil-
dren, which can be viewed as natural logic for neu-
ral model (MacCartney and Manning, 2009; Zhao
et al., 2016). Using the child-sum tree structure is
beneficial in interpreting the entailment relations
between parts of the two sentences.

When encoding the sentence in a forward man-
ner, hidden states are passed recursively in a
bottom-up fashion. The information flow in each
LSTM cell is controlled by a gating mechanism
similar to the one in a sequential LSTM cell. The
computations in an LSTM cell are as follows:

h̃ = Σ1≤k≤nhk,

i = σ(W (i)x+ U (i)h̃+ b(i)),

o = σ(W (o)x+ U (o)h̃+ b(o)),

u = tanh(W (u)x+ U (u)h̃+ b(u)),

fk = σ(W (f)x+ U (f)hk + b(f)),

c = i� u+ Σ1<nfk � ck,
h = o� tanh(c),

Here, k is the number of children of the current
node, and h̃ is the sum of the hidden states from
the children of the current node. The forget gate
fk controls the amount of memory being passed
from the kth child. The input gate i controls the
amount of internal input u being updated and the
output gate o controls the degree of exposure of the
memory. The σ is the sigmoid activation function,
� is the element-wise product and W and U are
both trainable weights to be learned.

Figure 2: A comparison between a standard LSTM cell
and an attentive LSTM cell.

Attentive Tree-LSTM In our model, the stan-
dard tree-LSTM is extended to an attentive tree-
LSTM (Zhou et al., 2016) by incorporating the
attention mechanism into the LSTM cell. In a sen-
tence, some words are more related to the overall
context of the sentence than others. The benefit of
applying attention is that it considers this seman-
tic relevance by weighting each child according to
how relative that child is to the given context. The
attention mechanism can assign a higher weight to
a child node that is more relevant to the context of
the sentence and a lower weight to a child node that
is not relevant to the context.

To apply the attention mechanism, a common
soft-attention layer is used in the model. That layer
receives a set of hidden states {h1, h2, ..., hn} and
an external vector s, which is a vector representa-
tion of a sentence from a layer of sequential LSTM.
The layer then computes a weight α for each hid-
den state, and sums up the product of each hidden
state and its weight to output the context vector g.
Below are the equations for the soft-attention layer:

mk = tanh(W (m)hk + U (m)s),

αk =
exp(w>mk)

Σn
j=1exp(w

>mj)
,

g = Σ1≤k≤nαkhk

A new previous hidden state is then computed
through a transformation h̃ = tanh(W (a)g+ b(a)).
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Figure 3: Detailed view of the self-attention aggregator

Figure 2 illustrates the standard tree-LSTM cell
and the attentive tree-LSTM cell.

3.2 Self-Attention Aggregator

After both the premise and the hypothesis are en-
coded through the tree-LSTM, each tree’s hidden
states from the nodes are concatenated into a pair of
matrices Hp and Hh and passed to a self-attentive
aggregator. The aggregator contains a multi-hop
self-attention mechanism (Lin et al., 2017). A sen-
tence has multiple components such as groups of
related words and phrases to form an overall con-
text, especially for long sentences. By performing
multiple hops of attention, the model can get multi-
ple attentions that each focus on different parts of
the sentence. Given a matrix H , the self-attention
mechanism performs multiple hops of attention
and outputs an annotation matrix A which consists
of the weight vector from each hop. A is calcu-
lated from a 2-layer multi-layer perceptron (MLP)
and a softmax function. Below is the equation to
calculate A:

A = softmax(Ws2tanh(Ws1H
>))

The annotation matrix A is then multiplied by the
hidden state matrix H to obtain a context matrix:
M = AH . In the model, there will be a pair of
context matrices Mp and Mh. A batch dot product
and a tanh function is then applied to the context
matrices with a trainable weight to obtain a pair of

output Fp and Fh matrices:

Fp = tanh(bmm(Mp,Wf )),

Fh = tanh(bmm(Mh,Wf ))

To aggregate Fp and Fh, we follow Conneau et al.
(2017)’s generic NLI training scheme, which in-
cludes three matching methods: (i) a concatenation
of Fp and Fh, (ii) an absolute distance between Fp
and Fh, and (iii) an element wise product of Fp and
Fh. Results from the three methods are then con-
catenated to Fr as the factor of semantic relation
between the two sentences which can measure how
close the two vector representations of the sentence
pair are in the target space. This relatedness infor-
mation will help the classifier to determine whether
the hypothesis is entailed by the premise.

Fr = [Fp;Fh; |Fp − Fh|;Fp � Fh],

3.3 MLP
The factor of relation Fr is fed to a classic three
layer MLP classifier. The final prediction is a prob-
ability pθ representing the degree to which the hy-
pothesis is entailed by the premise. It is calculated
by a softmax function, which is a standard activa-
tion function used to calculate the probability of
the input being in a category for multi-way classifi-
cation tasks:

Y1 = ReLU(Wf1Fr + bf1),

Y2 = σ(Wf2Y1 + bf2),

yθ = softmax(Wf3Y2 + bf3),

For the classification, the binary cross-entropy loss
is used as the objective function:

−
∑

c

1(X, c)log(p(c|X)),

where 1 is the binary indicator (0 or 1) whether the
label c is the correct class for X.

4 Evaluation

4.1 Data
Six different types of training data are used to train
our model. Initially, we used the HELP dataset
(Yanaka et al., 2019b) to train our model. HELP
is a dataset for learning entailment with lexical
and logical phenomena. It embodies a combina-
tion of lexical and logical inferences focusing on
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Model Train Data Upward Downward None All
BiMPM (Wang et al., 2017) SNLI 53.5 57.6 27.4 54.6
ESIM (Chen et al., 2017) SNLI 71.1 45.2 41.8 53.8
DeComp (Parikh et al., 2016) SNLI 66.1 42.1 64.4 51.4
KIM (Chen et al., 2018) SNLI 78.8 30.3 53.1 48.0
BERT (Devlin et al., 2019) MNLI 82.7 22.8 52.7 44.7
BERT (Devlin et al., 2019) HELP+MNLI 76.0 70.3 59.9 71.6
AttentiveTreeNet (ours) MNLI 54.7 60.4 37.8 58.6
AttentiveTreeNet (ours) HELP 55.7 72.6 57.9 66.0
AttentiveTreeNet (ours) HELP+SubMNLI 81.4 74.5 53.8 75.7

Table 1: Accuracy of our model and other state-of-art NLI models evaluated on MED.

monotonicity. HELP consists of 36K sentence pairs
including those for upward monotone, downward
monotone, non-monotone, conjunction, and dis-
junction. Next we trained our model with the Multi-
Genre NLI Corpus (MNLI) dataset (Williams et al.,
2018). MNLI contains 433k pairs of sentences an-
notated with textual entailment information. That
dataset covers a wide range of genres of spo-
ken and written language. The majority of the
training examples in that dataset is upward mono-
tone. In order to provide more balanced training
data, we combined a subset of the MNLI dataset
with the HELP dataset to reduce the effect of the
large number of downward monotone examples
in the HELP dataset, we call this combined train-
ing data HELP+SubMNLI. The fourth training
data contains both the HELP+SubMNLI training
data and the training set for simple monotonicity
from Richardson et al. (2019)’s Semantic Frag-
ments. The fifth training data contains both the
HELP+SubMNLI training data and the training
set for hard monotonicity from Semantic Frag-
ments. Finally, the last training data contains the
HELP+SubMNLI training data and the training set
for simple and hard monotonicity from Semantic
Fragments.

To validate our model’s ability for monotonic-
ity reasoning and to evaluate its performance on
upward and downward inference, the Monotonic-
ity Entailment Dataset (MED) was used (Yanaka
et al., 2019a), which is designed to examine a
model’s ability of performing monotonicity rea-
soning. MED contains 5382 premise-hypothesis
pairs including 1820 upward inference examples,
3270 downward inference examples, and 292 non-
monotone examples. The sentences in MED cover
a variety of linguistic phenomena, including lexi-
cal knowledge, reverse, conjunction, disjunction,

conditional and negative polarity items. We re-
moved sentence pair with the label ”contradict”
from MNLI dataset since the test dataset MED and
the training dataset HELP do not contain the label
”contradict”. We furthermore tested our model on
the simple and hard monotonicity fragments test
sets from Semantic Fragments.

4.2 Training

Word embeddings are a common way to represent
words when training neural networks (Mikolov et
al., 2013). To train our model we used Stanford’s
pre-trained 300-D Glove 840B vectors (Penning-
ton et al., 2014) to initialize the word embeddings.
The Stanford Dependency Parser (Chen and Man-
ning, 2014) was used to parse each sentence in
the dataset. The model is trained with the Adam
optimizer (Kingma and Ba, 2014) which is com-
putationally efficient and helps a model to quickly
converge to an optimal result. A standard learning
rate for Adam, 0.001, is also used. Dropout with a
standard rate of 0.5 is applied to the feed-forward
layer in the self-attention aggregator and the clas-
sifier to reduce the over-fitting of the model. For
the number of hops of the self-attention, we used
the default 15 hops. The metric for evaluation is
accuracy based. The system is implemented using
a common deep learning framework, PyTorch and
is trained on a GPU for 20 epochs.

5 Results

5.1 Overall Performance

In this section, we evaluated our model’s ability
of performing monotonicity reasoning. Table 1
shows a comparison of the performance of differ-
ent models on the Monotonicity Entailment Dataset
(MED), including our model. The data for all
models except for ours was developed byYanaka
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Test Model Training Data Upward Downward None All
- Full Model w/ vector-concat HELP 55.7 72.6 57.9 66.0
1 –Self-Attentive Aggregator HELP 65.1 67.1 53.7 65.7
2 –Tree-LSTM HELP 36.6 65.5 94.8 49.5
3 Full Model w/ mean-dist HELP 59.3 71.2 46.2 65.9
- Full Model w/ vector-concat HELP+SubMNLI 81.4 74.5 53.8 75.7
1 –Self-Attentive Aggregator HELP+SubMNLI 70.5 66.9 85.6 69.1
2 –Tree-LSTM HELP+SubMNLI 54.7 60.4 37.8 58.6
3 Full Model w/ mean-dist HELP+SubMNLI 68.9 73.7 91.0 73.0

Table 2: This table shows the accuracy of ablation tests trained on HELP and HELP+SubMNLI and tested on
MED. Three ablation test were performed: (i) Remove self-attentive aggregator (–Self-Attentive Aggregator), (ii)
Replace tree-LSTM with regular LSTM (–Tree-LSTM) (iii) Use mean distance as a matching method (Full Model
w/ mean-dist). The final model (Full Model w/ vector-concat) uses a concatenation of the sentence vectors as one of
the matching methods instead of mean distance.

et al. (2019a) who developed the MED dataset.
Our model achieves an overall accuracy of 75.7%
which outperforms all other models, even a state-
of-art language model like BERT. Table 1 shows
the ability of different models on performing up-
ward and downward inference. Our attentive tree
model performed better on downward inference
than other models with an accuracy of 74.5% . Our
model’s performance on upward inference outper-
forms other models except BERT. However, the up-
ward inference accuracy of our model (81.4) is very
close to the accuracy of BERT (82.7). We believe
the good performance on upward and downward in-
ference is due to considering parse tree information.
Furthermore, the accuracy on upward inference in-
creased significantly when trained with a combina-
tion of HELP and MNLI (HELP+SubMNLI) then
trained only with HELP; the accuracy increased
from 55.7 to 81.4 while the downward accuracy
did not change much. Such phenomena suggests
that adding MNLI to HELP does reduce the effect
of the large number of downward monotone ex-
amples in the HELP dataset and thus improve the
model’s ability on upward inference.

5.2 Robustness of Model

To demonstrate the robustness of our model, we
experimented with training the model on various
datasets. First, the model was trained on the HELP
dataset alone. The overall accuracy was 66.0%,
which outperformed other models from Table 1
except BERT trained with HELP+SubMNLI and
our model trained with HELP+SubMNLI. Even
on downward inference alone our model outper-
forms all other models with an accuracy of 72.6%
except our model trained with HELP+SubMNLI.

This result indicates that with a rich set of down-
ward monotone examples, the model can learn to
better predict a downward inference problem.

We then trained a model with the MNLI dataset
alone. It contains a large amount of upward infer-
ence examples and only a rare number of down-
ward inference examples. The result shows that
the model generalized to the training data, and
had an accuracy of 58.6% which is still higher
than most models from Table 1. Interestingly, the
model’s performance on downward inference is
still better than its performance on upward infer-
ence, even though the training dataset contains a
large number of upward monotone examples. This
suggests that the model is immune to significant
change of training data possibly due to the multiple
dropout layer added to the aggregator and the clas-
sifier which forces a the model to learn more robust
features. As Table 1 show, comparing to BERT
trained with MNLI along, our model trained with
MNLI along has better performance on downward
inference than BERT’s performance from Yanaka
et al. (2019a).

Finally, we trained our model on a combina-
tion of the MNLI dataset and the HELP dataset
(HELP+SubMNLI). Because of the large number
of upward training examples in MNLI, we sus-
pected that the combination would alleviate the
effects of this distortion and as such increase the
accuracy for upward inference. We selected 20%
of the complete MNLI dataset due to the long train-
ing period. As the results in Table 1 show, our
model still performs well on downward inference
with 74.5% accuracy, it also showed significant im-
provements on upward inference with an accuracy
of 81.4% . The overall performance also increased
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substantially to 75.7% . Compared to the results
of BERT trained with HELP+MNLI from Yanaka
et al. (2019a), our model performs better on both
upward inference and downward inference, and
achieves a higher overall accuracy. The result vali-
dates our hypothesis that training on a combination
of upward and downward monotone sentences can
help the model achieve good performance on both
upward and downward monotone, and that the use
of AttentiveTreeNet is a good choice.

5.3 Ablation Test

To further evaluate which part of the model con-
tributed the most for monotonicity reasoning, we
performed several ablation tests on the model.
The ablation tests were trained with HELP and
HELP+SubMNLI separately and the models were
evaluated on the MED dataset. The results are
shown in Table 2. We will focus our evaluation on
the HELP+SubMNLI data.

For ablation test 1, we removed the self-attentive
aggregator and built the feature vector for classifica-
tion right after the tree-LSTM encoder. As Table 2
(–Self-Attentive Aggregator) shows, performance
of the model trained on HELP+SubMNLI shows
a significant, 6.6 percentage point drop in overall
accuracy, a 10.9 percentage point drop in upward
inference accuracy and a 7.6 percentage point drop
in downward inference accuracy. The results of
this test suggest that the self-attentive aggregator is
an important component of the model that cannot
be removed.

For ablation test 2, we replaced the tree-LSTM
encoder with a standard LSTM encoder. Here, we
see an even larger drop in performance. As Table 2
(–Tree-LSTM) shows, performance of the model
trained on HELP+SubMNLI shows a large, 17.1
percentage point drop in overall accuracy, a 26.7
percentage point drop in upward inference accu-
racy and a 14.1 percentage point drop in downward
inference accuracy. Based on the results, replacing
tree-LSTM with standard LSTM has significant
negative impact on the model’s monotonicity rea-
soning performance. Thus, tree-LSTM is a major
component of the model that cannot be replaced.

For ablation test 3, we compared two match-
ing methods for aggregating the two sentence vec-
tors. In our final model (Full Model w/ vector-concat),
we updated the matching method by following the
generic NLI training scheme (Conneau et al., 2017).
In it, we concatenate the two sentence vectors with

Training Data SF HF MED
Pre-Trained Models

HELP 57.0 56.8 66.0
HELP+SubMNLI 46.0 63.0 75.7

Re-trained Models w/ SF-training fragments

HELP+frag 98.1 80.6 64.5
HELP+SubMNLI+frag 97.8 74.8 81.5

Re-trained Models w/ HF-training fragments

HELP+frag 74.3 95.6 68.9
HELP+SubMNLI+frag 73.9 93.2 73.3

Re-trained Models w/ SF and HF-training fragments

HELP+frag 96.9 94.6 64.5
HELP+SubMNLI+frag 96.4 98.3 75.4

Table 3: This table shows the result of the model
tested on MED and the simple monotonicity frag-
ments test set (SF) and hard monotonicty fragments
test set (HF) from the Semantic Fragments dataset.
The table includes three subsections: (i) test accu-
racy on the three test sets using models pre-trained
on HELP and HELP+SubMNLI; (ii) test accuracy on
the three test sets using the model re-trained after
adding simple monotonicity training set to HELP and
HELP+SubMNLI; (iii) test accuracy on the three test
sets using the model re-trained after adding hard mono-
tonicity training set to HELP and HELP+SubMNLI;
(iv) test accuracy on the three test sets using the model
re-trained after adding both simple and hard monotonic-
ity training sets to HELP and HELP+SubMNLI.

an absolute distance and an element-wise product
as the input vector for the classifier. We compared
the performance to our original model (Full Model
w/ mean-dist) which contains the tree-LSTM encoder,
the self-attentive aggregator, and the concatenation
of an absolute distance, an element-wise product,
and a mean distance as the input vector for the clas-
sifier. For this ablation test, the results from Table
2 (Full Model w/ mean-dist) are mixed, yet important.
While the overall accuracy decreases just slightly,
by 2.7 percentage points and the downward infer-
ence accuracy only decreases by 0.8 percentage
points, the accuracy for upward inference decreases
by a significant 12.5 percentage points. We believe
that these results justify the use of concatenation of
the sentence vector pair.

Overall, the removal of the Tree-LSTM encoder
affected the model’s performance most. Thus, we
conclude that the Tree-LSTM encoder contributes
the most to the model’s performance on monotonic-
ity reasoning.
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5.4 Additional Testings

To check if our pre-trained model can be gener-
alized to other monotonicity dataset, and to see
if the model can be easily trained to master the
new dataset while retaining its performance on the
original benchmark, we conducted some additional
testings on the model. We tested our pre-trained
models on the Semantic Fragments test dataset
which provides a more in-depth test for an NLI
model’s performance with semantic phenomena,
see (Richardson et al., 2019). Since our model fo-
cuses on monotonicity reasoning, we only selected
the simple and hard monotonicity fragments for
testing. Additionally, since our models are pre-
trained on datasets that only contain two labels:
”Entailment” and ”Neutral”, we removed sentence
pairs with the third label ”contradict” from the test
dataset.

Table 3 shows the results of our testing. While
we show the results for both, the HELP and
HELP+SubMNLI data sets, we will focus our
discussion again on the data obtained with the
HELP+SubMNLI data set.

The top portion of Table 3 shows that the model
trained on just HELP+SubMNLI performs poorly
on the simple and hard monotonicity fragments.
This performance is on par with other state-of-art
model’s, see (Richardson et al., 2019).

The first middle portion on Table 3 shows the
results of our model’s performance when only
the simple training fragments were added to the
HELP+SubMNLI training set. As the data shows,
the model masters the simple monotonicity reason-
ing tests, does well on the hard monotonicity rea-
soning tests and retains its accuracy on the original
benchmark MED.

The second middle portion of Table 3 shows
the results of our model’s performance when only
the hard training fragments were added to the
HELP+SubMNLI training set. In this case, the
model masters the hard monotonicity reasoning
tests, does well on the simple monotonicity rea-
soning tests and again retains its accuracy on the
original benchmark MED.

The bottom portion of Table 3 shows the results
of our model’s performance when both the sim-
ple and hard training fragments were added to the
HELP+SubMNLI training set. As the results show,
the model masters both the simple and hard mono-
tonicity reasoning tests while retaining its accuracy
on the original benchmark MED.

Overall, the results show that the model trained
on the fragments can be generalized to both simple
and hard monotonicity reasoning.

6 Conclusions

In this paper, we explained our attentive tree-
structured network to perform monotonicity reason-
ing. Our model combines a tree-structured LSTM
network and a self-attention mechanism, which is a
potential mechanism for future natural language in-
ference models, to incorporate syntactic structures
of the sentence to improve sentence-level mono-
tonicity reasoning. We evaluated our model and
showed that it achieves better accuracy on mono-
tonicity reasoning than other inference models. In
particular, our model is performing significantly
better on downward inference than others. We in-
terpret the results of the experiments as supporting
the thesis that using parse trees of a sentence are
helpful in inferring the entailment relation.

Future research on the attentive tree network
might extend a tree-LSTM architecture by replac-
ing the LSTM cell with newer language models
that have much better performance on various num-
ber of natural language processing tasks. One such
model is the transformer model. Furthermore, fu-
ture work might want to investigate how different
attention mechanism affect a model’s performance.
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Abstract

In modern natural language processing
pipelines, it is common practice to ”pretrain”
a generative language model on a large corpus
of text, and then to ”finetune” the created
representations by continuing to train them
on a discriminative textual inference task.
However, it is not immediately clear whether
the logical meaning necessary to model
logical entailment is captured by language
models in this paradigm. We examine this
pretrain-finetune recipe with language models
trained on a synthetic propositional language
entailment task, and present results on test
sets probing models’ knowledge of axioms of
first order logic.

1 Introduction

In modern natural language processing pipelines,
it is common practice to “pretrain” a generative
language model on a large corpus of text, and then
to “finetune” the created representations by con-
tinuing to train them on a discriminative textual
inference task. This pretrain-finetune recipe has
led to state-of-the-art accuracy on natural language
inference tasks (Wang et al., 2018), including tasks
that explicitly target logical, compositional reason-
ing (Williams et al., 2017). However, a priori, it is
not obvious that language model pretraining should
lead models to encode anything mirroring the func-
tions of logical concepts such as entailment, nega-
tion, and disjunction, despite their importance in
language, and in fact there are many reasons why
we might directly expect language modeling not
to encode logical meaning: for example, language
modeling does not provide models with access to
variable bindings or truth values (a key component
for defining logical functions), and it only provides
models with access to positive training examples
(sentences that are true in some possible world,
assuming they were true at the time they were ut-
tered) but not negative examples (sentences that

have never been attested). This difference between
our expectations for these models and their empir-
ical performance gives rise to a broader question:
under what conditions can core logical concepts
emerge, and what information is sufficient to learn
them? We assume entailment as a task is crucial
to beginning to form an answer; if a system can
accurately determine whether a given premise log-
ically entails a given hypothesis, it may have a
representation of logical conjunction, disjunction,
conditionals, and negation. Thus, by observing
how language model pretraining affects the perfor-
mance of a model of logical entailment, we can
better understand the extent to which these mod-
els capture logical reasoning capabilities, if at all.
The primary question we aim to answer is: does
the traditional language modelling objective result
in representations which readily support classical
logical reasoning?

Due to the pervasiveness of statistical artifacts
in natural language inference datasets (Gururangan
et al., 2018; Tsuchiya, 2018), directly assessing the
logical reasoning capabilities of neural models us-
ing these datasets is challenging. Thus, we design
a set of experiments using a toy dataset and task
which uses propositional logic sentences in place
of natural language, but otherwise uses the same
common pretraining+finetuning recipe.

Note that we do not aim to answer the question
“can neural networks do logical reasoning” in gen-
eral. This question has been explored extensively
elsewhere (see e.g. (Bowman et al., 2014; Geiger
et al., 2018; Evans et al., 2018)). Rather, we are
interested in understanding what aspects of logi-
cal reasoning can be encoded during unsupervised
pretraining.

Specifically, we test whether sentence encodings
learned on a language modeling task transfer to a
“downstream” entailment task, i.e. improving the
efficiency and/or accuracy of the model trained on
the downstream task.
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2 Experimental Design

2.1 Dataset creation
We create two propositional logic language
datasets– one for each of the pretraining and entail-
ment steps. For the pretraining corpus, we create
500,000 unique well-formed propositional logic
sentences containing atomic symbols and logical
connectives, which is roughly the size of a large
natural language corpus. These sentences are gen-
erated by nesting between 2 and 14 clauses, each
containing a unary or binary logical connective
from the set (¬, |=,&, ‖) and atomic symbols. In
order to parallel a natural language pretraining cor-
pus, we construct our data such that only logically
consistent sentences are present in the propositional
logic language. E.g. A&B might appear as a sen-
tence in our corpus, whereas A&¬A is logically
inconsistent and would not be included. There
are 30,000 unique symbols across our dataset, and
symbols are distributed between atomic sentences
uniformly, as opposed to the Zipfian distribution
of natural language: this is designed in order to
make it extremely challenging for the model to
make judgments based on co-occurence statistics
of symbols.

For the entailment training dataset, 100,000
unique propositional logic premise/hypothesis
pairs are generated using the same sentence-
generating algorithm as used for the pretrain-
ing dataset. As done by (Evans et al., 2018),
the dataset is balanced such that, for each
premise/hypothesis pair (A1, A2), there is a cor-
responding premise/hypothesis pair (B1, B2) such
that A1 |= A2 and B1 |= B2 but A1 6|= B2 and
B1 6|= B2. This reduces the effect of artifacts re-
sulting from sentence generation, as each sentence
is used evenly with each of the entailed and not
entailed labels. We hold out an additional 5,000
pairs containing sentences not seen in training as a
validation dataset.

2.2 Language model pretraining and
finetuning

The objective of our model during pretraining is
the typical language modelling objective. We use
unidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997), as well as Transformers (Vaswani et al.,
2017) as sequence models. We train models until
the perplexity converges to a local minimum, using
early stopping on a validation set.

We use a simple linear classifier based on the

last step of the sequence model to determine model
predictions on the entailment task. We compare the
performance at the entailment task of pretrained
sequence models to those initialized from scratch.

Figure 1: Average accuracy of 100 different hyperpa-
rameter settings of LSTMs on the entailment validation
dataset over time.

Figure 2: Perplexity versus accuracy for 100 different
LSTM hyperparameter settings.

2.3 Axiomatic test sets

We create several diagnostic test datasets represent-
ing axioms of first order logic (e.g. the double nega-
tion diagnostic dataset contains entailment pairs of
the structure A entails ¬¬A.) These diagnostic
datasets allow a fine-grained look at which func-
tional elements of logical connectives the network
is or is not able to capture after training. Sentences
within a diagnostic dataset range across lengths to
observe whether length significantly impacts the
models’ judgments. Performance on these datasets
is judged by F1 score– there are several distractor
negative examples based on each pattern.

23



Figure 3: F1-score on axiomatic test sets of the best performing classifier model of each of the four conditions.

Model w/ Pretraining w/o Pretraining
CBOW - 51.47
LSTM 70.41 68.74

Transformer 70.54 63.95

Table 1: Best performance on entailment validation set
across hyperparameter sweep of each model.

3 Experiments

We compare the performance on the entailment task
of a classifier on top of a model pretrained on the
language modelling objective described in 2.1 to
that of a classifier on top of a model with randomly
initialized parameters. Models were implemented
in pytorch (Paszke et al., 2019) and were trained
using GPUs. We conduct a large hyperparameter
sweep for each of our four settings: LSTMs and
Transformers as classifier models with and without
pretraining before the entailment task. We search
across learning rate, hidden dimension, symbol em-
bedding dimension, dropout, weight decay, and, re-
spective to each model, number of stacked LSTMs
and number of transformer heads/layers.

4 Results

The entailment dataset is evenly balanced, so max-
imum class accuracy is 50%. As shown in Table
1, the performance of the different types of classifi-
cation models is comparable. The baseline contin-
uous bag of words model performs slightly above
chance.

Figure 1 displays the validation accuracy tra-
jectory over time of 100 different hyperparameter
settings for LSTM initialized with and without pre-
training. Models that do not reach a new maxi-
mum accuracy within 10 epochs have their train-
ing stopped early. Most of the pretrained models’
performance spikes early, while many models ini-
tialized from scratch take much longer and must
see the training data many more times before their
accuracy begins to increase.

Figure 2 plots the relationship between the per-

plexity and accuracy that LSTM models converge
to. There appears to be a local minimum of per-
plexity that the models achieve in pretraining, and
this data suggests no relationship between lower
perplexity of the language model and higher accu-
racy.

The models do not perform well on the diagnos-
tic axiomatic test set dataset across the board, as
observed in Figure 3. Despite the extensive training
in each scenario, the models are unable to regularly
capture even extremely simple patterns, such as
double negation of one clause. The effect of clause
length varies– the models may be picking up on
dataset artifacts for shorter premises and hypothe-
ses. Furthermore, despite its low performance at
the entailment task, the F1 score of the continuous
bag of words model is significantly higher than that
of the other models. This is an interesting trend that
could be due to the pretraining leading the model
into a poor initialization, which requires further
investigation.

5 Discussion

In our experiments, we find mixed evidence to sug-
gest that language model pretraining on sentences
gives a reliable performance increase over mod-
els trained entirely from scratch with regards to
purely logical entailment. On average, pretrained
LSTMs and Transformers perform slightly better
than those initialized entirely from scratch, but the
performance of these models at held-out test sets
which specifically probe fundamental axioms of
logical entailment is underwhelming and worse
than the baseline model. Furthermore, no model
performs especially well at the entailment task– log-
ical operators are applied inflexibly to their input,
and no model performs near 100% accuracy.

It is potentially the case that, within modern
natural language inference pipelines, the logical
information encoded at the pretraining step is par-
tially responsible for the increase in accuracy at
downstream tasks. However, it is hard to say that
any such transfer of representations that facilitate
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explicit logical capabilities occurs. It is possible
that language models, if they do not preserve log-
ical information, lead models to perform well at
entailment tasks in general by capturing complex
lexical heuristics and associations between topics
at the pretraining step.

In future work, we will test whether pretraining
on both positive and negative examples affects en-
tailment performance. Furthermore, we will test
whether adjusting from a uniform distribution of
the symbols to a Zipfian distribution causes the
performance of the pretrained model to improve,
which would suggest that these models rely much
more heavily on exploiting frequency heuristics
than captured logical capabilities to more accu-
rately model the training data.
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Abstract
We present a method of making natural
logic inferences from Unscoped Logical Form
of Episodic Logic. We establish a corre-
spondence between inference rules of scope-
resolved Episodic Logic and the natural logic
treatment by Sánchez Valencia (1991a), and
hence demonstrate the ability to handle foun-
dational natural logic inferences from prior lit-
erature as well as more general nested mono-
tonicity inferences.

1 Introduction

Natural Logic is an approach to generating infer-
ences from language directly over the grammatical
structure through knowledge of entailment mono-
tonicity in the lexicon. Monotonicity is a charac-
teristic of functions within an ordering, i.e. f is
upward monotone if x ≤ y implies f(x) ≤ f(y)
(and downward monotone for the opposite). For
example, not is downward monotone in entailment
since it flips the entailment ordering of “Fido is
a dog” entails “Fido is an animal” to “Fido is not
an animal” entails “Fido is not a dog”. Natural
Logic can be seen as an extension of Aristotelian
syllogistic reasoning (Van Benthem et al., 1986)
and was first formally related to higher-order logic
entailments by Sánchez Valencia (1991a). Icard
and Moss (2014) and Icard et al. (2017) later con-
strued Natural Logic as a formal system of its own,
independent of a separate logical formalism.

Unscoped Logical Form (ULF) of Episodic
Logic was developed with the aim to integrate ma-
chine learning into automatic natural language in-
ference by simplifying the semantic parsing task
that presupposes symbolic inference (Kim and
Schubert, 2019). ULFs retain certain ambiguities
in the sentence while strictly defining the core se-
mantic type structure that is necessary to specify
the compositional structure. This results in a pars-
ing task that is similar in form and complexity to

constituency parsing, for which the community has
built effective parsers (Mrini et al., 2019; Zhou
and Zhao, 2019). Promising preliminary results
show parsability of ULF from a small dataset and
minimal representation-specific knowledge (Kim,
2019). Automatic inference generation from ULF
has been demonstrated for dialogue-focused struc-
tural inferences which correspond to simple pre-
suppositions and implicatures over questions, re-
quests, counterfactual constructions, and clause-
taking verbs (Kim et al., 2019).

Here we present a proof-based Natural Logic
inference formalism for ULF. We show that this
method covers inferences presented by Sánchez Va-
lencia (1991a) and can support Rule Instantiation
from Episodic Logic (EL) inference for nested po-
larity inference. The contributions of this paper
are two-fold: (1) this marks the first formalized
inference procedure for ULF and (2) we present an
alternative to parsing full logical formulas in sym-
bolic Natural Logic inference through the use of
an underspecified representation. An implementa-
tion of the inference procedure that we describe is
beyond the scope of this paper, but is an important
next step for empirically evaluating the efficacy of
this approach against existing Natural Logic infer-
ence systems. Due to space limitations, we leave
fully formalized definitions and proofs to the ap-
pendix and use the main document for condensed
explanations and demonstrative examples.

2 Natural Logic

We will limit our discussion of Natural Logic to
that presented by Sánchez Valencia (1991a) and fol-
low his notation and terminology.1 The semantics
of Sánchez-Valencia’s Natural Logic is rooted in
an undirected, typed lambda calculus constructed

1Much of the recent work in Natural Logic uses the termi-
nology and notation introduced by Icard and Moss (2014).
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Marking
X A,Y

X A∗, Y
A,X Y

A∗, X Y

Negation
x,Neg(a) y

x a, y

Monotonicity
(every x)# is a y, F (x+), X Y

(every x)# is a y, F (y), X Y

Conversion
(some y)# is a x,X Y

(some x)# is a y,X Y

abe see a carp, every carp is a fish abe see a fish

abe sees (a carp)#, (every carp)# is a fish abe sees (a fish)# marking
abe sees (a carp+)#, (every carp)# is a fish abe sees (a fish)# marking

abe sees (a fish)#, (every carp)# is a fish abe sees (a fish)# monotonicity

Figure 1: The basic inference rules for Sánchez-
Valencia’s natural logic proof system and an example.

from derivations of Lambek cum Permutation Cal-
culus (Lambek, 1988). The primitives semantic
types are e and t (for entities and truth values)
which denote sets, with complex types of the form
〈a, b〉 where a and b are semantic types in the
language. There is one inference rule over these,
〈α, β〉, α→ β, where the order of the functor and
the argument do not matter.

Sánchez-Valencia formalizes the monotonicity
of polarity lexical terms from the linguistic litera-
ture of Natural Logic in relation to this semantic
framework in order to make soundness claims of
predicate substitutions within positive and negative
polarity contexts. Polarity contexts are determined
by counting the number of downward entailing ar-
guments that lie in between a constituent and the
root of the Lambek derivation.

Inference Reasoning is done with a tableau proof
system (Beth, 1955) starting with a node with the
premises, ai, on the left and conclusion, b, on the
right like so, a1, ..., an • b, where all statements
are in plain English. This is accompanied by the
Lambek analyses for each of the statements, which
supply grammatical information (scoping and po-
larity) to the proof. The tableau is closed when
all paths in the proof tree are closed and a path
is closed when the leaf of the path has the same
statement (including scope marking) on both sides
of the node. A+ and A− mark positive and neg-
ative polarity, respectively, and (A)# marks the
outermost operator scope. The inference rules in
Sánchez’s proof system needed for demonstrating
basic monotonic inference and an example are dis-
played in Figure 1.

3 Episodic Logic: Unscoped Logical
Form

Episodic Logic (EL) is an extended FOL that
closely matches the form and expressivity of nat-

(|Ali| (do.aux-s not (know.v (that
(i.pro (work.v (adv-a (with.p (a.d dog.n) ))))))))

↓ scoping
(not (|Ali| (do.aux-s (know.v (that

(a.d x: (x dog.n)

(i.pro (work.v (adv-a (with.p x )))) ) )))) )

Figure 2: Example of a ULF scoping into an SLF for
the sentence Ali does not know that I work with a dog.

ural language, using type-shifters and a liberal on-
tology of individuals (e.g. basic individuals, situ-
ations, propositions, kinds, etc.) to keep the logic
first-order while allowing for intensionality, gen-
eral quantifiers, etc. (Schubert, 2000). EL sup-
ports deductive and uncertain inference, includ-
ing forward and goal-chaining inference that uses
polarity-based substitution in a Natural Logic-like
manner (Hwang and Schubert, 1993; Morbini and
Schubert, 2009; Schubert, 2014). The forward in-
ference rules are basically the same as nested infer-
ence rules proposed by (Traugott, 1986).

ULF fully specifies the semantic type structure
of EL by specifying the types of the atoms and
all of the predicate-argument relationships while
leaving operator scope, anaphora, and word sense
unresolved (Kim and Schubert, 2019). The name,
Unscoped Logical Form, is a label for its stage in
the interpretation process of EL and does not mean
that scoping is the only unresolved aspect of the
logical form. Kim and Schubert (2019) describe
the role of ULF in the interpretation process.

The types of ULF atoms that correspond to sur-
face words and are not logical or macro symbols
are marked with suffixed tags resembling the part-
of-speech (e.g. .v, .n, .pro, .d for verbs, nouns, pro-
nouns, and determiners). Case-sensitive symbols
such as names and titles are marked with pipes (e.g.
|John|). Pipe-marked symbols may be left with-
out a type tag in which case they default to having
an entity type. A closed set of logical and macro
symbols have unique types so the type marking
is omitted. Each suffix indicates a set of possible
semantic denotations, e.g. .pro always denotes an
entity and .v denotes an n-ary predicate where n
can vary.

Type shifters in ULF maintain coherence of the
semantic type structure. For example, the type
shifter adv-a maps a predicate into a predicate mod-
ifier as in the prepositional phrase “with a dog” in
Figure 2, as opposed to its predicative use “I am
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with my dog”.
The syntactic structure is closely reflected in

ULF even under syntactic movement through the
use of simple rewriting macros which explicitly
mark these occurrences and upon expansion make
available the exact semantic argument structure.

The ordering of operator-argument relations in
ULF can have the operator in the first or second
position, disambiguated by the types of the par-
ticipating expressions. The EL type system only
allows function application for combining types,
〈A,B〉, A → B, much like Montagovian seman-
tics (Montague, 1970) without type-raising.

Scoped Logical Form (SLF) SLF is ULF with
explicit scoping. Since polarity propagates through
scoped operator relations, scopes must be fully
specified before adding polarities. While infer-
ences will interface with ULFs, auxiliary SLFs
are necessary to model the polarities and book-
keep scope-related assumptions in the inferences.
Scoped operator orderings are represented using
parentheses, and are lifted around the sentence that
it scopes around. Scoped determiners are repre-
sented as (δ ν: φ ψ) where δ is a determiner, ν
is a variable, φ is the restrictor wff, and ψ is the
scope wff. Figure 2 shows examples of the scoping
process.

4 Inference with ULF

Scope marking Rather than using a Lambek
analysis for identifying operator scopes and hence
polarities, we use SLFs.2 The scoping of deter-
miners leads to decoupled representations of the
scoped constituent, so we must define a correspon-
dence that allows us to mark the scoping of the
ULF based on a fixed realization of the scoping.

For a ULF, ψ, that contains a quantified expres-
sion ϙ of form the (δ π), where δ is a determiner and
π is a predicate, the corresponding formula with
(δ π) at the top-level scope is (δ x: (x π) ψ[ϙ/x]).

Top-level scope marking process Given the
SLF that defines the scope ordering, the constituent
of the form (δ π) in ψ at the position of x in ψ[ϙ/x]
is marked with # as the top scope of ψ.3 Below is

2In accordance with Sánchez-Valencia’s treatment, we do
not address the possible scoping complexities of including
sentential modifiers, tenses, and aspect as scoped operators.

3ϙ is not an alias for the pattern (δ π). Rather it refers to
a unique constituent of ψ that has the form (δ π). This is an
important distinction in order to properly handle sentences
with multiple constituents of the same form, e.g., "A dog greets
a dog".

Scoping Operators (S1)
not(−), never.adv(−)

Verbs
know.v(+,◦)

Determiners (S2)
a.d(+,+), every.d(−,+),
some.d(+,+),
many.d(+,+),
most.d(+,◦)

Figure 3: Examples of lexical monotonicity markings.

an example to help illustrate the mapping.

"Abelard sees a carp"
SLF (a.d x: (x carp.n) (|Abelard| (see.v x)))

Marked ULF (|Abelard| (see.v (a.d carp.n)#))
δδδ: a.d, πππ: carp.n

Polarity marking We perform polarity marking
in a two stage process that mirrors the process
used by Sánchez Valencia (1991a). First we clas-
sify lexical entries according to their monotonicity
properties—in what entailment contexts they place
their arguments—and mark them in the SLF with
parenthesized subscripts. The possible entailment
options are + for upward, − for downward, and ◦
for none. Figure 3 provides a few examples.4

Using the lexical annotations, we mark the local
entailment direction of the constituents in the SLF
using subscripts without parentheses. Finally, the
global polarity is derived from these local entail-
ment directions and marked with superscripts. The
global polarity is computed by traversing the SLF
from the root and counting the number of occur-
rences of negative and flat entailments, with the
following rules.

1. Node a has no polarity if any node in the path
from the root to a is marked with ◦.

2. Else, node a has negative polarity if there are
an odd number of nodes between the root and a
(inclusive) marked with −.

3. Otherwise, node a has positive polarity.

Figure 4 shows all of these markings in a tree
format. We then mark the global polarity in the
ULF according to the corresponding SLF to get.
((no.d+ scientist.n−)

(know.v− (every.d− (scientific.a+ fact.n+)+))−)

Inference Rules Figure 5 lists the ULF versions
of the monotonicity and conversion rules from Fig-
ure 1, but in a standard rule of inference format.
Sánchez-Valencia’s Marking and Negation rules
are specific to the tableau system and not relevant

4Unmarked lexical entries are assumed to have upward
entailment on all of their arguments.
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()
()−− ()−+

()−

()−

y
−

know.v−
x
−

()+−

()+

fact.n
+

scientific.a+
y
+

y
−

every.d
−
(−,+)()−−

scientist.n
−

x
−

x
+

no.d
+
(−,−)

Figure 4: A tree representation of the SLF for “No scientist knows every scientific fact." with all lexical mono-
tonicity, local entailment context, and global polarity markings.

Monotonicity (UMI)
φ[(δ P1)+], ((every.d P1) (be.v (= (a.d P2))))

φ[(δ P2)]

where δ is a determiner.

Conversion (UCI)
((d1 P ) (be.v (= (d2 Q))))
((d1 Q) (be.v (= (d2 P ))))

where d1 ∈ {some.d, a.d, no.d}
and d2 ∈ {some.d, a.d}.

Figure 5: Inference rules in ULF corresponding to ba-
sic inference rules for Sánchez-Valencia’s natural logic
proof system.

as a general logical inference rule. Derivations and
proofs are available in Appendix B.

We can also define the corresponding monotonic-
ity rule for the negative polarity context. The mono-
tonicity rule in ULF handles the explicit copula,
through the transparent semantic interpretation of
‘be.v’.

Example Now we use these ULF rules to per-
form the inferences from Figure 1.5

Basic Monotonicity Example with ULF
1. (|Abelard| (see.v (a.d carp.n))) Assumption

2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (a.d x: (x carp.n)+

(|Abelard| (see.v x)+)+)
SLF of 1.

w/ polarity

4. (|Abelard| (see.v (a.d carp.n)+)) Pol marking
1.,3.

5. (|Abelard| (see.v (a.d fish.n))) UMI 2.,4.

It turns out that the monotonicity rules so far are
special cases of EL Rule Instantiation, which oper-
ates on substitution under arbitrarily nested polarity
contexts (Schubert and Hwang, 2000).

RI-1
MAJ(φ−),MIN(φ′+)

MAJσ(¬MINσ(⊥+)−)

RI-2
MAJ(φ−),MIN(φ′+)

MINσ(MAJσ(>−)+)

5Appendix D demonstrates how to handle all traditional
Aristotelian syllogisms.

where RI-1 is sound if the only variables
in the matching expression (φ′) of the minor
premise (MIN) are “matchably bound,”—bound
within φ′ or by a universal quantifier in positive
polarity context or existential quantifier in negative
polarity context—and RI-2 is sound if the only vari-
ables in the matching expression (φ) of the major
premise (MAJ) are “matchably bound.”

UMI is a special case of RI-2 and the negative
polarity version is a special case of RI-1. These
can handle inferences where the major premise is
a more complex construction than every p is a q.
RI-2 can be used to conclude Something is a cap
or pretty if Little Red Riding Hood wears it from
Every dress or hood that Little Red Riding Hood
wears is pretty and Something is a cap or a hood.
See Appendix C for a thorough discussion on Rule
Instantiation.

5 Integration with Machine Learning

While a working inference system is beyond the
scope of this paper, in this section we discuss some
ways in which machine learning can be leveraged
in conjunction with the inference formalism that we
describe in this paper. An obvious and important
role for machine learning in building a ULF-based
inference system is to train a semantic parser to pro-
vide ULFs for English sentences. Our preliminary
work in this direction (Kim, 2019) using an anno-
tated dataset has shown promising results. Our cur-
rent method is to train an LSTM to parse action se-
quences for a cache transition parser (Gildea et al.,
2018). Including contextual embeddings such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) as inputs to such as model will allow
the parser to use the representational power of these
embeddings to select the most appropriate parse.

Similarly, we can expect polarity labeling algo-
rithms to improve with the introduction of contex-
tual embeddings, though we are unaware of any
work that has tried to do this. This labeling could
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also have a collaborative effect with a symbolic po-
larity labeling. With a partially complete lexicon of
negative polarity inducing operators, a ULF could
verify parts of the sequentially labeled polarities
or correct them if inconsistencies are found in the
graph where lexical knowledge is available.

For tasks like SICK (Marelli et al., 2014) which
rely largely on lexical specializations, we envi-
sion using a lexical resource like WordNet (Miller,
1995). There still remains the issue of word sense,
which is not resolved in ULF. Again distributional
word representations could be used here to select
the most appropriate word sense or set of word
senses. Tasks that provide all the necessary rela-
tionships such as FraCaS (Cooper et al., 1996) do
not require any additional axioms beyond inference
rules for basic logical operators and for introduc-
ing and eliminating macro operators. For example,
modeling relative clauses, which appear frequently
in FraCaS, simply requires properly handling the
relativizer and post-nominal modification macros
to get a monotonicity ordering between predicates
“A” and “A that B” that is fully modeled by logical
conjunction “A” and “(λ x: ((x A) ∧ (x B)))”.

The near-syntactic nature of ULF allows accu-
rate generation of English sentences corresponding
to formulas (Kim et al., 2019). An interesting ques-
tion is whether generative language models could
be used to enhance inference generation. Such
models are trained to learn the patterns of language
use, and as such do not necessarily reflect valid en-
tailments. But anchoring the use of language mod-
els to a symbolic representation like ULF would
potentially enable constraining inferences to inter-
pretable ones.

6 Conclusion

We have presented a proof-based formalism for
making natural logic inferences from ULFs with in-
proof scoping assumption declarations using less
ambiguous, scoped LFs. This inferential capacity
of ULF, in conjunction with its ease of parsing,
positions ULF as a promising representational ba-
sis for automatically generating natural logic infer-
ences. Machine learning tools can then be deployed
for semantic parsing (ULFs) and sequence labeling
(polarities), both well-researched paradigms, rather
than building a model of Natural Logic directly on
top of statistical tools.
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Appendix A Sánchez-Valencia’s
Treament of Natural Logic

This appendix lays out the formal treatment of
Sánchez-Valencia’s Natural Logic which is de-
scribed in Section 2. The semantics of Sánchez-
Valencia’s Natural Logic is rooted in an undirected,
typed lambda calculus constructed from derivations
of Lambek cum Permutation Calculus (Lambek,
1988). The primitives semantic types are e and
t (for entities and truth values) which denote sets,
with complex types of the form 〈a, b〉 where a and
b are semantic types in the language.There is one
inference rule over these, 〈α, β〉, α → β, where
the order of the functor and the argument do not
matter.

Definition A.1. Monotonicity is defined over the
partial ordering relation ≤a which is defined as
follows, where a is a semantic type and Da is the
corresponding set:

• If α, β ∈ De then α ≤e β iff α = β.

• If α, β ∈ Dt then α ≤t β iff α = ⊥ or β =
>.

• If α, β ∈ D(c,d) then α ≤(c,d) β iff for each
κ ∈ Dc , α(κ) ≤d β(κ).

Definition A.2. Monotonicity for functions f ∈
D(a,b) is defined over this ordering as follows:

31



• f is upward monotone iff for all x, y ∈ Da,
x ≤a y entails f(x) ≤b f(y).

• f is downward monotone iff for all x, y ∈ Da,
x ≤a y entails f(y) ≤b f(x).

• f is non-monotone if it is neither upward or
downward monotone.

Definition A.3. Monotonicity of an occurrence M
in N is defined relative to its semantic interpreta-
tion, where I is the interpretation function such
that:

• M is upward monotone in N iff I(M) ≤
I(M ′) entails I(N) ≤ I(N{M/M ′}) for all
models and assignments.

• M is downward monotone in N iff I(M ′) ≤
I(M) entails I(N{M/M ′}) ≤ I(N) for all
models and assignments.6

Using this, Sánchez-Valencia proves that pos-
itive and negative polarity items from the prior
Natural Logic literature corresponds to upward and
downward monotone occurrences. From this corre-
spondence the soundness of substituting supersets
for subsets in positive polarities and vice versa is
realized.

Appendix B Detailed Inference System
Correspondence

Sánchez-Valencia reasons using a tableau proof
system (Beth, 1955) with nodes of the form

a1, a2, ..., an • b1, b2, ..., bm
where ai, 1 ≤ i ≤ n and bj1 ≤ j ≤ m are English
expressions with corresponding Lambek deriva-
tions a′i and b′j . The proof starts with the premises
on the left side (ai) and the desired conclusions
on the right side (bj). The proof concludes when
all paths of the proof tree are closed. A path is
closed when the leaf node of the path has the same
statement (including scope markings) on both sides
of the node. For those unaware of the notation of
tableau systems, this node can be interpreted as the
following well-formed formula.
(A1 ∧A2 ∧ ... ∧An)→ (B1 ∨B2 ∨ ... ∨Bm)

A tableau step, e.g.
a b

a′ b′

can be interpreted as the formula
(A→ B)←→ (A′ → B′)

6N{M/M ′} is shorthand for M ′ substitutes for M in N .

B.1 Marking in NLog

Sánchez-Valencia’s (1991a) monotonicity and
scope marking rules are

X A,Y

X A∗, Y

A,X Y

A∗, X Y

where A∗ is a monotonicity or scope marking
of A provided by the fixed Lambek analysis of
A. Monotonicity can take values + and − and
scoping is marked with ()# where the parentheses
circumscribe the words associated with the top-
level scope.

B.2 Scope Marking in ULF

Rather than using a Lambek analysis for identifying
the operator scopes and as a result the polarities,
scoped logical forms (SLFs) are used, which are
ULFs with disambiguated scopes. The conversion
from ULF to SLF can be denoted mid-proof so that
a specific scoping does not need to be committed
to at the start of the proof.

B.2.1 Mapping ULFs to SLFs
Scoping for ULFs comes in two flavors:

(S1) Independent scoped operators. An indepen-
dent scoped operator is one that simply raises
up to any wff level and introduces some in-
formation to only that scope of the overall
formula. This includes tense, aspect, and
sentence-level adverbials operators. These
operators add temporal, locative, or general
additional contextual information to the wff.

(|Abelard| ((past see.v) him.pro yesterday.adv-e))

↓ scoping

(past (yesterday.adv-e (|Abelard| (see.v him.pro))))

(S2) Determiners with restrictors. When deter-
miners are scoped, they bring with them the
restrictor predicate. A variable is introduced
which is placed in the position of the lifted
constituent and this variable is quantified with
the lifted determiner and restricted by the re-
strictor predicate.

(|Abelard| (see.v (a.d carp.n)))

↓ scoping

(a.d x: (x carp.n) (|Abelard| (see.v x)))
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B.2.2 Scope Marking with SLFs
In accordance with Sánchez-Valencia’s treatment,
we will only perform scope marking on the (S2)
classes of scoping operators. Fortunately, this is the
more interesting one from a structural perspective.
The scoping of ULFs with (S2) classes leads to a
more decoupled representation of the constituent,
so we must define a correspondence between these
components that allows us to still mark the scoping
of the ULF based on the fixed scoped realization.

The key to making a correspondence between
the (S2)-type constituent in ULF and SLF is the
quantified variable of the SLF. For a ULF, ψ which
contains a quantified expression ϙ of form the (δ π)
where δ is a determiner and π is a predicate, the
corresponding formula with (δ π) at the top-level
scope is (δ x: (x π) ψ[ϙ/x]).

Top-level scope marking process Knowing this
correspondence, we have a path to marking the
ULF quantified expression constituent that is the
top-level scope. Given the SLF which defines the
scope ordering, the constituent of the form (δ π)
in psi at the position of x in ψ[ϙ/x] is marked as
the top scope of ψ. Note that ϙ does is not an
alias for the pattern (δ π). Rather it refers to a
unique constituent of ψ which has the form (δ π).
This is an important distinction in order to properly
handle sentences with multiple constituents of the
same form, e.g. "A dog greets a dog". Below is an
example to help illustrate the mapping.

"Abelard sees a carp"
SLF (a.d x: (x carp.n) (|Abelard| (see.v x)))

Marked ULF (|Abelard| (see.v (a.d carp.n)#))
δδδ: a.d, πππ: carp.n

In practice, we will not use the actual natural
logic marking for inference since we don’t use the
tableau method for inference. Rather, we use this
process to identify the ULF constituent with the
top-level scope on the fly using the process which
retains the same inferential capacity to the marking
in tableau method.

B.3 Polarity marking in ULF

We perform polarity marking in a two stage process
that mirrors the process used by (Sánchez Valen-
cia, 1991a). First we classify lexical entries ac-
cording to their monotonicity properties—in which
direction they place entailment contexts on their
arguments—and mark them in the SLF with sub-
scripts. For example, the determiner no.d, which

Scoping Operators (S1)
not(−), never.adv(−)

Verbs
know.v(+,◦)

Determiners (S2)
a.d(+,+), every.d(−,+),
some.d(+,+),
many.d(+,+),
most.d(+,◦)

Figure 6: Examples of lexical monotonicity markings.

has negative downward entailment on both the re-
strictor and scope is marked as no.d(−,−). Here are
a few lexical polarity annotated items. The pos-
sible entailment options are + for upward, − for
downward, and ◦ for flat. Figure 6 provides more
examples.

Unmarked lexical entries are assumed to have
upward entailment on all of their arguments. Using
the lexical annotations, we mark the local entail-
ment direction of the argument constituents in the
SLF using subscripts again. For example, the SLF
for "no scientist knows every scientific fact"

(no.d(−,−) x: (x scientist.n)
(every.d(−,+) y: (y (scientific.a fact.n))

(x (know.v y))))

gets its arguments marked as follows.

(no.d(−,−) x: (x scientist.n)−
(every.d(−,+) y: (y (scientific.a fact.n))−

(x (know.v y))+)−)

Finally, the global polarity is derived from these
local entailment directions and marked with super-
scripts. The global polarity is derived by traversing
the SLF from the root and counting the number of
occurrences of negative and flat entailments. The
global polarity is computed form this using the
following rules, applied in order.

1. If node a has no polarity if any node in the
path from the root to a is marked with ◦ (flat
local entailment).

2. Else, if node a has negative polarity if there
are an odd number of nodes between the root
and a (including a) marked with − (down-
ward local entailment).

3. Otherwise, node a has positive polarity.

Following these rules the argument marked SLF
gets marked with global polarity as (limiting global
polarity marking to just nodes with local entailment
marking for readability)
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()−−

scientist.n−

scientist.n)

x−

(x
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x:

no.d+(−,−)

(no.d

Figure 7: A tree representation of the SLF for "No scientist knows every scientific fact." with all lexical mono-
tonicity, local entailment context, and global polarity markings.

General

person

scientist

physicist

fact

scientific fact

physics fact

Specific

-+

Figure 8: Monotonicity orderings of the predicates that
are involved in the polarity inference example. Lower
predicates are subsets of predicates above them. Predi-
cates can be replaced with those above them in positive
polarity and below them in negative polarity.

(no.d(−,−) x: (x scientist.n)−−
(every.d(−,+) y: (y (scientific.a fact.n))+−

(x (know.v y))−+)−−)

The propagation of the polarity is easier to see
when the SLF is written in a tree diagram, Figure 7.

Then we can mark the global polarity in the
ULF according to the corresponding constituent
in the SLF. The following is the resulting ULF
for the above SLF, only marking constituents that
correspond to predicates in predicative position in
the SLF.

((no.d scientist.n−)
(know.v− (every.d (scientific.a fact.n)+)))

We now show that these markings result in infer-
ences that follow our intuition. From the sentence
"No scientists knows every scientific fact" we want

to infer

(1) a. No physicist knows every scientific fact

b. No scientist knows every fact

but not

(2) a. *No person knows every scientific fact

b. *No scientist knows every physics fact

Figure 8 shows the monotonicity orderings of the
predicates that are involved in this example and the
direction of warranted inference in each polarity.

In positive polarity, we are warranted inference
upward on this diagram, and for negative polarity
downward. That is, ‘scientist’ is in negative po-
larity which warrants replacement by ‘physicist’,
which is indeed intuitively warranted in English.
As is desired from the motivating sentences, “scien-
tist” is in negative polarity and can be replaced with
“physicist” (1a) and “scientific fact” is in positive
polarity and can be replaced with “fact” (1b).

B.4 Inferences with ULFs
B.4.1 Negation
Sánchez-Valencia’s (1991a) negation rule is

x,Neg(a) y

x a, y

In simple logical terms, this rule is

((X ∧ ¬A)→ Y )↔ (X → (A ∨ Y )) (1)

Negation of ULFs is performed by applying the
logical ‘not’ operator so no special rule is necessary.
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For instance, the negation of the ULF (|Abelard|
walk.v) is (not (|Abelard| walk.v)).

Some identities that are useful for inferences are
listed below, in the form of inference rules. Proofs
for these identities can be given using the formal
definitions of the respective generalized quantifiers.

(not (not φ))
φ

(not (some.d ν:ψ φ))
(no.d ν:ψ φ)

(not (a.d ν:ψ φ))
(no.d ν:ψ φ)

φ

(not (not φ))

(no.d ν:ψ φ)
(not (some.d ν:ψ φ))

(no.d ν:ψ φ)
(not (a.d ν:ψ φ))

B.4.2 Handling ‘be.v’
While ‘be.v’ are included in ULFs for simplifying
the interface to natural language since the copula
can act as an anchor for modifications from ad-
verbial phrases and temporal information from its
conjugation, we can consider it to be semantically
void with respect to its arguments.

SLF Rule 1 (be.v Elimination).

(a.d y: (y P ) (x (be.v (= y))))
(x P )

where P is an arbitrary unary predicate and x is an
arbitrary term.

Proof
1. (a.d y: (y P ) (x (be.v (= y)))) Assumption

2. I((a.d y: (y P ) (x (be.v (= y))))) Interp. fn.

3. There exists d ∈ D s.t. d ∈ I(P ) and
I((x (be.v (= y))))Uy:d

Satisfaction
conds of ∃

4. There exists d ∈ D s.t. d ∈ I(P ) and
I((x (= y)))Uy:d

Def of be.v

5. There exists d s.t. d ∈ I(P ) and
(I(x) = d)

I(=)

6. I(x) ∈ I(P ) Variable
substitution

7. (x P ) Interp. fn. of
predication

With this inference rule we can easily derive a
predicate subset defining inference rule which is
necessary for polarity inferences.

(every.d x: (xP1) (a.d y: (y P2) (x (be.v (= y)))))

(every.d x: (x P1) (x P2))

where P1 and P2 are arbitrary unary predicates.
For example, from the initial SLF for "every

carp is a fish" we get a nice relationship between
the predicates ‘carp.n’ and ‘fish.n’.

(every.d x: (x carp.n) (a.d y: (y fish.n) (x (be.v (= y)))))
⇓

(every.d x: (x carp.n) (x fish.n))

B.4.3 Monotonicity Inference
The basic monotonicity inference rule in Natural
Logic takes a subset relationship between two pred-
icates, P1 ⊆ P2, and a formula, f , where some-
thing of type P1 occurs in positive polarity. Then
we can assert f ′ which is the same as f except that
P2 is substituted for P1. We can state a direct
analog of this rule using SLFs.

We also formulate a similar rule which takes
the subset relationship P1 ⊆ P2 and a formula g,
where something of type P2 appears in negative
polarity. In this case we can assert g′ which is
the same as g except that P1 is substituted for P2.
Using SLFs the inferences looks as follows.

SLF Rule 2 (Monotonicity Inference, SMI).

(δ x: (x P1)+ φ(x)), (every.d y: (y P1) (y P2))
(δ x: (x P2) φ(x))

(δ x: (x P2)− φ(x)), (every.d y: (y P1) (y P2))
(δ x: (x P1) φ(x))

where δ is a determiner.

The SLFs are necessary for keeping track of the
outer scope and determining the polarities, but the
core inference can be written using ULFs, closer
to surface form, with the SLFs acting as auxiliary
information to ensure consistency of the formulas.
Using ULFs and chaining SMI and be.v elimination
we get the following inferences.

ULF Rule 1 (Monotonicity Inference, UMI).

φ[(δ P1)+], ((every.d P1) (be.v (= (a.d P2))))
φ[(δ P2)]

φ[(δ P2)−], ((every.d P1) (be.v (= (a.d P2))))
φ[(δ P1)]

where δ is a determiner.

It is worth noting that if the restrictor of a deter-
miner is a conjunction of predicates restricting the
variable, then due to the upward entailing nature
of the ∧ operator we can propagate the polarity
induced by the determiner on its restrictor to each
term in the conjunction. Also, we know that the
∧ operator preserves subset relations, that is if x
satisfies predicates P1 and P2 and if every ele-
ment of P1 is also in Q, then x must satisfy the
predicates Q and P2. Therefore, in a case where a
variable is restricted by a conjunction of predicates,
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it is possible to use the monotonicity inference rule
on individual predicates in the restrictor. This is
particularly useful when dealing with extensionally
modified predicates (see B.4.4).

Example 1. Now we will use the presented
ULF/SLF marking and inference rules to per-
form an inference over generalized quantifiers that
Sánchez Valencia (1991a) demonstrated: from
"Abelard sees a carp" and "Every carp is a fish" we
will conclude "Abelard sees a fish". Before we start
the inference, we walk through the scoping and po-
larity derivation of assumption (1), which will be
used in the inference. This derivation takes the
place of the Lambek derivations used by Sánchez-
Valencia to get polarity and scoping information
into the proof.

Scoping and Polarity Derivation
1. (|Abelard| (see.v (a.d carp.n))) ULF

2. (a.d x: (x carp.n) (|Abelard| (see.v x))) Only possible
scoping

3. (a.d(+,+) x: (x carp.n)
(|Abelard| (see.v x)))

a.d lexical
monotonicity

4. (a.d x: (x carp.n)+
(|Abelard| (see.v x))+)

Local entail.
context

5. (a.d x: (x carp.n)+

(|Abelard| (see.v x)+)+)
Global

polarity

Now for the actual proof.

Proof
1. (|Abelard| (see.v (a.d carp.n))) Assumption

2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (|Abelard| (see.v (a.d carp.n)+)) Polarity
marking, 1.

4. (|Abelard| (see.v (a.d fish.n))) UMI, 2.,3.

B.4.4 Inferences with Predicate Modifiers
Let P ′ be an extensional modification of a predicate
P , and let Pm be the modifying predicate. Since
the modification is extensional, we know that an
entity x satisfies P ′ if and only if it satisfies both
P and Pm. Hence we get the following rule.

SLF Rule 3.

(δ x: (x P ′) φ(x))
(δ x: ((x P ) ∧ (x Pm)) φ(x))

where P ′ is an extensional modification of the pred-
icate P with modifying predicate Pm, and δ is a
determiner.

This rule can then be combined with monotonic-
ity inference to get

ULF Rule 2.
φ[(δ (M P1))+], ((every.d P1) (be.v (= (a.d P2))))

φ[(δ (M P2))]

where M is an extensional modifier and δ is a de-
terminer. A similar rule for negative polarities can
be written as well.

This allows us to make another inference demon-
strated by Sánchez Valencia (1991a):

Example 2. From "Abelard sees a male carp" and
"Every carp is a fish", we will conclude "Abelard
sees a male fish".

Scoping and Polarity Derivation
1. (|Abelard| (see.v (a.d (male.a carp.n)))) ULF

2. (a.d x: (x (male.a carp.n))
(|Abelard| (see.v x)))

Only possible
scoping

3. (a.d x: ((x male.a) ∧ (x carp.n))
(|Abelard| (see.v x)))

Assume
intersective

modification

4. (a.d(+,+) x: ((x male.a) ∧ (x carp.n))
(|Abelard| (see.v x)))

a.d lexical
monotonicity

5. (a.d x: ((x male.a) ∧ (x carp.n))+
(|Abelard| (see.v x))+)

Local entail.
context

6. (a.d x: ((x male.a)+ ∧ (x carp.n)+)
(|Abelard| (see.v x))+)

Upward entail.
of ∧

7. (a.d x: ((x male.a)+ ∧ (x carp.n)+)
(|Abelard| (see.v x)+)+)

Global
polarity

Proof
1. (|Abelard| (see.v (a.d (male.a carp.n)))) Assumption

2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (|Abelard| (see.v (a.d (male.a carp.n+)))) Polarity
marking, 1.

4. (|Abelard| (see.v (a.d (male.a fish.n)))) UMI, 2.,3.

The need for addressing the intersective nature
of the modification in male fish brings up a benefit
of using ULFs as a basis for the inferences. Since
ULF is explicitly underspecified, the assumptions
made during the inference process must be stated.
The corresponding proof presented by Sánchez-
Valencia hides the assumption of intersective mod-
ification in the lexical monotonicity marking of
male (as ((e, t)+, (e, t))). In ULF, modifications
are assumed to be intensional unless otherwise as-
sumed, so the intersective nature of the modifier
male.n must be explicitly stated.
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B.4.5 Conversion Rules
Sánchez-Valencia’s (1991a) conversion rule is

(some y)# is a x,X Y

(some x)# is a y,X Y

Before stating the corresponding rule for ULFs,
we note that the rule also works for the determiners
a.d and no.d. Thus we state the ULF conversion
rules as follows:

SLF Rule 4 (Conversion).

(d x: (x P ) (x Q))↔ (d y: (y Q) (y P ))

where d ∈ {some.d, a.d, no.d}.
Correctness of this rule can be argued using the

definitions of the generalized quantifiers ‘some’,
‘a’, and ‘no’ and subset relations under interpreta-
tion.

Using ULFs and chaining this rule with the be.v
inference, we get the following rule.

ULF Rule 3 (Conversion).

((d1 P ) (be.v (= (d2 Q))))
↔ ((d1 Q) (be.v (= (d2 P ))))

where d1 ∈ {some.d, a.d, no.d} and d2 ∈ {some.d,
a.d}.

B.5 Boolean Connectives

Sánchez-Valencia (1991a) handles generalized
boolean connectives by allowing connectives (and,
or) to have the type (a, (a, a)), where a is any com-
plex category ending in t. Then the inference rules
appropriately substitute one of the connective con-
stituents for the entire phrase. The rules, which we
will not list here, have a few versions depending
on the position of the connective due to the left
side of the tableau nodes being interpreted as con-
nected with conjunctions and the right side with
disjunctions.

ULF handles this similarly, without the tableau-
specific details by allowing connectives to be inter-
preted as 〈A, 〈A,A〉〉 for an arbitrary type A. They
are interpreted as generalized lambda expressions.

Definition B.1 (ULF Generalized Connective).

(A χ B)↔
(λ x1, ..., xn: ((A x1...xn) χ (B x1...xn)))

where χ ∈ {and.cc, or.cc} and both A and B are
prefix operators with arity n. Infix operators are
defined in the equivalent way while respecting the
predicate position relative to the arguments.

This along with the observation that the follow-
ing formulas hold true through the intersective and
unionistic nature of conjunction and disjunction,
respectively, allow us to use simple monotonicity
rules in the context of boolean connectives.

(λ x1, ..., xn: ((A x1...xn) and.cc (B x1...xn))) ⊆ A,B
A,B ⊆ (λ x1, ..., xn: ((A x1...xn) or.cc (B x1...xn)))

Appendix C Polarity-based EL Inference

EL supports two forward inference rules and two
goal-based inference rules that operate on substitu-
tions under appropriate polarity contexts (Schubert
and Hwang, 2000). Here we present a couple of
examples and connect it to the inference rules in
ULF. First, the forward inference rules, called Rule
Instantiation (RI):

RI-1
MAJ(φ−),MIN(φ′+)

MAJσ(¬MINσ(⊥+)−)

RI-2
MAJ(φ−),MIN(φ′+)

MINσ(MAJσ(>−)+)

where RI-1 is sound if the only variables
in the matching expression (φ′) of the minor
premise (MIN) are “matchably bound,”—bound
within φ′ or by a universal quantifier in positive
polarity context or existential quantifier in negative
polarity context—and RI-2 is sound if the only vari-
ables in the matching expression (φ) of the major
premise (MAJ) are “matchably bound.”

It turns out that the monotonicity rule presented
by Sánchez Valencia (1991a) is a special case of RI-
2. Here is an example to demonstrate a monotonic-
ity inference over SLFs, which for this inference is
sufficiently disambiguated.
Proof
1. Every carp is a fish Assumption

2. Abelard sees a carp Assumption

3. (every.d x: (x carp.n)
(a.d y: (y fish.n) (be.v (= y))))

SLF for 1.

4. (a.d x: (y carp.n) (|Abelard| (see.v y))) SLF for 2.

5. (every.d x: (x carp.n) (x fish.n)) be.v Elim, 3.

6. (every.d x: (x carp.n)− (x fish.n)+) Polarity
marking, 5.

7. (a.d y: (y carp.n)+

(|Abelard| (see.v y))+)
Polarity

marking, 4.

8. (a.d y: (y fish.n)+

(|Abelard| (see.v y))+)
RI-2, 6.,7.

(see C)

9. Abelard sees a fish English for 8.

Step-by-step RI-2 application
1. (every.d x: (x carp.n)− (x fish.n)+) MAJ
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2. (a.d y: (y carp.n)+

(|Abelard| (see.v y))+)
MIN

3. >→ (y fish.n)+ Converted
MAJ ,

{x/y}, 1.

4. ⊥ ∨ (y fish.n)+ → Def, 3.

5. (y fish.n)+ ⊥ Elim, 4.

6. (a.d y: (y fish.n)+

(|Abelard| (see.v y))+)
Subst. of

converted
MAJ , 2.,5.

Notice that this proof holds for an arbitrary pred-
icates in place of carp and fish and an arbitrary
sentence where carp occurs in positive polarity
context in place of Abelard sees a carp. Thus, RI-2
is a generalization of Sánchez’s monotonicity rule.

(every x)# is a y, F (x+), X Y

(every x)# is a y, F (y), X Y

Note that RI-2 can also handle inferences where
the major premise is a more complex construction
than “every p is a q”. In episodic logic, RI-2 can
be used to conclude Something is a cap or pretty if
Little Red Riding Hood wears it from Every dress
or hood that Little Red Riding Hood wears is pretty
and Something is a cap or a hood (Schubert and
Hwang, 2000).

Additionally, RI-1 is a generalization of the re-
verse inference: substituting in more specific predi-
cates when in negative polarity.
Step-by-step RI-1 application
1. (every.d x: (x carp.n)− (x fish.n)+) MIN

2. (no.d y: (y fish.n)−

(|Abelard| (see.v y))−)
MAJ

3. (no.d x: (x fish.n)−

(|Abelard| (see.v x))−)
Converted

MAJ ,
{y/x}, 2.

4. ¬((x carp.n)− → ⊥+) Converted
MIN , 1.

5. ¬(¬(x carp.n)− ∨ ⊥+) → Def, 4.

6. ¬¬(x carp.n)− ∧ >+ de Morgan, 5.

7. (x carp.n)− ∧ >+ ¬ Elim, 6.

8. (x carp.n)− > Annih, 7.

9. (no.d x: (x carp.n)−

(|Abelard| (see.v x))−)
Subst. of

converted
MIN , 3.,8.

We’ve already shown that RI subsumes the
specialized monotonicity inference presented by
Sánchez Valencia (1991a). Now, we will show that

in first order contexts RI also subsumes a more
general presentation of natural logic inference by
Sánchez Valencia (1991b). The upward mono-
tonicity inference in positive contexts is written
by Sánchez Valencia as

JMK ≤ JM ′K JN(M)K
JN(M ′)K

Where JK is the denotation function and ≤ is the
monotonicity ordering from Definition A.1. We
will refer to this rule as SVMI. First, we show that
the RI-2 inference in first order contexts can be
interpreted in this form.

Since RI-2 substitutes MAJσ(>) for φ′+

in MIN(φ′+), if we can show that Jφ′K ≤
JMAJσ(>)K, then RI-2 can be justified through
SVMI. As MAJ(φ) is assumed in RI-2, if φ = >,
then for all models satisfying the assumptions,
MAJ(>) = >.7 Basically, MAJ(φ), (φ =
>) → MAJ(>). This by definition of ≤ (A.1)
satisfies JφK ≤ JMAJ(>)K: in any case where
φ is true, so is MAJ(>). Since φ and φ′ are
matchably bound, their differences are irrelevant
in the above justification and can be substituted
for each other. Thus, for any application of RI-2
Jφ′K ≤ JMAJσ(>)K holds, and therefore the infer-
ence can be justified through SVMI.

Now, we show that for any SVMI inference
where M and M ′ are wffs, it can be written
in the form of RI-2. JMK ≤ JM ′K can be re-
stated as (∀xM → M ′), which we identify as
MAJ(φ−), where M is phi and we know that M
is in a negative polarity context due to ∀. N(M)
is identified as MIN(φ′+) where M is φ′ and
we know is in a positive polarity context by as-
sumption. MAJ(>) = > → M ′ = M ′ so
MIN(MAJ(>)) = N(M ′).

We conjecture that this generalizes to all M and
M ′ that are not wffs. The monadic predicate case
seems simple enough through a connection with
modus ponens, but proofs for cases such as deter-
miners and variables are more elusive.

Appendix D Traditional Aristotelian
Syllogisms in ULF

In this appendix, we show that similar to Sánchez-
Valencia’s (1991a) Natural Logic, the inference
system described for ULFs can explain traditional
syllogistic inference. We will give proofs for the

7This step requires the first-order context. In intensional
contexts, the substitution via equality is not justified.
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syllogisms of the first figure using ULFs. Since all
other syllogisms can be derived from these, this is
sufficient to show that all traditional syllogisms can
be derived.

D.1 Scoping and Polarity Derivations

Before proving the syllogisms we go through the
scoping and polarity derivations of the propositions
used in the syllogisms.

Proposition i. “Every X is a Y ”
1. ((every.d X) (be.v (= (a.d Y )))) ULF

2. (every.d x: (x X) (x (be.v (= (a.d Y ))))) Scope every.d

3. (every.d x: (x X)
(a.d y: (y Y ) (x (be.v (= y)))))

Scope a.d

4. (every.d(−,+) x: (x X)
(a.d(+,+) y: (y Y )

(x (be.v (= y)))))

Lexical
monotonicity

5. (every.d x: (x X)−
(a.d y: (y Y )+

(x (be.v (= y)))+)+)

Local entail.
context

6. (every.d x: (x X)−

(a.d y: (y Y )+

(x (be.v (= y)))+)+)

Global
polarity

Proposition ii. “Some X is a Y ”
1. ((some.d X) (be.v (= (a.d Y )))) ULF

2. (some.d x: (x X)
(a.d y: (y Y ) (x (be.v (= y)))))

Scoping

3. (some.d(+,+) x: (x X)
(a.d(+,+) y: (y Y )

(x (be.v (= y)))))

Lexical
monotonicity

4. (some.d x: (x X)+
(a.d y: (y Y )+

(x (be.v (= y)))+)+)

Local entail.
context

5. (some.d x: (x X)+

(a.d y: (y Y )+

(x (be.v (= y)))+)+)

Global
polarity

Proposition iii. “No X is a Y ”
1. ((no.d X) (be.v (= (a.d Y )))) ULF

2. (no.d x: (x X)
(a.d y: (y Y ) (x (be.v (= y)))))

Scoping

3. (no.d(−,−) x: (x X)
(a.d(+,+) y: (y Y )

(x (be.v (= y)))))

Lexical
monotonicity

4. (no.d x: (x X)−
(a.d y: (y Y )+

(x (be.v (= y)))+)−)

Local entail.
context

5. (no.d x: (x X)−

(a.d y: (y Y )−

(x (be.v (= y)))−)−)

Global
polarity

Proposition iv. “Not every X is a Y ”
1. (not (every.d X) (be.v (= (a.d Y )))) ULF

2. (not (every.d x: (x X)
(a.d y: (y Y )

(x (be.v (= y))))))

Scoping

3. (not(−) (every.d(−,+) x: (x X)
(a.d(+,+) y: (y Y )

(x (be.v (= y))))))

Lexical
monotonicity

4. (not (every.d x: (x X)−
(a.d y: (y Y )+

(x (be.v (= y)))+)+)−)

Local entail.
context

5. (not (every.d x: (x X)+

(a.d y: (y Y )−

(x (be.v (= y)))−)−)−)

Global
polarity

D.2 Deriving the Syllogisms

Syllogism 1 (Barbara). “Every M is a P ” and
“Every S is a M” entail “Every S is a P ”.
Proof
1. ((every.d M ) (be.v (= (a.d P )))) Assumption

2. ((every.d S) (be.v (= (a.d M )))) Assumption

3. ((every.d M )− (be.v (= (a.d P )))) Polarity
marking, 1.

4. ((every.d S) (be.v (= (a.d P )))) UMI, 2.,3.

Syllogism 2 (Darii). “EveryM is a P ” and “Some
S is a M” entail “Some S is a P ”.
Proof
1. ((every.d M ) (be.v (= (a.d P )))) Assumption

2. ((some.d S) (be.v (= (a.d M )))) Assumption

3. ((some.d S) (be.v (= (a.d M )+))) Polarity
marking, 2.

4. ((some.d S) (be.v (= (a.d P )))) UMI, 1.,3.

Syllogism 3 (Celarent). “No M is a P ” and “Ev-
ery S is a M” entail “No S is a P ”.
Proof
1. ((no.d M ) (be.v (= (a.d P )))) Assumption

2. ((every.d S) (be.v (= (a.d M )))) Assumption

3. ((no.d M )− (be.v (= (a.d P )))) Polarity
marking, 1.

4. ((no.d S) (be.v (= (a.d P )))) UMI, 2.,3.

Syllogism 4 (Ferio). “No M is a P ” and “Some S
is a M” entail “Not every S is a P ”.

Using the logical interpretation of Sánchez-
Valencia’s Negation Rule twice (1), we see that the

39



syllogism is true iff “Every S is a P ” and “Some
S is a M” entail “Some M is a P ”. We prove this
as follows.
Proof
1. ((every.d S) (be.v (= (a.d P )))) Assumption

2. ((some S) (be.v (= (a.d M )))) Assumption

3. ((some S)+ (be.v (= (a.d M )))) Polarity
marking, 2.

4. ((some P ) (be.v (= (a.d M )))) UMI, 1.,3.

5. ((some M ) (be.v (= (a.d P )))) Conversion, 4.

This could alternatively be proved by contradic-
tion without the use of the equivalent of the Nega-
tion Rule, where “Not every S is a P ” becomes
negated to “every S is a P ”, after which, applying
UMI and Conversion leads to a contradiction.
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Abstract

Natural language contexts display logical reg-
ularities with respect to substitutions of related
concepts: these are captured in a functional
order-theoretic property called monotonicity.
For a certain class of NLI problems where
the resulting entailment label depends only on
the context monotonicity and the relation be-
tween the substituted concepts, we build on
previous techniques that aim to improve the
performance of NLI models for these prob-
lems, as consistent performance across both
upward and downward monotone contexts still
seems difficult to attain even for state of the
art models. To this end, we reframe the prob-
lem of context monotonicity classification
to make it compatible with transformer-based
pre-trained NLI models and add this task to the
training pipeline. Furthermore, we introduce
a sound and complete simplified monotonicity
logic formalism which describes our treatment
of contexts as abstract units. Using the no-
tions in our formalism, we adapt targeted chal-
lenge sets to investigate whether an interme-
diate context monotonicity classification task
can aid NLI models’ performance on examples
exhibiting monotonicity reasoning.

1 Introduction

NLI has seen much success in terms of perfor-
mance on large benchmark datasets, but there are
still expected systematic reasoning patterns that we
fail to observe in the state of the art NLI models.
We focus in particular on monotonicity reasoning: a
large class of NLI problems that can be described as
a form of substitutional reasoning which displays
logical regularities with respect to substitution of
related concepts. In this setting, a subphrase a of a
premise p(a) is replaced with a phrase b, yielding
a hypothesis p(b).

Usually, the resulting entailment label relies on
exactly two properties: the inclusion relation be-

Context Monotonicity
mon(p) ∈ {↑, ↓}

Concept Relation
rel(a,b) ∈
{=,v,w}

Entailment Label
for (p(a), p(b))

Figure 1: The class of entailment problems under
consideration: premise-hypothesis pairs (p(a), p(b))
whose entailment label depends only on the monotonic-
ity of the context p and the relation between a and b.

tween concepts a and b, and the systematic be-
haviour of the context p with respect to such rela-
tions.

In formal semantics, this is referred to as the
monotonicity of p (where p is either upward or
downward monotone), and this reasoning pattern is
referred to as monotonicity reasoning. Monotonic-
ity reasoning is incredibly systematic, and thus is
a much-probed behaviour in enquiries into the sys-
tematicity and generalization capability of neural
NLI models (Goodwin et al., 2020; Yanaka et al.,
2020, 2019; Richardson et al., 2020; Geiger et al.,
2020).

Determining both the concept relation and the
context monotonicity requires significant linguis-
tic understanding of syntactic structure and scope
of operators, but in terms of reasoning, this is a
very systematic pattern that nevertheless has a his-
tory of causing problems for neural models. It has
been observed (Yanaka et al., 2019; Geiger et al.,
2020) that current state of the art transformer-based
NLI models tend to routinely fail in downward
monotone contexts, such as those arising in the
presence of negation or generalized quantifiers. Re-
cent strategies (Richardson et al., 2020) to address
the shortcomings of NLI models in downward-
monotone contexts have followed the inoculation
method (Liu et al., 2019a): additional training data
which exhibits the target phenomenon (in this case,
downward-monotone reasoning) is used to fine-
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tune existing models. This is done with some
success in (Yanaka et al., 2019; Richardson et al.,
2020) and (Geiger et al., 2020). In contrast, we
wish to investigate a transfer learning strategy that
directly targets the monotonicity question as an
additional training task to see if this can further
improve the monotonicity reasoning performance
of popular transformer-based NLI models.

Our contributions are as follows:

• Emphasizing monotonicity as a property of a
context, we introduce a sound and complete
logical formalism which models the mono-
tonicity reasoning phenomenon but abstracts
away from specific linguistic operators, treat-
ing the context as a single abstract object.

• Extending our treatment of contexts as in-
dividual objects to an experimental setting,
we introduce an improvement in neural NLI
model performance on monotonicity reason-
ing challenge datasets by employing a context
monotonicity classification task in the train-
ing pipieline of NLI models. To the best of
our knowledge, this is the first use of neural
models for this specific task.

• For this purpose, we adapt the HELP dataset
(Yanaka et al., 2019) into a HELP-Contexts
dataset, mimicking the structure of our logical
formalism.

• For the class of NLI problems described as
monotonicity reasoning, we demonstrate the
impact of the proposed transfer strategy: we
show that there can be a strong improvement
on downward monotone contexts, previously
known to be a bottleneck for neural NLI mod-
els. As such, this shows the benefit of di-
rectly targeting intermediate abstractions (in
this case, monotonicity) present in logical for-
malisms that underly the true label.

2 Contexts and Monotonicity

2.1 Contexts
Informally, we treat a natural language context as
a sentence with a “gap”, represented by a variable
symbol.
A context p(x):

I ate some x for breakfast.
A sentence S = p(‘fruit’):

I ate some fruit for breakfast.

Although every sentence can be viewed as a con-
text with an insertion in as many ways as there are
n-grams in the sentence, in this work we shall con-
sider in particular those contexts where the variable
corresponds to a slot in the expression that may be
filled by an entity reference, such as a noun or noun
phrase. In the view of Montague-style formal se-
mantics, these contexts correspond to expressions
of type < e, t >.

2.2 Monotonicity

Given a natural language context p and a pair of
nouns/noun phrases (a,b), we may create a natural
language sentence pair (p(a), p(b)) by substituting
the respective subphrases into the natural language
context. When treated as a premise-hypothesis pair
(as in the experimental NLI task setting), the gold
entailment label has a strong relationship with the
kinds of relations that exist between the insertions
a and b.

In the seminal works on monotonicity (Valencia,
1991; van Benthem, 1988), the relations that are
studied are semantic containment relations, which
are defined analogously to set-theoretic contain-
ment relations (⊆).

a b

≡ couch sofa

@
apples fruit
South African soccer players soccer players
dogs with hats dogs

Table 1: Examples of the semantic containment rela-
tion between concept pairs.

For insertions related by @, the gold entailment
label depends on one other property: the combined
monotonicity profile of all the linguistic operators
within whose scope the insertion is located. If the
final monotonicity marking in the insertion’s po-
sition is “upward”, the gold label is entailment.
However, if it is “downward”, we can deduce en-
tailment of the reversed sentence pair, (p(b), p(a)).
Linguistic operators such as ”not” are downward
monotone, while generalized quantifiers such as
“every” have a more complex monotonicity pro-
file: downward-monotone in the first argument and
upward-monotone in the second argument. The
monotonicity properties of all the operators com-
pose along the syntax tree, culminating in a final
monotonicity marking for the “x” position in the
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context (the monotonicity is independent of the
inserted word). It is this final monotonicity la-

A

Every barks

Not 

barks𝒙

𝒙

𝒇(𝑥):

Every barks𝒙

𝐠(𝑥):

𝒉(𝑥):

↑

↑

↓

Figure 2: Natural language contexts have a property
which dictates logical regularities with respect to con-
cept hierarchies: like numerical functions, they can be
upward monotone or downward monotone.

bel that determines the entailment patterns with
respect to insertion relations. Although there are
formalisms that model this logical behaviour (Icard
et al., 2017), they aim to model the behaviour of
each linguistic linguistic operator and the way they
compose given the parse tree of a sentence.

We consider a simplification of this behaviour by
abstracting away the linguistic specifics of the con-
text, treating it as a single abstract object. As such,
we are not concerned with the exact monotonicity
profiles of all the linguistic operators that culmi-
nate in the monotonicity of the final context. We
describe this behaviour with a simple logic system
extending the L(all) logic of (Moss, 2008a) with
the abstracted behaviour of upward and donward
monotone contexts. We include a proof that this
adaptation is still sound and complete.

2.3 A Context-Abstracted Monotonicity
Logic

We extend the syllogistic syntax of the language
L(all) included in (Moss, 2008b) and (Moss,
2008a). In keeping with that style, we present the
syntax as natural language sentences. However, we
include the corresponding first order formulae as
well. In the subsequent proofs, we mix the styliza-
tions somewhat for readability, but the table below
should serve as a reminder for the exact correspon-
dence.

Definition 2.1. Let the language L consist of the
following:

1. A countable set A of constant symbols
a,b, a1,b1, . . .

2. Exactly two variables, x and y

3. A binary relation symbol v.

4. A set P of relation symbols vp indexed by a
countable set p, p1, . . ..

Only the following are considered sentences in
the language L:

Natural Language Styl-
ization

FOL Stylization

all a are b a v b
if p(a) then p(b)∗ a vp b

∗

p is upward monotone ∀x,y(x v y ↔ x vp y)
p is downward monotone ∀x,y(x v y ↔ y vp x)

Table 2: ∗ For every natural language context p in a set
P of contexts, and where p(a) is the substitution of a
into the natural language context p.

This can in many ways be seen as a simplifi-
cation of previous formalisms (Icard et al., 2017;
Hu and Moss, 2018) based on either extending the
syllogistic logic L(all) (Moss, 2008a) or extend-
ing typed lambda calculus with monotonicity be-
haviour. The key difference of this approach is the
abstraction away from specific linguistic operators
and their monotonicity profiles. On one hand, we
are thus only modeling one level of linguistic com-
positionality, but since the monotonicity profile of
every linguistic operator composes into one mono-
tonicity marker which affects the final entailment
label (for this class of problem), it encompasses all
of the linguistically-specific approaches. This is
useful when the monotonicity of a context can be
determined by an external system such as a neural
classifier or the ccg-2-mono system (Hu and Moss,
2018) . In this case, the monotonicity marking of
the entire context is explicit.

2.4 Semantics
Definition 2.2. A modelM of the language L is
a structure

M = (M, J·K)
consisting of a setM and an interpretation function
J·K where JaK ⊆ M , JvK is the ⊆ relation on the
powerset P(M) and JvpK ⊆ P(M) × P(M) is
any binary relation on P(M). Truth of a formula
with respect to a given model is defined as follows:

2.5 Proof Calculus
Our language will be equipped with the following
deduction rules and axioms:
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M |= a v b ⇐⇒ JaK ⊆ JbK
M |= a vp b ⇐⇒ JaK, JbK ∈ JvpK
M |= ∀x,y(x v y ↔ x vp y) ⇐⇒ ⊆= JvpK
M |= ∀x,y(x v y ↔ y vp x) ⇐⇒ ⊇= JvpK

ALL a ARE b ALL b ARE c
BARBARA

ALL a ARE c

ALL a ARE b p IS UPWARD MONOTONE
↑

IF p(a) THEN p(b)

ALL a ARE b p IS DOWNWARD MONOTONE
↓

IF p(b) THEN p(a)

Axiom1
ALL a ARE a

Axiom2
IF p(a) THEN p(a)

2.6 Soundness and Completeness

Definition 2.3. For a set of L-sentences Γ, we can
define the canonical modelMΓ as follows:

First, let M be the set of atomic constant
symbols A and define a relation ≤ on A where
a ≤ b ⇐⇒ Γ ` a @ b. The interpretation
function J·K is defined as follows:

Define JaK =↓ a = {b ∈ P | b ≤ a}.
Define JvK as the ⊆ relation on P(M).
For each p ∈ P, we have a conditional defini-

tion:
If and only if “p is upward monotone” is the

only sentence about p entailed by Γ, we define
JvpK =⊆.

If and only if “p is downward monotone” is the
only sentence about p entailed by Γ, we define
JvpK =⊆.

In all other cases, JvpK is defined as set equality
in P(M).

Lemma 1. For a set Γ of L-sentences, the canoni-
cal modelMΓ |= Γ.

Proof. The key parts of the proof are a conse-
quence of the fact that ↓ a ⊆↓ b ⇐⇒ a ≤ b,
and ↓ a ⊇↓ b ⇐⇒ b ≤ a which is crucial to
the case that Γ contains both “p is upward mono-
tone” and “p is downward monotone”. The rest is
a routine consequence of the definitions.

Theorem 2. Soundness and Completeness

Proof. We leave the perfunctory soundness proof
as an exercise to the reader. Towards showing com-
pleteness, let Γ be a set of L-sentences and φ an-
other L-sentence. Suppose that for every model
M we have that Γ |= φ. In particular, by lemma
1,MΓ |= φ. All further discussion occurs in this
specific model. The sentence φ may have one of
four forms.

Suppose firstly that φ is “if p(a) then p(b)”.
Thus, (JaK, JbK) ∈ JvpK. Since the interpretation
of vp depends on the description of p entailed by
Γ, there are three cases: Firstly, if Γ ` “p is upward
monotone” only, then it follows that JaK ⊆ JbK.
Since this holds if and only if a ≤ b by a basic
property of down-sets, then we will have Γ ` a v b
and Γ ` “p is upward monotone”, so that Γ ` “if
p(a) then p(b)” by the ↑ deduction rule.

On the other hand, if we had that Γ ` “p is down-
ward monotone” only, we can similarly deduce that
JaK ⊇ JbK, and repeating the same reasoning arrive
at Γ ` “if p(a) then p(b)”. In the last option for
p, we either have that Γ proves neither or both of
the statements “p is upward monotone” and “p is
downward monotone”, and in either case JvpK is
set equality in MΓ. As such, we will be able to
conclude that JaK = JbK. Equal down-sets imply
that a = b, so that trivially Γ ` “if p(a) then p(b)”
Hence, in all of these cases, Γ ` φ.

If φ is the sentence “p is upward monotone” (we
omit the dual, which is similar), then truth in the
canonical model gives us that ⊆= JvpK. In the
MΓ, this happens exactly when Γ ` “p is upward
monotone” . The last option for φ is covered in the
completeness theorem for the basic syllogistic logic
with the “BARBARA” deduction rule and Axiom 1.

In conclusion, in all cases we may deduce that
Γ ` φ.

3 Related Work

The study of monotonicity in natural language has
a strongly developed linguistic and mathematical
theoretical groundwork, dating back to the mono-
tonicity calculus of (Valencia, 1991) and in seman-
tic studies such as (van Benthem, 1988). Its for-
mal treatments have led to the expansion of typed
lambda calculus with an order relation so as to
model this order-theoretic behaviour, resulting in a
corresponding deduction system and completeness
theorem in (Icard et al., 2017). There are varying
presentations and some variation in terminology,
but for the most part monotonicity refers to the
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order-theoretic property of the context as a func-
tion, while the term polarity usually refers to the tag
assigned to the node in a CCG parse tree or a word
in a sentence. The inferential mechanism based on
monotonicity properties of quantifiers, determiners
and contexts in general is sometimes referred to
as natural logic, and the underlying principles of
natural logic applying to set-theoretic concept rela-
tions has led to work on generalized monotonicity
(MacCartney and Manning, 2009). However, the
additional relations such as negation, alternation
and cover are no longer order-theoretic notions.

Symbolic Implementations There are two
flavours of implementations that result in the deduc-
tions allowed by monotonicity reasoning. Firstly,
works such as (Hu et al.; Abzianidze, 2015) rely
on linguistically-informed polarity markings on
the nodes of CCG parse trees. They require ac-
curate parses and expertly hand-crafted linguistic
rules to mark the nodes with polarity tags, as in
(Hu and Moss, 2018). In (Hu et al.), a premise
is tagged for monotonicity and a knowledge base
of hypotheses created by a substitution known to
be truth-preserving is generated. Candidate hy-
potheses are compared with this set, checking for
exact matches. On the other hand, (Abzianidze,
2015) uses the CCG parses to further translate
to a lambda logical form for use in a deduction
method inspired by tableau calculus. These ap-
proaches differ from strategies such as (MacCart-
ney and Manning, 2009), which require an edit
sequence which transforms the premise into the
hypothesis. Atomic edits are tagged with gener-
alized entailment relations which are combined
with a join operator based on relational compo-
sition to determine whether the transformation is
overall truth-preserving, hence yielding a hypoth-
esis entailed by the premise. Later, (Angeli and
Manning, 2014) treated these atomic edits as edges
in a graph and phrased entailment detection as a
graph search problem. Concepts from symbolic ap-
proaches to NLI have also been applied in symbolic
question answering systems (such as in (Bobrow
et al., 2007)), and hybridized with neural systems
(such as in (Kalouli et al., 2020)).

Neural NLI Models and Monotonicity State of
the art NLI models have previously been shown
(Yanaka et al., 2019; Geiger et al., 2020) to per-
form poorly on examples where the context f is
downward monotone, as occurs in the presence of

negation and various generalized quantifiers such
as “every” and “neither”. Benchmark datasets such
as MNLI are somewhat starved of such examples,
as observed by (Yanaka et al., 2019). As a con-
sequence, the models trained on such benchmark
datasets as MNLI not only fail in downward mono-
tone contexts, but systematically fail: they tend to
treat all examples as if the contexts are upward
monotone, predicting the opposite entailment label
with high accuracy (Yanaka et al., 2019; Geiger
et al., 2020). Data augmentation techniques and ad-
ditional fine-tuning with an inoculation (Liu et al.,
2019a) strategy have been attempted in (Yanaka
et al., 2019; Richardson et al., 2020) and (Geiger
et al., 2020). In the latter case, performance on a
challenge test set improved without much perfor-
mance loss on the original benchmark evaluation
set (SNLI), but in (Yanaka et al., 2019) there was a
significant decrease in performance on the MNLI
evaluation set. These studies form the basis on
which we aim to build, and their choice of evalua-
tion datasets and models inspires our own choices.

Previous Work

Evaluation Datasets Geiger 2020
(Neural)

Yanaka 2020
(Neural)

Moss 2019
(Neural)

Hu 2020
(Symbolic)

Large,
Broad Coverage

MNLI Test x

MNLI Dev
(Mismatched)

x

SNLI Test x x

Small,
Targeted
Phenomena

MED x

SICK x∗ x
FraCaS x∗ x
MoNLI Test x
Monotonicity
Fragments

x x

Table 3: Evaluation datasets used in previous work in-
vestigating monotonicity reasoning. Positions marked
∗ indicate that the dataset is included in another used
evaluation dataset.

Neural Transformer-based language models
have been shown to implicitly model syntactic
structure (Hewitt and Manning, 2019). There is
also evidence to suggest that these NLI models
are at least representing the concept relations quite
well and using this information to predict the en-
tailment label, as corroborated by a study based on
interchange interventions in (Geiger et al., 2020).

We hypothesise that such models have the capac-
ity for learning monotonicity features. The extent
to which the representations capture monotonicity
information in the contextual representations of to-
kens in the sequence is not yet well understood,
and this is an investigation we wish to initiate and
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encourage with this work.

4 Experiments

Building on the observations in the above-
mentioned previous papers, we ask the following
questions:

• Can a context monotonicity classification task
in the model training pipeline further improve
performance on targeted evaluation sets which
test monotonicity reasoning?

• Does this mitigate the decrease in perfor-
mance on benchmark NLI datasets?

Our investigation proceeds in three parts: Firstly,
we attempt to fine-tune a SOTA NLI model for a
context monotonicity classification task.

Secondly, we retrain the above model for NLI
and evaluate the performance on several evalua-
tion datasets which specifically target examples of
both upward and downward monotonicity reason-
ing. We examine whether there is any improve-
ment over a previously suggested approach on fine-
tuning on a large, automatically generated dataset
(HELP) from (Yanaka et al., 2019).

Models We start with existing NLI models pre-
trained on benchmark NLI datasets. In particular
(and for best comparison with related studies) we
use RoBERTa (Liu et al., 2019b) pretrained on
MNLI (Williams et al., 2018) and BERT (Devlin
et al., 2019) pretrained on SNLI (Bowman et al.,
2015). These are two benchmark NLI datasets
which contain examples derived from naturally oc-
curring text and crowd-sourced labels, aiming for
scale and broad coverage. We do not deviate from
the architecture, as we are only investigating the
effect of training on different tasks (monotonicity
classification and NLI) and datasets.

4.1 Retraining NLI Models to Classify
Context Monotonicity

Traditionally, symbolic approaches treat mono-
tonicity classification as the task of labeling of each
node in a CCG parse tree with either an upward
or downward polarity marking. Our emphasis of
monotonicity as a property of a context allows for
a different framing of this problem: we consider
monotonicity classification as a binary classifica-
tion task by explicitly indicating (with a variable)
the “slot” in the sentence for which we wish to

know the polarity. Different positions of the vari-
able in a partial sentence may yield a context with
a different monotonicity label; a typical example of
this is sentences featuring generalized quantifiers
such as “every”, which may be monotone up in one
argument but monotone down in another.

4.1.1 Input Representation

The NLI models which we wish to start with are
transformer-based models, in line with the current
state of the art approaches to NLI. Transformer
models represent a sentence as a sequence of to-
kens: we take a naive approach to representing
a context by indicating the variable with an unin-
formative ‘x’ token. We refrain from using the
mask token to indicate the variable, as the under-
lying pretrained transformer language models are
trained to embed the mask token in such a way as to
correspond with high-likelihood insertions in that
position, which we would prefer to avoid.

4.1.2 Dataset

In order to ensure our monotonicity classification
task does not add any unseen data (when com-
pared to only fine-tuning on the HELP dataset) we
adapt the HELP dataset for this task. The HELP
dataset (Yanaka et al., 2019) consists of a set of
(p(a), p(b)) pairs which included labels for the en-
tailment relationship between the full sentences,
the inclusion relation between a and b, and the
monotonicity classification of p. As such, we ex-
tract only the contexts p and the monotonicity label
into dataset which we will call “HELP-contexts”,
which we split into a train, development and test
set in a 50:20:30 ratio. Examples of this dataset are
presented on Table 4. 1

Context Context Monotonicity

There were no x today. downward monotone
There is no time for x. downward monotone
Every x laughed. downward monotone
There is little if any hope for his x . downward monotone
Some x are allergic to wheat. upward monotone
Tom is buying some flowers for x. upward monotone
You can see some wild rabbits in the x. upward monotone

Table 4: Examples from the HELP-contexts dataset,
with respective labels.

1The original HELP dataset also contains a few non-
monotone examples: in the current state of this work, these are
omitted in favor of a focus on the specific confusion in existing
models where downwards monotone contexts are often treated
as upwards monotone ones.
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4.1.3 Results
As presented in Table 5, the task of predicting the
monotonicity of a context can be solved using fine-
tuned transformer models. This suggests a potential
path for inducing a bias for context classification in
downstream tasks such as NLI, which could benefit
from better modeling of context monotonicity.

Model Evaluation Data
HELP-Contexts

Dev
HELP-Contexts

Test
Precision Recall F1-Score Precision Recall F1-Score

bert-base 98.74 99.08 98.91 98.00 95.24 96.54
bert-large 98.23 98.88 98.55 97.51 95.70 96.57
roberta-large-mnli 99.62 98.92 99.26 98.73 96.64 97.64
roberta-large 99.81 99.46 99.27 98.99 96.41 97.62
roberta-base 99.81 99.46 99.63 98.10 95.56 96.76
bert-base-uncased-snli 98.88 98.19 8.53 98.92 97.29 98.07

Table 5: Performance of state of the art models for the
context prediction task. Each model was trained on
HELP context (training set).

4.2 Improving NLI Performance on
Monotonicity Reasoning

A few datasets have been curated to either fine-
tune or evaluate NLI models with monotonicity
reasoning in mind: their uses in previous related
works are detailed in table 3. We use the following
datasets for training and evaluation respectively:

4.2.1 Training Data
We start by once again using the HELP dataset
(Yanaka et al., 2019), which was designed specif-
ically as a balanced additional training set for the
improvement of NLI models with respect to mono-
tonicity reasoning. We create a split of this dataset
which is based on the HELP-contexts dataset by
assigning each example either to the train, devel-
opment or test set depending on which split its as-
sociated context f is in the HELP-contexts dataset.
This is to ensure there is no overlap between the
examples’ contexts accross the three data partitions.
Our approach combined this strategy with an addi-
tional step based on the context monotonicity task
described in section 4.1.

4.2.2 Training Procedure
We rely on the architecture implementations and
pretrained models available with the transformers
library (Wolf et al., 2020). Starting with the pre-
trained models (which we shall henceforth tag as
“bert-base-uncased-snli” and “roberta-large-mnli”),
we first fine-tune these models for the context
monotonicity classification task using the training
partition of the HELP-contexts dataset. We re-use

the classification head of the pretrained models for
this purpose, but only use two output states for the
classification.

4.2.3 Evaluation Data

Evaluation datasets are typically small, challeng-
ing and categorized by certain target semantic phe-
nomena. Following previous work in this area, we
evaluate our approach using the MED dataset intro-
duced in (Yanaka et al., 2020), which is annotated
with monotonicity information and draws from var-
ious expertly-curated diagnostic challenge sets in
NLI such as SICK, FraCaS and the SuperGlue Di-
agnostic set. It features a balanced split between
upward and downward monotone contexts, in con-
trast to the benchmark MNLI dataset. Addition-
ally, we include evaluation on the MoNLI dataset
(Geiger et al., 2020) which also features a labeled
balance of upward and downward monotone exam-
ples. However, the latter dataset’s downward mono-
tone examples are only exemplary of contexts fea-
turing the negation operator “not”, whereas MED
(Yanaka et al., 2020) also includes more complex
downward monotone operators such as generalized
quantifiers and determiners. We refer to these re-
spective papers (Yanaka et al., 2020; Geiger et al.,
2020) for full breakdowns and analyses of these
datasets.

4.2.4 Baselines

Although the main comparison to be made is the im-
provement introduced when including the context-
monotonicity-classification training on top of the
current state-of-the art roberta-large-mnli model
trained on HELP, we include an additional base-
lines: roberta-large-mnli fine-tuned on the mono-
tonicity fragment from the semantic fragments
(Richardson et al., 2020) dataset. The strategy in
this work is the same as with the HELP dataset,
but we include this in the evaluation on the chosen
challenge sets for a more complete comparison.

4.2.5 Results

We present the results on the challenge sets MED
and MoNLI in Table 6, with a break-down by up-
ward and downward monotone contexts. Further-
more, we have re-run each model on the original
benchmark evaluation datasets SNLI and MNLI,
with the results visible in Table 7.
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Model Additional
Training Data

Challenge Datasets
MoNLI Test MED

Upward Monotone Downward Monotone All Upward Monotone Downward Monotone All

bert-base-uncased-snli - 37.74 56.49 46.15 53.58 43.91 49.36
bert-base-uncased-snli HELP 30.89 85.02 55.19 43.4 72.43 60.18

bert-base-uncased-snli HELP + HELP-Contexts 21.6 97.67 55.19 32.56 87.13 66.22

roberta-large-mnli - 95.19 5.32 58.84 82.12 25.76 46.09
roberta-large-mnli Monotonicity Fragments (Easy) 92.68 79.62 86.81 74.54 65.68 70.05
roberta-large-mnli Monotonicity Fragments (All) 50.00 50.00 50.00 35.42 61.80 49.78
roberta-large-mnli HELP 94.72 98.67 96.48 64.47 86.25 77.4

roberta-large-mnli HELP + HELP-Contexts 98.78 97.17 98.06 65.24 85.12 76.44

Table 6: Performance of NLI models on challenge datasets designed to test performance on monotonicity reason-
ing.

Benchmark DatasetsModel Additional
Training Data MNLI (m∗) Dev MNLI (mm∗) Dev SNLI Dev SNLI Test

Acc ∆ Acc ∆ Acc ∆ Acc ∆

bert-base-uncased-snli - 44.96 - 45.52 - 41.54 - 40.78 -
bert-base-uncased-snli HELP 35.13 -9.83 34.37 -11.5 25.93 -15.61 25.92 -14.86
bert-base-uncased-snli HELP + HELP-Contexts 36.91 -8.05 37.36 -8.16 36.54 -5.00 37.20 -3.58

roberta-large-mnli - 94.11 - 93.88 - 93.33 - 93.14 -
roberta-large-mnli HELP 82.66 -11.45 83.38 -10.50 74.77 -18.56 74.39 -18.75
roberta-large-mnli HELP + HELP-Contexts 81.00 -13.11 82.01 -11.87 82.99 -10.34 82.31 -10.83

Table 7: Fine-tuning state of the art NLI models with the aim of improving monotonicity has tended to result in
lower performance on the original benchmark NLI datasets. We compare these performance losses in addition to
tracking performance on the the challenge datasets. ∗ MNLI (m) and (mm) refers to the matched and mismatched
dataset respectively. For MNLI, only the Dev set is publically available.

5 Discussion

Average Performance Firstly, we confirm previ-
ous observations that the starting pretrained trans-
former model roberta-large-mnli (which is consid-
ered a high-performing NLI model, achieving over
93% accuracy on the large MNLI development
set) has a dramatic performance imbalance with
respect to context monotonicity. The fact that per-
formance on downward monotone contexts is as
low as 5% suggests that this model perhaps rou-
tinely assumes upward monotone contexts. It was
noted in (Yanaka et al., 2019) that the MNLI bench-
mark dataset is strongly skewed in favor of upward
monotone examples, which may account for this.

Our approach outperforms or matches the base-
line models in three of the summary accuracy
scores, and is competitive in the fourth. Further-
more, in most cases we observe less performance
loss on the benchmark sets.

Performance by Monotonicity Category As
evident from Table 6, we observe a substantial im-
provement for the bert-base-uncased NLI models
for downward monotone contexts. For the much
larger roberta-large-mnli models, any gains over
the model trained on HELP only are quite small.
A common observation is the notable trade-off be-
tween accuracy on upward and downward mono-

tone contexts; training that improves one of these
over a previous baseline generally seem to decrease
performance of the other. This is especially evident
in the MED dataset, which is larger and representa-
tive of a more diverse set of downward monotone
examples (the MoNLI dataset is limited to the “No”
operator). Sensibly, a decrease in performance in
upward monotone contexts also leads to a decrease
in performance on the original SNLI and MNLI
datasets 7 (which are skewed in favor of upward
monotone examples). However, in most cases (ex-
cept for the roberta-large-mnli model on the MNLI
benchmark) our method results in a smaller perfor-
mance loss.

6 Conclusion and Future Work

Introducing context monotonicity classification
into the training pipeline of NLI models provides
some performance gains on challenge datasets de-
signed to test monotonicity reasoning. We see
contexts as crucial objects of study in future ap-
proaches to natural language inference. The ability
to detect their logical properties (such as mono-
tonicity) opens the door for hybrid neuro-symbolic
NLI models and reasoning systems, especially in
so far as dealing with out of domain insertions that
may confuse out-of-the-box NLI models. The lin-
guistic flexibility that transformer-based language
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models bring is too good to lose; leveraging their
power in situations where only part of our sen-
tence is in a model’s distribution would be helpful
for domain-specific use cases with many out-of-
distribution nouns. Overall, we are interested in
furthering both the analysis and improvement of
emergent modelling of abstract logical features in
neural natural language processing models.
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Abstract

We propose a probabilistic account of seman-
tic inference and classification formulated in
terms of probabilistic type theory with records,
building on Cooper et al. (2014, 2015). We
suggest probabilistic type theoretic formula-
tions of Naive Bayes Classifiers and Bayesian
Networks. A central element of these con-
structions is a type-theoretic version of a ran-
dom variable. We illustrate this account with
a simple language game combining probabilis-
tic classification of perceptual input with prob-
abilistic (semantic) inference.

1 Introduction

A probabilistic type theory was presented in Cooper
et al. (2014) and Cooper et al. (2015), which ex-
tends Cooper’s Type Theory with Records (TTR,
Cooper, 2012; Cooper and Ginzburg, 2015; Cooper,
in prep). Non-probabilistic TTR (in common with
other type theories) works with judgements of the
form a : T (“a is of type T ”) and assumes that such
judgements are categorical. In probabilistic TTR
(probTTR) we associate probabilities with judge-
ments: p(a : T ) (“the probability that a is of type
T ”).

TTR has been used previously for natural lan-
guage semantics (see, for example, Cooper, 2005
and Cooper, 2012), and to analyze semantic coor-
dination and learning (for example, Larsson and
Cooper, 2009; Cooper and Larsson, 2009). It has
also been applied to the analysis of interaction in
dialogue (for example, Ginzburg, 2012 and Brei-
tholtz, 2020), and in modelling robotic states and
spatial cognition (for example, Dobnik et al., 2013).

Two main considerations motivated recasting
TTR in probabilistic terms. First, a probabilistic
type theory offers a natural framework for captur-
ing the gradience of semantic judgements. This
allows it to serve as the basis for an account of

vagueness in interpretation, as shown by Fernández
and Larsson (2014). Second, such a theory lends
itself to developing a model of semantic learning
that can be straightforwardly integrated into more
general probabilistic explanations of learning and
inference.

Furthermore, we believe this will provide the
foundation for a unified probabilistic account of nat-
ural language semantics that accounts for reasoning
(logical as well as non-logical/enthymematic as in
Breitholtz, 2020), learning (semantic and factual)
and interaction, and that integrates low-level, sub-
symbolic real-valued perceptual information and
high-level symbolic information (Larsson, 2015).

In this paper we suggest a way of incorporat-
ing a probabilistic inference and classification into
ProbTTR. We do this because we believe that
vagueness, learning, inference and classification
are central rather than peripheral notions in seman-
tics, and that probabilistic reasoning is central to
all of them. Also, in contrast to an approach where
e.g. classifiers are implemented outside the seman-
tic theory, we want the reasoning underlying an
agent’s behaviour to be as transparent as possible
to the agent itself (and thereby potentially also to
its interlocutors).

To incorporate a probabilistic inference and clas-
sification into ProbTTR, we will need to introduce
a ProbTTR version of a random variable, not dis-
cussed in Cooper et al. (2015). We will also show
how probabilistic classification of perceptual evi-
dence can be combined with probabilistic reason-
ing.

We first provide a brief overview of TTR and
Probabilistic TTR. Section 4 provides some back-
ground on probabilistic inference and classification.
Section 5 introduces conditional probabilities and
defines a type theoretic version of a random vari-
able. We use these variables to characterise a Naive
Bayes classifier in Section 6. We illustrate Naive

51



Bayes classification with an example of semantic
classification. In Section 7 we show how probabilis-
tic perception and reasoning can be combined in
ProbTTR. We then introduce a ProbTTR character-
isation of Bayesian Networks, and briefly discuss
semantic learning. In Section 10 we present our
conclusions and discuss directions for future work.

2 TTR: A brief introduction

We give a brief sketch of those aspects of TTR
which we will use in this paper. For more detailed
accounts see Cooper and Ginzburg (2015); Cooper
(in prep).
s : T represents a judgement that s is of type T .

A second kind of judgement (often written T true in
Martin-Löf type theory) is the judgement that there
is something of type T (T is non-empty).Types
may be either basic or complex (in the sense that
they are structured objects which have types or
other objects introduced in the theory as compo-
nents). One basic type that we will use is Ind,
the type of individuals; another is Real, the type
of real numbers. Among the complex types are
ptypes which are constructed from a predicate and
arguments of appropriate types as specified for the
predicate. Examples are ‘man(a)’, ‘see(a,b)’ where
a, b : Ind. The objects or witnesses of ptypes can
be thought of as situations, states or events in the
world which instantiate the type. Thus s : man(a)
can be glossed as “s is a situation which shows (or
proves) that a is a man”.

Another kind of complex type is record types. In
TTR records are modelled as finite sets of fields.
Each field is an ordered pair, 〈`, o〉, where ` is a
label (drawn from a countably infinite stock of
labels) and o is an object which is a witness of
some type. No two fields of a record can contain
the same label. Importantly, o can itself be a record.
A record type is like a record except that the fields
are of the form 〈`, T 〉 where ` is a label as before
and T is a type. The basic intuition is that a record,
r is a witness for a record type, T , just in case for
each field, 〈`i, Ti〉, in T there is a field, 〈`i, oi〉, in r
where oi : Ti. (Note that this allows for the record
to have additional fields with labels not included
in the fields of the record type.) The types within
fields in record types may depend on objects which
can be found in the record which is being tested as
a witness for the record type. We use a graphical
display to represent both records and record types
where each line represents a field. Example (1)

represents the type of records which can be used to
model situations where a man runs.

(1)




ref : Ind
cman : man(ref)
crun : run(ref)




A record of this type would be of the form

(2)




ref = a
cman = s
crun = e
. . .




where a : Ind, s : man(a) and e : run(a).
We will introduce further details of TTR as we

need them in subsequent sections.

3 Probabilistic TTR fundamentals

The core of ProbTTR is the notion of probabilis-
tic judgement. There are two kinds of judgement
corresponding to the two kinds of judgement in
non-probabilistic TTR. The first is a judgement
that a situation, s, is of type, T , with some proba-
bility. p(s : T ) is the probability that s is a witness
for T . The second is a judgement that there is some
witness of type T . p(T ) is the probability that there
is some witness for T . This introduces a distinction
that is not normally made explicit in the notation
used in probability theory.

It is useful to have type theoretic objects corre-
sponding to judgements that a situation is of a type.
Following terminology first introduced in Barwise
(1989, Chap. 11), we call these Austinian proposi-
tions. A probabilistic Austinian proposition is an
object (a record) that corresponds to, or encodes,
a probabilistic judgement. Probabilistic Austinian
propositions are records of the type in (3).

(3)




sit : Sit
sit-type : Type
prob : [0,1]




(where [0, 1] represents the type of real numbers
between 0 and 1). A probabilistic Austinian propo-
sition ϕ of this type corresponds to the judgement
that ϕ.sit is of type ϕ.sit-type with probability
ϕ.prob. That is,

(4) p(ϕ.sit:ϕ.sit-type)= ϕ.prob
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Figure 1: Example Bayesian Network

4 Probabilistic Inference and
Classification

A Bayesian Network is a Directed Acyclic Graph
(DAG)1. The nodes of the DAG are random vari-
ables, each of whose values is the probability of
one of the set of possible states that the variable
denotes. Its directed edges express dependency re-
lations among the variables. When the values of
all the variables are specified, the graph describes
a complete joint probability distribution (JPD) for
its random variables (Pearl, 1990; Halpern, 2003).

Russell and Norvig (1995) give the example
Bayesian Network in Figure 1. The only directly
observable evidence is whether it is cloudy or not,
and the queried variable is whether the grass is wet
or not. We do not know if it is raining, or whether
the sprinkler is on. Both of these factors depend on
whether it is cloudy, and both affect the grass being
wet.

From this Bayesian Network we can compute
the marginal probability of the grass being wet
(W = T).

(5) p(W=T)=
∑

s,r,l p(W=T, S=s,R=r, C=c)

Here, s, r and l can be either T(rue) or F(alse).
The Bayesian network in Figure 1 allows us to

simplify the computation of this JPD by encoding
independence relations between variables, so that:

(6) p(W,S,R,C)=p(W |S,R)p(S|C)p(R|C)p(C)

and hence

(7) p(W=T)=∑
s,r,l p(W=T|S=s,R=r)p(S=s|C=c)

p(R=r|C=c)p(C=c)
1This section briefly explains Bayesian nets and Naive

Bayes classifiers, and introduces examples that will be used
later. Readers familiar with this material can safely skip ahead
to Section 5.

C

E1 E2 ... En

Figure 2: Naive Bayes classifier

A standard Naive Bayes model is a Bayesian net-
work with a single class variable C that influences
a set of evidence variables E1, . . . , En (the evi-
dence), which do not depend on each other. Figure
2 illustrates the relation between evidence variables
and a class variable in a Naive Bayes classifier.

A Naive Bayes classifier computes the marginal
probability of a class, given the evidence:

(8) p(c) =∑
e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c is the value of C, ei is the value of Ei
(1 ≤ i ≤ n) and the conditional probability of the
class given the evidence is estimated thus:

(9) p̂(c | e1, . . . , en) =
p(c)p(e1 | c) . . . p(en | c)∑

C=c′ p(c
′)p(e1 | c′) . . . p(en | c′)

Of course, if the assumption regarding the inde-
pendence of the evidence variables does not hold,
this estimation may be incorrect; this is the price to
pay for the relative simplicity of the Naive Bayes
classifier.

5 Type theoretic probabilistic inference
and classification

We now turn to an account of probabilistic classifi-
cation in ProbTTR. We first show how probabilistic
inference can be modelled in ProbTTR. We then
provide a Naive Bayes classifier with a detailed
example. Finally, we generalise this account to
Bayesian Networks.

5.1 Conditional probabilities in ProbTTR
We use p(T1||T2) to represent the estimated2 con-
ditional probability that any situation, s, is of type

2Estimating p(T1||T2) is part of the learning theory.
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T1 given that it is of type T2. This contrasts
with two other probability judgements in probTTR:
p(s1 : T1|s2 : T2), the probability that a particular
situation, s1, is of type T1 given that s2 is of type
T2 , and p(T1|T2), the probability that there is a
situation of type T1 given that there is a situation of
type T2. In addition there are “mixed” probabilities
such as p(T1|s : T2), the probability that there is a
situation of type T1 given that s : T2.

5.2 Random variables in TTR
To do probabilistic inference in ProbTTR, we need
a type theoretic counterpart of a random variable in
probabilistic inference. Assume a single (discrete)
random variable with a range of possible (mutually
exclusive) values. We introduce a variable type
V whose range is a set of value types R(V ) =
{A1, . . . , An} such that the following conditions
hold.

(10) a. Aj v V for 1 ≤ j ≤ n
b. Aj⊥ Ai for all i, j such that 1 ≤ i 6= j ≤
n

c. for any s, p(s : V ) ∈ {0, 1.0} and p(s :
V ) =

∑
T∈R(V ) p(s : T )

(10 a) says that all value types for a variable type V
are subtypes of V . (A type T1 is a subtype of type
T2, T1 v T2, just in case a : T1 implies a : T2 no
matter what we assign to the basic types.) A simple
way of achieving this is to let V = Ai ∨ . . . ∨An.
(T1 ∨ T2 is the join type of T1 and T2. a : T1 ∨ T2
just in case either a : T1 or a : T2). (10 b) says
that all value types for a given variable type V are
mutually exclusive, i.e. there are no objects that
are of two value types for V . (10 c) says that the
probability of a situation s being of a variable type
V is either 0 or 1.0. If it is 0 (i.e., the variable has
no value for the situation), then the probabilities
that s is of each of the value types for V sum to 0;
otherwise these probabilities sum to 1.0.

(10) encodes a conceptual difference between
the probability that something has a property (such
as colour, p(s:Colour)), and the probability that it
has a certain value of a variable (e.g. p(s:Green)).
If the probability distribution over different val-
ues (colours) sums to 1.0, then the probability that
the object in question has a colour is 1.0. The
probability that an object has colour is either 0 or
1.0. We assume that certain ontological/conceptual
type judgements of the form “physical objects have

colour” are categorical (which in a probabilistic
framework means they have probability 0 or 1.0).

We can now formulate the example in Figure
1 in ProbTTR. We assume four binary variable
types Grass, Sprinkler, Raining and Cloudy with
corresponding variable value types as given in (11).

(11)

R(Grass)={GrassWet, GrassDry}
R(Sprinkler)={SprinklerOn, SprinklerOff}
R(Raining)={IsRaining, IsNotRaining}
R(Cloudy)={ItIsCloudy, ItIsNotCloudy}

We specify that Grass=GrassWet∨GrassDry,
and similarly for the other variable types. This
will ensure that GrassWetvGrass, and similar sub-
typing constraints hold. Assuming that the variable
types and variable value types are related as in (11)
also entails that GrassIsWet⊥GrassIsDry, and sim-
ilarly for the other variable value type pairs.

5.3 A ProbTTR Naive Bayes classifier

Corresponding to the evidence, class variables, and
their values, we associate with a ProbTTR Naive
Bayes classifier κ

(12) a. a collection of m evidence variable types
Eκ1 , . . . ,Eκn,

b. associated sets of evidence value types
R(Eκ1), . . . ,R(Eκn),

c. a class variable type Cκ, and

d. an associated set of class value types
R(Cκ).

To classify a situation s using a classifier κ, the
evidence is acquired by observing and classifying
s with respect to the evidence types. This can be
done through another layer of probabilistic classifi-
cation based on yet another set of evidence types.
Type judgements can also be obtained directly from
probabilistic or non-probabilistic classification of
low-level sensory readings supplied by observation.

We define a ProbTTR Bayes classifier κ as a
function from a situation s (of the meet type of
the evidence variable types Eκ1 , . . . ,Eκn) to a set
of probabilistic Austinian propositions that define
a probability distribution over the values of the
class variable type Cκ, given probability distribu-
tions over the values of each evidence variable type
Eκ1 , . . . ,Eκn. Formally, a ProbTTR Naı̈ve Bayes
classifier is a function κ of the type
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(13) (Eκ1 ∧ . . . ∧ Eκn →

Set(




sit : Sit
sit-type : Type
prob : [0,1]


)

such that if3 s : Eκ1 ∧ . . . ∧ Eκn, then

(14) κ(s)={




sit = s
sit-type = C
prob = pκ(s : C)


 | C ∈ R(Cκ)}

where

(15) pκ(s : C) =

∑

E1∈R(Eκ1 )
...

En∈R(Eκn)

pκ(C||E1∧. . .∧En)p(s : E1) . . . p(s : En)

(T1 ∧ T2 is the meet type of T1 and T2. a : T1 ∧ T2
just in case a : T1 and a : T2.)

We are interested in the marginal probability
pκ(s : C) of the situation s being of a class value
type C in light of the evidence concerning s. As in
the case of standard Bayesian Networks, we obtain
the marginal probabilities of a class value typeC by
summing over all combinations of evidence value
types. The classifier gives a probability distribution
over the class value types.

Note that the probabilities associated with the
evidence are probabilities that the situation s (the
situation being classified) is of the various evidence
value types. We do not assume that the evidence
variables are known, only that we have a probabil-
ity distribution over judgements of s being of the
associated evidence value types. We also do not
use the priors of the evidence value types here, as
that would give us the marginal probability of any
situation being of the class value type C, rather
than the situation s being classified. Our ProbTTR
notation allows us to make this distinction clear.

As above in (9), for the Naive Bayes classifier
we estimate the conditional probability of the class
given the evidence using the assumption that the
evidence variable types are independent:

3Recall that that Eκ1 . . .Eκn are variable types and that for
any variable type V and situation s, p(s : V ) ∈ {0, 1.0}.
Therefore, any type judgement regarding a variable type, such
as that involved in the classifier function, can be regarded as
categorical.

(16) p̂κ(C||E1 ∧ . . . ∧ En) =

p(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) p(C

′)p(E1||C ′) . . . p(En||C ′)

6 Semantic Classification: Example

We will now illustrate classification in ProbTTR
using a Naive Bayes classifier for fruits. We can
imagine this classification taking place in the set-
ting of an Apple Recognition Game. In this game a
teacher shows a learning agent fruits (for simplicity,
we assume there are only apples and pears in this
instance of the game). The agent makes a guess,
the teacher provides the correct answer, and the
agent learns from these observations. (This paper
describes only the classification step, leaving the
learning step for future work.)

We will use shorthand for the types correspond-
ing to an object being an apple vs. a pear

(17) a. Apple =
[

x : Ind
capple : apple(x)

]

b. Pear =
[

x : Ind
cpear : pear(x)

]

We take it that the probability of judgements that
something is of type Ind is always 1.0, and that

(18) p(s :
[

x : Ind
c : T(x)

]
) = p(s.c : T (s.x))

so that e.g. if

(19) s =
[

x = a
c = prf

]
,

then

(20) p(s : Apple) = p(prf : apple(a))

.
Furthermore, we will assume that the objects

in the Apple Recognition Game have one of two
shapes (a-shape or p-shape) and one of two colours
(green or red). We define shorthands for the record
types involved.

(21) a. Ashape =
[

x : Ind
c : ashape(x)

]

b. Pshape =
[

x : Ind
c : pshape(x)

]
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c. Green =
[

x : Ind
c : green(x)

]

d. Red =
[

x : Ind
c : red(x)

]

The class variable type is Fruit, with value
types R(Fruit) = {Apple,Pear}. The evidence
variable types are (i) Col(our), with value types
R(Col) = {Green,Red}, and (ii) Shape, with
value types R(Shape) = {Ashape,Pshape}. Fig-
ure 3 shows the evidence and class types of the
Apple Recognition Game in a simple Bayesian Net-
work.

Fruit

Shape Colour

Figure 3: Bayesian Network for the Apple Recognition
Game

For a situation s, the classifier FruitC(s) returns
a set of probabilistic Austinian propositions assert-
ing that s instantiates a certain type of fruit. This
set is a probability distribution over the variable
types of Fruit.

(22) FruitC(s) =

{




sit = s
sit-type = F
prob = pFruitC(s : F )


 | F ∈ R(Fruit)}

We compute the probability of a classification in
the Apple Recognition Game with the equation in
(23), which is a special case of (15).

(23) for each F ∈ R(Fruit), pFruitC(s : F ) =

∑

L∈R(Col)
S∈R(Shape)

p(F ||L ∧ S)p(s : L)p(s : S)

Therefore, to determine the probability that a
situation is of the apple type, we sum over the
various evidence type values for apple.

(24) pFruitC(s:Apple) =
p(Apple||Green ∧ Ashape)p(s:Green)p(s:Ashape) +

p(Apple||Green ∧ Pshape)p(s:Green)p(s:Pshape) +

p(Apple||Red ∧ Ashape)p(s:Red)p(s:Ashape) +

p(Apple||Red ∧ Pshape)p(s:Red)p(s:Pshape)

Conditional probabilities for the fruit classifier
are derived from previous judgements of the form
p(F ||C ∧ S). The example values in the matrix in
(25) illustrate a JPD for the Bayesian Network in
Figure 3.

(25)
Apple/Pear Ashape Pshape
Green 0.93/0.07 0.63/0.37
Red 0.56/0.44 0.13/0.87

For each square with Apple/Pear type values, the
conditional probabilities of the fruit being an apple
and of its being a pear sum to 1. These probabilities
are estimated using (16). For example:

(26) p̂(Apple||Green ∧ Ashape) =

p(Apple)p(Green||Apple)p(Ashape||Apple)∑
F ′∈{Apple,Pear} p(F

′)p(Green||F ′)p(Ashape||F ′)

The non-conditional probabilities in (24) are de-
rived from the agents’ take on the particular situa-
tion being classified; let us call it s5.

(27)

T = Ashape Pshape Green Red
p(s5:T ) 0.90 0.10 0.80 0.20

With these numbers in place, we can compute
the probability that the fruit shown in s5is an apple:

(28) pFruitC(s5: Apple) =
0.93 ∗ 0.80 ∗ 0.90 + 0.63 ∗ 0.80 ∗ 0.10 +

0.56 ∗ 0.20 ∗ 0.90 + 0.13 ∗ 0.20 ∗ 0.10 =
0.67 + 0.05 + 0.10 + 0.00 =
0.82

In this section, we have shown how a Naive
Bayes classifier, taking as input [1] judgements
about how a situation s is classified with respect to
a set of evidence value types, [2] conditional prob-
abilities of some situation being of an evidence
value type given that it is of a class value type, can
be cast in ProbTTR.
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7 Perceiving evidence

We might at this point ask, where do the non-
conditional probabilities concerning the situation
s being classified (exemplified in 27) come from?
We suggest regarding these probabilities as result-
ing from probabilistic classification of real-valued
(non-symbolic) visual input, where a classifier as-
signs to each image a probability that the image
shows a situation of the respective type. Such a
classifier can be implemented in a number of dif-
ferent ways, e.g. as a neural network, as long as it
outputs a probability distribution.

Larsson (2015) shows how perceptual classi-
fication can be modelled in TTR, and Larsson
(2020) reformulates and extends this formalisa-
tion to probabilistic classification. Adapting the
notion of a probabilistic TTR classifier to the cur-
rent setting, a probabilistic perceptual (here, visual)
classifier corresponding to an evidence value type
Ei(1 ≤ i ≤ n) provides a mapping from percep-
tual input (of a type V, e.g. a digital image) onto a
probability distribution over evidence value types
in R(Eκi ), encoded as a set of probabilistic Aus-
tinian propositions:

(29) πEκi :SitV→

{




sit : SitV
sit-type : RecTypeR
prob : [0,1]


| R ∈ R(Eκi )}

where SitV is the type of situations where percep-
tion of some object (labelled x) yields visual infor-
mation (labelled c) concerning x:

(30) SitV=
[

x : Ind
c : V

]

and where RecTypeR is the (singleton) type of
record types identical to R, so that e.g.

(31) T :RecTypeGreen iff T :RecType and T =
Green

In the Apple game, an agent would be equipped
with visual classifiers corresponding to Shape and
Col, where e.g.

(32) πCol :
[

x : Ind
c : V

]
→

{




sit : SitV
sit-type : RecTypeGreen

prob : [0,1]


,




sit : SitV
sit-type : RecTypeRed

prob : [0,1]


}

If we take s5 to be e.g.

(33)
[

x = a453
c = Img9876

]

where

(34) a. a453:Ind

b. Img9876:V

and we assume that

(35) πCol(s5)=

{




sit = s5
sit-type = Green
prob = 0.8


,




sit = s5
sit-type = Red
prob = 0.2


}

then (4) yields that

(36) a. p(s5:Green)=0.8

b. p(s5:Red)=0.2

which, incidentally, are the probabilities also shown
in (27). This illustrates how ProbTTR allows com-
bining probabilistic perceptual classification and
probabilistic reasoning.

8 Bayesian networks in TTR

To extend the above to full Bayesian networks, we
need to distinguish evidence variables from unob-
served variables, and incorporate the latter into our
classifier. A TTR Bayes net classifier is associated
with

• Eκ1 , . . . ,Eκn is a collection of evidence vari-
able types,

• R(Eκ1), . . . ,R(Eκn) are sets of evidence value
types,

• Iκ1 , . . . , Iκm is a collection of unobserved vari-
able types,

• R(Iκ1), . . . ,R(Iκm) are sets of unobserved
value types.

Given this, a TTR Bayes net classifier is a function
κ of type

(37) Eκ1 ∧ . . . ∧ Eκn → Set(




sit : Sit
sit-type : Type
prob : [0,1]


)

such that if s : Eκ1 ∧ . . .∧Eκn and 1 ≤ j ≤ m, then

(38) κ(s) = {



sit = s
sit-type = Ij
prob = pκ(s : Ij)


 | Ij ∈ R(Iκj )}
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pκ(s : Ij) =
∑

I1∈R(Iκ1 )
...

Ij−1∈R(Iκj−1)

Ij+1∈R(Iκj+1)
...

Im∈R(Iκm)
E1∈R(Eκ1 )

...
En∈R(Eκn)

p(Ij ||I1 ∧ . . .∧ Ij−1 ∧ Ij+1 ∧ . . .∧ Im ∧E1 ∧ . . .∧En)p(s : E1) . . . p(s : En)

Figure 4: A TTR Bayes net classifier

where pκ(s : Ij) is as in Figure 4.
The dependencies encoded in a Bayes net will

affect how the conditional probability p(C||I1 ∧
. . . Ij−1 ∧ Ij+1 ∧ Im ∧ E1 ∧ . . . ∧ En) is com-
puted. In the sprinkler example, we have three
unobserved variable types Grass, Sprinkler and
Rain, and one evidence variable type Cloudy. For
S ∈ R(Sprinkler), R ∈ R(Rain), L ∈ R(Cloudy)
and G ∈ R(Grass), the dependencies encoded in
the Bayesian network in Figure 1 entail that

(39) p(G||S ∧R ∧ L) =

p(G||S ∧R)p(S||L)p(R||L)

and hence for G ∈ R(Grass),

(40) pκ(s : G) =

∑

S∈R(Sprinkler)
R∈R(Raining)
L∈R(Cloudy)

p(G||S ∧R)p(S||L)p(R||L)p(s : L)

9 Semantic learning

A central question is, of course, how we get the
conditional and prior probabilities used for classi-
fication. This is the role of the semantic learning
component. For a ProbTTR classifier, the learn-
ing component needs to estimate the probabilities
required for computing p(C||E1 ∧ . . . ∧ En).

In Cooper et al. (2015) a solution is sketched,
based on the idea that an agent makes judgements
based on a finite string of probabilistic Austinian
propositions, the judgement history J. When an
agent A encounters a new situation s and wants to
know if it is of type T or not, A uses probabilis-
tic reasoning to determine p(s : T ) on the basis
of A’s previous judgements J. We are currently
working on casting a couple of learning theories in
ProbTTR, and this will be reported in future work.

10 Conclusions

Cooper et al. (2014) and Cooper et al. (2015) pre-
sented a probabilistic formulation of a rich type
theory with records, and used it as the foundation
for a compositional semantics in which a proba-
bilistic judgement that a situation is of a certain
type plays a central role. The basic types and type
judgements at the foundation of the type system
correspond to perceptual judgements concerning
objects and events in the world, rather than to en-
tities in a model, and set theoretic constructions
defined on them. This approach grounds meaning
in observational judgements concerning the likeli-
hood of situations holding in the world.

Here, we have proposed a Bayesian account of
semantic classification and inference formulated in
terms of probabilistic type theory. We have sug-
gested probabilistic type theoretic formulations of
Naive Bayes Classifiers and Bayesian Networks. A
central element of these constructions is a ProbTTR
version of a random variable.

Future work includes applying Bayesian infer-
ence and classification in ProbTTR to a variety of
problems in natural language semantics, including
vagueness (where some initial steps are taken in
Fernández and Larsson (2014)), probabilistic rea-
soning in dialogue, and learning grounded mean-
ings from interaction (along the lines of Larsson
(2013)). We will also implement this integrated
system in order to demonstrate its viability as a
computational model of natural language learning,
reasoning and interaction.
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Abstract
Formal semantics in the Montagovian tradi-
tion provides precise meaning characterisa-
tions, but usually without a formal theory
of the pragmatics of contextual parameters
and their sensitivity to background knowledge.
Meanwhile, formal pragmatic theories make
explicit predictions about meaning in context,
but generally without a well-defined compo-
sitional semantics. We propose a combined
framework for the semantic and pragmatic in-
terpretation of sentences in the face of proba-
bilistic knowledge. We do so by (1) extend-
ing a Montagovian interpretation scheme to
generate a distribution over possible meanings,
and (2) generating a posterior for this distri-
bution using a variant of the Rational Speech
Act (RSA) models, but generalised to arbitrary
propositions. These aspects of our framework
are tied together by evaluating entailment un-
der probabilistic uncertainty.1

We apply our model to anaphora resolution
and show that it provides expected biases un-
der suitable assumptions about the distribu-
tions of lexical and world-knowledge. Further,
we observe that the model’s output is robust to
variations in its parameters within reasonable
ranges.

1 Introduction

A goal of much work in computational semantics
is to determine how responsibility should be ap-
portioned between discrete, logical techniques and
stochastic, probabilistic ones in explanations of
inference. A current tradition that has roots in sym-
bolic AI leverages the power of theorem provers to
model inference in corpora, oftentimes grappling
with both deductive and abductive modes of rea-
soning (Blackburn and Bos, 2005; Bos and Mark-
ert, 2005; Raina et al., 2005; van Eijck and Unger,

1The code for this paper is available on GitHub at:
https://github.com/juliangrove/
grove-bernardy-chatzikyriakidis-naloma2021

2010; Abzianidze, 2015; Emerson and Copestake,
2017a,b; Abzianidze, 2020, i.a.). Such approaches,
while explicitly compositional, often attempt to
combine both semantic and pragmatic meaning
into a single inferential module, with the goal of
capturing naturally occurring patterns.

Simultaneously (in the last decade), Rational
Speech Act (RSA) models have provided a promis-
ing avenue for integrating logical and probabilis-
tic approaches to meaning by modelling utterance
interpretation as a process of updating probabil-
ity distributions over logically characterised mean-
ings (Goodman and Stuhlmüller, 2013; Lassiter
and Goodman, 2013; Goodman and Frank, 2016;
Lassiter and Goodman, 2017, i.a.). According to
the RSA perspective, interpreting an utterance in-
volves reasoning pragmatically about a speaker’s
intended message according to Bayesian princi-
ples of belief update. The reasoning of rational
conversation participants, moreover, reflects prin-
ciples of cooperative communication according to
which speakers make true and informative utter-
ances. Thus such models aim to capture a central
feature of rational discourse known since the work
of Grice (1975): that it is constrained by principles
of appropriate social behaviour, which, through the
reasoning of interlocutors, serve to enrich the very
meanings which are communicated.

The goal of the current work is to integrate these
two approaches to meaning and inference by using,
on the one hand, a theorem prover to reason about
compositionally derived semantic meanings and,
on the other hand, Bayesian inference, as applied
within the RSA framework, to give a computational
account of pragmatic reasoning in discourse. Our
contribution is thus to tie work in the logical tra-
dition into a successful probabilistic framework
for pragmatic reasoning. While logical entailment
is at the core of evaluating truth values, we use
probabilistic reasoning to deal with epistemic un-

60



Abstract
syntax tree

Distribution
over FOL
formulae

Distribution
over truth
values

Degree of
belief

Dynamic
semantics

RSA modelFOL prover

Expected
value

Figure 1: Phases of our system. Syntax is first inter-
preted into a distribution over FOL formulae. The truth
values of such formulae can then be extracted using a
theorem prover, allowing an expected value for the re-
sulting distribution to be computed. The RSA model
acts on the distribution over FOL formulae. This re-
finement step may itself invoke the theorem prover and
distributions over truth values (we omit these dependen-
cies to avoid clutter).

certainty. As such, this paper contributes a hybrid
logical/probabilistic semantics consisting of both a
standard Montagovian compositional scheme and
an RSA model.

We pay special attention to the resolution of
linguistic ambiguity in discourse—in particular,
anaphora—as a test-case for our approach. By
considering anaphora resolution as a Bayesian in-
ference problem, we show how both prior world
and lexical knowledge may influence the choice
of antecedent for a given pronoun. Moreover, be-
cause our computational implementation combines
a probabilistic approach to inference with a com-
positional, logical approach to meaning in the tra-
dition of Montague (1973), i.e., by integrating nu-
meric computation and theorem proving, we are
able to explicitly and robustly characterise the con-
tribution of conventional meaning to the task of
pragmatic inference, as well as how the latter serves
to modulate uncertainty about the former. We illus-
trate our approach on two test cases which differ
in the priors they involve, thus demonstrating the
importance of background knowledge to the be-
haviour of our model.

2 The framework

2.1 Compositional semantics under
ambiguity

The goal of Montagovian compositional semantics
is to map syntactic representations of an utterance

u onto a meaning in some predefined domain. Typ-
ically, such meanings are propositions (for some
logical system, like first order logic or type the-
ory). We can write ‘φ = JuK’ to represent such
a mapping. However, there are, in general, sev-
eral ways to map utterances to propositions, due
to semantic ambiguity; thus our compositional se-
mantics should instead produce a distribution of
propositions.

The structure of our framework is illustrated in
Figure 1. The first step in mapping an utterance to
a pragmatically enriched meaning involves taking
that utterance onto a probability distribution over
expressions in some metalanguage: those which
represent the dynamic semantic meaning of the
utterance. As will become clear, any metalanguage
for which one may define some computable notion
of entailment suffices. For our implementation, we
choose standard first order logic, so that utterances
are mapped to distributions over FOL formulae.

Generalising the work of Lassiter and Goodman
(2013), we may formalise this distribution in terms
of the equation φ = JuKθ, where θ is a set of ran-
dom variables, each having some a priori initial
distribution. One can understand the above equa-
tion as invoking an interpretation function, J·K, de-
fined inductively on expressions, and depending
on the set θ of parameters whose role is to select
among possible interpretations, as illustrated by the
following scheme for Functional Application.

f = JnpKθ x = JvpKθ
f(x) = Jnp vpKθ

In this way, a compositional semantics simultane-
ously produces distributions for φ and the parame-
ters in θ.

2.2 Reasoning under probabilistic knowledge

One can evaluate the truth value of a proposition,
given some background context, by evaluating its
provability under a system of deduction (the system
in question representing the reasoning capabilities
of agents). We represent background knowledge as
a distribution over sets of FOL formulae Γ, each
of which may be regarded as representing a world-
state; that is, a way things might be. We can then
evaluate the truth value of φ, given some fixed
world-state (i.e., set of hypotheses) Γ, as ‘[Γ ` φ]’,
that is, 1 if Γ ` φ holds logically, and 0, otherwise.
Even though entailment in many logical systems
is undecidable, we may circumvent this issue, for
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example, by limiting them to a certain depth of
deduction, perhaps modelling finite reasoning ca-
pabilities. In our implementation, we use a regular
FOL tableau prover limited to depth 10; this way,
we can work with any set of propositions express-
ible in FOL, and in particular, those delivered by a
Montagovian interpretation procedure. Calculating
entailment constitutes the second step in our frame-
work; it takes us from a probability distribution
over formulae φ to a probability distribution over
truth values reflecting whether φ holds at a world-
state Γ, given an initial probability distribution over
world-states.

Hereafter, we let Γ be a random variable rang-
ing over sets of FOL formulae, whose distribution
represents epistemic uncertainty of an agent about
background knowledge, i.e., the actual world-state.
Such a formulation of uncertainty is very flexible.
For example, uncertainty about John’s height can
be represented as Γ = {John’s height is H}, where
H is a random variable with a normal distribution
of mean 1.8 meters and standard deviation 0.05
meters. Discrete uncertainty may be represented
using Bernoulli distributions. If b is a Boolean vari-
able with a Bernoulli distribution, uncertainty about
weather conditions can be represented as follows:
Γ = if b then {it will rain tomorrow} else {it will
not rain tomorrow}. Given a set of propositions
Ψ = {ψ1, . . . , ψn}, each true or false according to
one of a sequence of Bernoulli random variables
γ = b1, . . . , bn, we may take Γ to be equal to γΨ,
i.e., the set containing either ψi or its negation ¬ψi,
as according to whether bi is True or False.

Given this setup, we can define a notion of ‘ex-
pected truth value’, which we encode as a real num-
ber between 0 and 1. We notate the truth value of
φ, given some set of background hypotheses Γ, as
‘[Γ ` φ]’ and thus denote the expected truth value
of φ, which takes into account the distribution as-
sociated with Γ, ‘EΓ[Γ ` φ]’. As discussed in the
next section, we will more often invoke the proba-
bility of non-entailment, given as EΓ[Γ 6` φ], and
which is equal to 1− EΓ[Γ ` φ].

In general, we compute probability distributions
over formulae, world-states, and truth values com-
positionally, in terms of probabilistic programs. A
probabilistic program that returns a value of type
α is a function of type (α → R) → R; that is,
one which consumes probability density functions
(PDFs), i.e., from values of type α to real numbers,
in order to derive a real number. For example, a

probabilistic program that returns values of type α
from some finite list l with a uniform distribution
is the function λf.sum(mapfl)/(lengthl). Given
a PDF f , this program computes its sum across the
members of l and divides the result by the length
of l, thus returning the mean. If α is itself R, the
program may be used to compute an expected value
by simply feeding it the identity function.

Crucially, probabilistic programs may be com-
posed: given a probabilistic program m returning
values of type α → β and a probabilistic pro-
gram n returning values of type α, a new pro-
gram returning values of type β can be derived
as λk.m(λf.n(λx.k(fx))). Such a composition
scheme may appear familiar to many as applicative
composition in the continuation monad. Indeed,
probabilistic programs are composed by passing
their input PDFs as continuations. More generally,
complex probabilistic programs are easy to write
and compose in monadic style, thus allowing us to
keep our implementation pure and squarely within
the simply typed λ-calculus. This approach, im-
portantly, sets our framework apart from previous
attempts at integrating natural language semantics
with probabilistic computation, e.g., Goodman and
Lassiter (2015).

2.3 RSA
We first review the general assumptions of the RSA
model, and then we present the particular variant
of RSA that we use in this paper. We discuss the
differences between our presentation and that of
the original RSA model of Lassiter and Goodman
(2013) in §6.2.

RSA assumes two agents, a listener L and a
speaker S. S utters a declarative sentence u heard
by L, without transmission error. The point of RSA
is to model how, assuming Gricean cooperativeness
between S and L, L should disambiguate among
possible interpretations of u.

Our model is defined by the following relations:

PL1(φ | u) ∝ PS1(u | φ)× P (φ)

PS1(u | φ) ∝ (PL0(φ | u)/C(u))α

PL0(φ | u) = Eθ,Γ[Γ, φ, JuKθ 6` ⊥]

In the above, relations for PL1 and PL0 represent
listener models. Their primary function is to yield
a distribution over interpretations of a given utter-
ance u as propositions φ. PL1(φ|u) corresponds to
a Bayesian update to the probability of the propo-
sition φ, given an observation of the utterance u.
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Following Bayes’ theorem, this conditional prob-
ability is determined by multiplying a likelihood,
PS1(u | φ), by a prior, P (φ).

The likelihood is the probability that the prag-
matic listener S will utter u, given an intention to
communicate the proposition φ. In other words,
the output of the model PS1 is an estimate of the
probability of S uttering u if S means φ. This esti-
mate is, in turn, obtained by considering utterances
u in proportion to how likely they are to skew the
(literal) listener towards interpreting u as φ, while
taking into account an intrinsic utterance costC(u).
Furthermore, an exponent α is applied to model the
tendency of S to behave rationally, i.e., by choosing
utterances in view of L0’s tendencies in conjunc-
tion with utterance cost.

The prior probability of the proposition φ is de-
termined, in part, by the distribution over θ and, in
part, by the distribution over prior knowledge Γ.
Thus we have that P (φ) ∝ EΓ[Γ, φ 6` ⊥] ∗ P (θ),
where φ = JuKθ (for some θ), and P (φ) = 0,
otherwise. Priors are thus assessed using a non-
contradiction model of interpretation: intuitively,
Γ describes a world state—a way things could be—
and φ is accepted if it is compatible with the world-
state Γ.

The literal listener L0 similarly uses a non-
contradiction model of interpretation. It rejects
interpretations φ incompatible with the utterance,
in proportion to the a priori distribution of mean-
ings for u, namely JuKθ.

A final point deserving mention is that, in gen-
eral, the priors over Γ and θ need not be the same
in PL1 and PL0 . In PL1 , they are L’s actual priors,
while in PL0 they are those that L believes that
S believes L has. In what follows, we consider
only those priors which constitute common ground
knowledge, i.e., in which case they are equal.

3 Anaphora resolution as a case study

To apply the above theory to anaphora resolution,
we let θ be a set of parameters that determine the
mapping of anaphoric expressions to antecedents.
(In our experiments, we will consider only pronom-
inal anaphora.)

For example, if u = ‘he runs’, then (singleton) θ
could be taken in the set Θ = {John,Bill, Bob},
if those three antecedents are available in the dis-
course context. The logical representation of the
utterance is then JuKθ = run(θ). The factor P (θ)
might be used to give lower probabilities to an-

tecedents further back in the discourse; a value for
this prior might be estimated from psycholinguistic
experimentation. For the sake of simplicity, we let
P (θ) be uniform across Θ in what follows.

Alternative utterances Within the RSA frame-
work, PS1 gives the distribution over alternative
utterances considered by the speaker to express φ.
The set underlying this distribution, moreover, must
be supplied by the modeller a priori. We determine
this set as follows. First, the utterance observed by
L is itself in this set. Moreover, for any utterance
u in the set, and for any anaphor x present in u,
we include in the set the alternative utterance u′

just like u, but in which the anaphor is substituted
by a noun phrase denoting the antecedent actually
meant by S (given S’s intention to communicate
φ). That is, u′ is less ambiguous than u. For ex-
ample, when evaluating P (‘he runs’|run(bill)), S
considers both ‘he runs’ and ‘Bill runs’. This set
is important because it is used to normalise S’s
distribution over utterances:

PS1(u|φ) =
(PL0(φ|u)/C(u))α∑
u′(PL0(φ|u′)/C(u′))α

Background knowledge In our experiments, we
let Γ be governed by a finite sequence of Boolean
variables b1, . . . , bn drawn from Bernoulli dis-
tributions. Concretely, we work with a set of
potential propositions {ψ1, . . . , ψn} and write
‘. . . bi . . . {. . . ψi . . .}’ to denote the set containing
ψi if bi is True and ¬ψi if bi is False. The set of
propositions in Γ and the parameters of their asso-
ciated Bernoulli distributions vary from example
to example.

The model then predicts a posterior distribution
over mappings θ from anaphora to antecedents,
along with a corresponding posterior distribution
over meanings φ. As a result, one may also ob-
tain a posterior distribution over Boolean variables
bi representing the common ground, now updated
with φ.

4 Examples

We provide two examples to illustrate our model
and, in particular, the effect of prior knowledge on
its behaviour. Our first example is (1).

(1) Emacs is waiting for the command. It is pre-
pared.

Here, the noun phrases Emacs and the command
are in competition as potential antecedents for the
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pronoun it.2 Intuitively, the most likely antecedent
for the pronoun is Emacs, which we take to be due
(at least in part) to the fact that the verbs waiting
and prepared lexically entail that their subjects are
animate.3 Thus a rational listener who infers that
the antecedent for it in (1) is Emacs is doing so (at
least in part) on the basis of the following reason-
ing: because animacy is entailed of the pronoun in
virtue of its role as subject of the verb prepared,
it is more likely, all else being equal, to co-refer
with Emacs, which is also entailed to be animate
(in virtue of being the subject of the verb waiting),
than the command, which is subject to no such en-
tailment. Such an inference is thus obtained on the
basis of abductive reasoning about the source of
the animacy of the pronoun.

The availability of this reasoning in (1) contrasts
with its relative unavailibility in the second exam-
ple in (2).

(2) Ashley is waiting for Amy. She sees her.

In contrast to Emacs and the command, proper
names referring to humans, like Ashley and Amy,
are very likely to denote animate individuals. As
such, their prior probability of being animate will
be higher than that of the noun phrases in (1), and
the animacy entailment contributed by the verb
waiting will therefore provide less of a basis for
using animacy as a cue to distinguish potential an-
tecedents for the pronouns. With the impact of ani-
macy attenuated in (2), the candidate antecedents
for the subject pronoun should be in closer com-
petition, and anaphora resolution should be less
certain. Intuitively, this seems to be the case: it
appears more difficult to determine the referent of
the subject pronoun in (2) than in (1) (though exper-
imental investigation would be required to confirm
this intuition).

We can model the difference between these ex-
amples by assuming different priors for the ani-
macy of the referents of noun phrases like Emacs
and the command, on the one hand, and Ashley
and Amy, on the other. In our model, we encode
such priors by associating probabilities with sen-
tences translated into first order formulae; each
such formula ψ is then associated with an indepen-
dent Bernoulli random variable b in the definition

2This example comes from Lappin and Leass (1994), who
resolve anaphora on the basis of a number syntactic and se-
mantic heuristics, with no specific pragmatic analysis.

3These inferences may, in fact, be presuppositions, a point
we gloss over here.

of a probabilistic program that returns a world-state
consisting of a set of hypotheses encoded as logical
formulae. That is, such a set contains ψ if b is True,
and it contains ¬ψ if b is False.

animate(emacs) 0.2
animate(the command) 0.2

animate(ashley) 0.9
animate(amy) 0.9

As the table shows, we model world knowledge
as dictating that the referents of Emacs and the
command are only 20% likely to be animate, while
individuals such as Ashley and Amy are 90% likely
to be animate. Though these priors are somewhat
arbitrary, they are meant to reflect qualitative dif-
ferences in the knowledge we have about noun
phrases referring to humans and those referring to
other objects.

In addition to the priors listed above, we in-
clude priors for the truth of the following formulae,
which, in each case, we take to be 0.05.

∃x : wait for(emacs, x)
∃x : wait for(the command, x)

∃x : wait for(ashley, x)
∃x : wait for(amy, x)

prepared(emacs)
prepared(the command)

∃x : see(ashley, x)
∃x : see(amy, x)

Finally, we encode the lexical entailments of the
verbs waiting, prepared, and sees in terms of the
following formulae:

∀x : (∃y : wait for(x, y))→ animate(x)
∀x : prepared(x)→ animate(x)
∀x : (∃y : see(x, y))→ animate(x)

In our model, these formulae act as filters of back-
ground knowledge: any world-state that contradicts
them is given probability 0, and the probability dis-
tribution over world-states is re-normalised. As a
result, the Bernoulli random variables associated
with individual hypotheses in the final model of
background knowledge will not be entirely inde-
pendent.

5 Results and analysis

To illustrate the model’s performance, we give re-
sults for the examples discussed in the previous
section, fixing values for parameters in the speaker
model; in particular, the exponent α, as well as
the log-cost associated with an utterance that uses
either a pronoun or a full noun phrase to refer to a
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given antecedent. Table 1 provides the model’s cal-
culations of the pragmatic listener’s bias to choose
Emacs (as opposed to the command) as the an-
tecedent of the subject pronoun of (1), across two
values of α and two sets of values for log-cost. Log-
costs for pronouns (PN) and full noun phrases (NP)
are summed, for any given utterance, to provide
its total log-cost. For example, if the log-cost of
a pronoun is 1, and that of a full noun phrase is 2
(as in the models reported in rows 2 and 4), then an
utterance with one pronoun and one noun phrase
will have a total log-cost of 3, and the probability
PL0 is scaled by a factor of e−3α in the calculation
of PS1 .

α PN NP Emacs bias
0.5 0 0 87.9%
0.5 1 2 86.9%
4.0 0 0 99.9%
4.0 1 2 98.6%

Table 1: Example (1)

The results of Table 1 highlight three notable
features of our model. First, anaphora resolution
displays the expected bias, based on the prior world
and lexical knowledge governing inference. In par-
ticular, lexical knowledge associated with the verbs
waiting and prepared determines that their subjects
be animate; thus the pragmatic listener performs a
kind of abductive inference, based on these entail-
ments: a pronoun which is entailed to be animate
displays a high probability of seeking animacy in
its antecedent. Comparison with the results for (2)
(which we discuss next) illustrates the importance
of the low animacy priors (0.2) for the antecedents
in achieving pragmatic reasoning of this kind.

Second, even though high values of α increase
the bias in favour of Emacs (as expected), the
model is not very sensitive to its precise choice.
As α approaches 0, the speaker model approaches
a uniform distribution over utterances, but even as
low a value as 0.5 yields sensible results.

Third, incorporating a measure of cost into the
reasoning of the pragmatic speaker has a dampen-
ing effect on the model’s bias, as can be seen by
comparing rows 1 and 2, as well as rows 3 and 4.
This effect consists in about 1% of difference, and
it is due to the fact that making reference to cost
has the pragmatic listener reason about a “lazier”
pragmatic speaker; such a speaker, who finds full
noun phrases costlier to utter than pronouns, will

more likely choose a pronoun to minimise their ef-
fort, rather than as a result of their reasoning about
a literal listener who will choose the expected an-
tecedent for the pronoun.

Table 2 provides the model’s calculations of the
pragmatic listener’s bias to choose Ashley (as op-
posed to Amy) as the antecedent for both the subject
pronoun she and the object pronoun her in (2). We
show results for the same values of α and log-cost.

α PN NP
Ashley bias

for she for her
0.5 0 0 53.0% 50%
0.5 1 2 52.9% 50%
4.0 0 0 60.7% 50%
4.0 1 2 54.2% 50%

Table 2: Example (2)

We note, first, that the same general patterns
across values of α and log-cost obtain for this ex-
ample as for the previous one: higher values of α
exaggerate the pragmatic listener’s bias, while in-
creasing noun phrase cost relative to pronoun cost
dampens it.

Second, comparing the results of this model with
those for (1) demonstrates clearly the effect of prior
knowledge on the model’s behaviour. Because the
antecedents have high animacy priors (0.9), the
animacy entailment of the verb waiting provides
less of a basis for distinguishing them; as a result,
they are in closer competition as antecedents for the
subject pronoun, which is entailed to be animate,
and bias toward the subject antecedent is greatly
reduced (though still present).

Last, we note that the object pronoun is exactly
split in its probability of taking Ashley versus Amy
as its antecedent in (2). Because there is no ani-
macy entailment from the verb for the object pro-
noun, the pragmatic listener has no basis for distin-
guishing the antecedents, e.g., through abductive
inference. This result supports our explanation for
the biases displayed in the other cases.

6 Related work

The work presented in this paper is related to a
number of attempts in both the formal and compu-
tational semantics communities to bridge logical
and probabilistic approaches to natural language
semantics. These approaches, in addition to their
formal differences, can be categorised into those
which have been computationally implemented and
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those which have not. In the first category, one
finds approaches such as Beltagy et al. (2013);
Goodman and Stuhlmüller (2013); Goodman and
Frank (2016); Lassiter and Goodman (2013, 2017);
Bernardy et al. (2018); Emerson and Copestake
(2017b) , while in the latter category, those such as
van Eijck and Lappin (2012); Cooper et al. (2015);
Sutton (2018).

A common theme among probabilistic ap-
proaches to interpretation is that they describe a
set of possible world-states as a distribution. Pred-
icates are then evaluated at each world-state, and
probabilistic truth is the expected value over all
possible world-states. In implemented accounts,
one often uses Monte Carlo sampling methods to
estimate truth values. We refrain from a further
comparison with approaches lacking a computa-
tional implementation: even though they contain
fruitful ideas, it is unclear how they should be re-
alised computationally.

Another way to classify approaches is by the rep-
resentation of world-states that they employ. Good-
man and Stuhlmüller (2013); Goodman and Frank
(2016); Lassiter and Goodman (2013) use an ad
hoc set of variables, chosen according to the prob-
lem at hand. Bernardy et al. (2018) use vector
representations inspired by machine-learning ap-
proaches. Bernardy et al. (2019b) present a system
that tries to minimise (and in cases, eliminate) the
need for sampling by modelling predicates as (the
unions of) boxes and individuals as points.

A unique characteristic of the present account is
our use of a small number of Bernoulli random vari-
ables to represent world-states, where each variable
captures the applicability of a proposition. This
choice is afforded by the use of logical entailment
as the basis of evaluating truth values. Together,
this means that we can provide exact calculations
for truth values, i.e., by taking the average over fi-
nite probability distributions. An additional benefit
of using the knowledge-as-propositions approach
is that we have all the expressivity of the under-
lying logic at our disposal. Hence, we have no
difficulty dealing with predicates with multiple ar-
guments, contrary to Bernardy et al. (2019b, 2018).
Even though weighted formulae can be interpreted
as possible world-states via a Markov Logic Net-
works (Domingos and Lowd, 2009), as Beltagy
et al. (2013) showed for natural language semantics,
our simpler approach is sufficient for our purposes.

6.1 Logical approaches to semantic inference

Our framework aspires to connect two traditions
in the study and computational implementation of
semantics: logical, compositional semantics on
the one hand, and Bayesian pragmatics, on the
other. This connection is achieved by reasoning
about propositional entailment via theorem proving,
while modelling pragmatic inference as Bayesian
reasoning, using a variant of RSA. Thus there are
important connections to other approaches to se-
mantics and natural language inference that rely
on a compositional semantics to translate abstract
syntax trees into logical formulae and then evaluate
inference patterns via theorem proving (Bos and
Markert, 2005; Mineshima et al., 2015; Abzianidze,
2015; Bernardy and Chatzikyriakidis, 2017, 2019,
2021). These accounts vary in their details; for ex-
ample, in the type of parser used: Bos and Markert
(2005); Mineshima et al. (2015); Abzianidze (2015)
use variants of CCG parsers, while Bernardy and
Chatzikyriakidis (2017, 2019) use the GF parser
(Ranta, 2011). They also vary in the types of mean-
ing representations they employ, as well as in the
underlying logical systems they use (e.g., first or-
der versus higher order). Finally, they differ in
their choice of theorem provers, and whether they
are automated or interactive. But the connections
between such approaches and ours are clear: all
employ a compositional semantics to generate log-
ical formulae, which are further reasoned about
with theorem provers. A crucial difference between
our approach and the aforementioned ones, how-
ever, is that ours supports a designated pragmatic
module that accomplishes pragmatic inference with
Bayesian reasoning. Thus our framework may be
seen as involving a pragmatic enrichment of a logi-
cal component, afforded by Bayesian reasoning in
the guise of RSA. Finally, despite the fact that our
account follows previous work in the RSA tradition
(Goodman and Stuhlmüller, 2013; Goodman and
Frank, 2016; Lassiter and Goodman, 2013, 2017),
it employs a couple of different assumptions than
usual—a point to which we now turn.

6.2 The relation between our model and
standard RSA

Lassiter and Goodman (2013) give an RSA model
governed by the following relations (modulo re-
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naming of some parameters):

PL1(Γ, θ | u) ∝ PS1(u | Γ, θ)× PL1(Γ)

PS1(u | Γ, θ) ∝ (PL0(Γ | u, θ)/C(u))α

PL0(Γ | u, θ) = PL0(Γ | JuKθ)

This model differs from ours in two notable ways.
First, the model of Lassiter and Goodman directly
marginalises the distribution of world-states (Γ in
the above formalisation), while we only consider
the possible meanings of an utterance (JuKθ). In
other words, we regard pragmatic inference as a
problem of inferring utterance meanings, rather
than one of directly updating the common ground.

This choice has practical consequences from a
modelling perspective. When applying the frame-
work of Lassiter and Goodman, one needs to
choose prior distributions carefully, in order to
cover all possible aspects of a given world-state
which may be relevant to the truth value of any of
the possible meanings of u; i.e., those, which, in
our example of anaphora resolution, we obtained
as mappings from utterances to propositions that
varied along the set of parameters θ.

Second, we have allowed the pragmatic speaker
model PS1 to marginalise over θ. In contrast, the
model of Lassiter and Goodman uses a value of
θ which is fixed throughout the model; i.e., it is
passed up from the literal listener to the pragmatic
listener. Since our distribution over θ depends on
the utterance whose interpretation it parameterises,
we allow our pragmatic speaker to re-sample θ in
its model of the literal listener.

Finally, in comparison to previous RSA work
which attempts to combine a natural language se-
mantics with probabilistic reasoning (see Goodman
and Lassiter, 2015), the approach we advocate is,
we believe, conservative, flexible, and modular:

• It allows for the usual approach to composi-
tional semantics, i.e., in a pure logical lan-
guage.

• Any such logic can be chosen, so long as it is
equipped with a computable notion of entail-
ment.

• Probabilistic computation is added in terms of
continuation passing, i.e., as a monadic side
effect.

• Even such a side effect does not extend the
basic semantics of the metalanguage, which is

just the simply typed λ-calculus. We therefore
end up with a compositional mathematical
theory of the phenomena under investigation.

This situation contrasts, for example, with the im-
plementation of Goodman and Lassiter (2015), us-
ing Church. While Goodman and Lassiter are in-
novative in their integration of probabilistic com-
putation into a functional language, they extend
the simply typed λ-calculus with a probabilistic se-
mantics, which, as far as we can tell, is not entirely
compositional and thus difficult to reason about.

7 Future directions

The model presented in this paper relies on tech-
niques that are widely used in computational se-
mantics; by combining them in a novel way, we
believe that our approach has important potential
to generate applications in semantic analysis, in-
ference, and Bayesian cognitive modelling. One
immediate avenue for extending our model con-
cerns its applicability to a range of semantic prob-
lems that could benefit from a system that leverages
both logical semantics and Bayesian reasoning. An
obvious candidate is predication vagueness, a clas-
sic problem for logical semantics and the target
of discussion of a number of Bayesian approaches
to semantics (Sutton and Filip, 2016; Lassiter and
Goodman, 2017; Bernardy et al., 2019a; Emerson,
2020). Thus extending the coverage of the present
model and checking the predictions it makes with
respect to these phenomena is one of our goals.

We are also interested in designing a general
natural language inference system based on the ap-
proach proposed in this paper; such a system could
then be evaluated against various test suites. To
start, one can check whether the proposed system
accounts for pragmatic aspects of the FraCaS test
suite (Cooper et al., 1996), the RTE test suite (Da-
gan et al., 2006), or the small probabilistic test suite
of Bernardy et al. (2019a).

As a realistic anaphora resolution algorithm,
the model presented here falls short in some re-
spects. First, we take no account of the well-studied
grammatical restrictions on the relation between
pronominal anaphora and their antecedents (Rein-
hart, 1976; Chomsky, 1981). Second, our model
currently shows no sensitivity to the discourse fac-
tors which are well known to affect the acceptabil-
ity of anaphora in various contexts. And third, it
incorporates no sensitivity to psycholinguistic con-
straints on anaphora, which, like discourse factors,
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affect acceptability. There are different ways one
might make the model sensitive to such constraints,
which may be decided on a case-by-case basis.
In principle, any non-pragmatic factor may be ac-
counted for by imposing the right prior on θ. How-
ever, other solutions suggest themselves. Gram-
matical constraints on the anaphora-antecedent re-
lation, for example, might be implemented in an
improved compositional semantics which makes
antecedents available for certain anaphora depend-
ing on their relative syntactic positions. Sensitivity
to discourse factors might be incorporated into our
model as declarative knowledge that contributes
to the prior (i.e., on a par with world and lexical
knowledge). And, psycholinguistic (and, perhaps,
discourse) constraints might, for example, be in-
corporated into our pragmatic speaker model as
a more realistic measure of cost (see, e.g., Orita
et al., 2015), or our literal listener model, by sam-
pling antecedents for anaphora according to their
retrieval costs. In principle, antecedent retrieval
cost could be incorporated into the distribution over
antecedents accessed by the pragmatic listener, as
well, perhaps depending on whether our model
is viewed as giving a computational-level versus
algorithmic-level characterisation of anaphora res-
olution (Marr, 1982).

The ultimate success of our approach relies on
obtaining an accurate account of prior knowledge.
Prior world knowledge can be obtained through ex-
periment, following approaches to RSA that have
assessed prior beliefs using surveys (Xiang et al.,
2021a,b). Given that our model characterises prior
knowledge declaratively, we can use similar meth-
ods.

Finally, although we have paid specific attention
to anaphora resolution, our model makes way for a
general approach to semantic ambiguity resolution.
We might, for example, extend our model to other
anaphora-like phenomena, e.g., ellipsis, as well as
the resolution of structural and quantifier-scope am-
biguities. The success of such extensions depends
on generating an appropriate set of alternatives,
given an utterance (and vice versa). For ellipsis,
semantic alternatives can be generated by a free
parameter, as above; in the case of, e.g., quantifier
scope, one might incorporate a parser to provide
alternative semantic representations for a given ut-
terance. In all cases, one requires an appropriate
set of alternative utterances from a proposition in
the speaker model.
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(2015). Why discourse affects speakers’ choice of
referring expressions. In Proceedings of the 53rd

69



Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1639–1649, Beijing,
China. Association for Computational Linguistics.

Raina, R., Ng, A. Y., and Manning, C. D. (2005). Ro-
bust textual inference via learning and abductive rea-
soning. In Proceedings of the 20th national confer-
ence on Artificial intelligence - Volume 3, AAAI’05,
pages 1099–1105, Pittsburgh, Pennsylvania. AAAI
Press.

Ranta, A. (2011). Grammatical Framework: Program-
ming with Multilingual Grammars. CSLI Publica-
tions, Stanford.

Reinhart, T. M. (1976). The syntactic domain of
anaphora. Thesis, Massachusetts Institute of Tech-
nology. Accepted: 2005-08-02T20:38:55Z.

Sutton, P. R. (2018). Probabilistic Approaches to
Vagueness and Semantic Competency. Erkenntnis,
83(4):711–740.

Sutton, P. R. and Filip, H. (2016). Vagueness, Overlap,
and Countability. Proceedings of Sinn und Bedeu-
tung, 20:730–747.

van Eijck, J. and Lappin, S. (2012). Probabilistic
semantics for natural language. In Christoff, Z.,
Galeazzi, P., Gierasimczuk, N., Marcoci, A., and
Smets, S., editors, Logic and interactive rationality
(LIRA), volume 2, pages 17–35. Citeseer.

van Eijck, J. and Unger, C. (2010). Computational Se-
mantics with Functional Programming. Cambridge
University Press, Cambridge.

Xiang, M., Dai, Z., and Wang, S. (2021a). When Pars-
ing and interpretation misalign: a case of wh-scope
ambiguity resolution in Mandarin. Under review.

Xiang, M., Kennedy, C., Weijie, X., and Leffel, T.
(2021b). Pragmatic Reasoning and Semantic Con-
vention: A Case Study on Gradable Adjectives. Un-
der review.

70



Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA), pages 71–80
June 16, 2021. ©2021 Association for Computational Linguistics

A (Mostly) Symbolic System for Monotonic Inference with Unscoped
Episodic Logical Forms

Gene Louis Kim1, Mandar Juvekar2, Junis Ekmekciu3,
Viet Duong4, and Lenhart Schubert5

University of Rochester
Department of Computer Science

{gkim211,schubert5}@cs.rochester.edu
{mjuvekar2,jekmekci3,vduong4}@u.rochester.edu

Abstract

We implement the formalization of natu-
ral logic-like monotonic inference using Un-
scoped Episodic Logical Forms (ULFs) by
Kim et al. (2020). We demonstrate this sys-
tem’s capacity to handle a variety of challeng-
ing semantic phenomena using the FraCaS
dataset (Cooper et al., 1996).These results give
empirical evidence for prior claims that ULF is
an appropriate representation to mediate natu-
ral logic-like inferences.1

1 Introduction

A monotone function between partially ordered
sets either preserves or inverts the ordering of argu-
ment values. More precisely, a function f is said to
be upward monotone if x ≤ y implies f(x) ≤ f(y).
Similarly, f is said to be downward monotone if
x ≤ y implies f(x) ≥ f(y). If neither of these
hold, f is said to be non-monotone. When used
in the context of subset relations and entailment,
monotonicity can be a tool for making natural lan-
guage inferences. For instance, consider the second
example in fig. 1. Never is downward monotone in
entailment, since it flips the entailment ordering of
(1) I had a girlfriend taller than me before entails
(2) I had a girlfriend before to (2) I never had a
girlfriend before entails (1) I never had a girlfriend
taller than me before. Natural logic is an approach
to generating natural language inferences based on
syntactic structure and knowledge of the semantic
properties of the lexical items and local construc-
tions (Van Benthem et al., 1986; Sánchez-Valencia,
1991). An important fragment of natural logic is
monotonicity calculus which operates using syntac-
tic structure and the knowledge of polarity inducing
elements and monotonicity relationships. Figure 1

1The code is made available at https://github.com/
genelkim/ulf-fracas.

Up Some delegates (finished the survey on time)▲
(FraCaS) ⇒ Some delegates finished the survey

Down I never had a (girlfriend)▼ before
(MED) ⇒ I never had a girlfriend taller than me before

Non- Exactly 12 aliens read (magazines)∎
(MED) ⇎ Exactly 12 aliens read (news magazines)∎

Figure 1: Upward (...)▲, downward (...)▼, and non-
monotone (...)∎ examples from the FraCaS and MED
datasets.

shows the three basic cases of monotonicity in-
ference, upward, downward, and non- monotone
contexts leading to different entailment conditions.

Episodic Logic (EL) is an extended first-order
logic designed to closely match the form and ex-
pressivity of natural language (Schubert, 2000).
Unscoped Logical Form (ULF) is an underspec-
ified form of EL. ULF completely specifies the
semantic type structure of EL, but leaves scope,
anaphora, and word sense unresolved (Kim and
Schubert, 2019a). Kim and Schubert (2019b) pro-
posed that ULF is suitable for five classes of in-
ferences, namely monotonic inferences, inferences
based on clause-taking verbs, inferences based on
counterfactuals, inferences from questions, and
inferences from requests. Kim et al. (2019) ex-
perimentally demonstrated the capacity of ULF to
generate all of those classes of inferences except
monotonic inference. Kim et al. (2020) presented a
proof-based formalism for natural logic-like mono-
tonic inference for ULF. They established a corre-
spondence between their formalism and the natural
logic treatment of Sánchez Valencia (1991), and
showed that the formalism was capable of handling
foundational natural logic inferences from the prior
literature. We present an implementation of Kim
et al.’s (2020) monotonic inference formalism and
give empirical evidence for the feasibility of us-
ing ULFs as a basis for making natural logic-like
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inferences. Our system achieves a high precision
on monotonicity problems using a small number
of sound inference rules on a variety of inference
cases. We thereby complete the work of Kim et al.
(2019) in experimentally demonstrating that ULF
is in fact capable of handling the five kinds of in-
ference outlined by Kim and Schubert (2019b).

2 Background

Kim et al. (2019) demonstrated the capacity to use
ULFs to generate inferences from clause-taking
verbs, counterfactuals, questions, and requests
while focusing on discourse-contexts that regularly
give rise to these phenomena. They generated for-
ward inferences from manually annotated ULFs
using symbolic meta-axioms generalized to handle
syntactic idiosyncrasies and achieved reasonable
precision on a multi-genre dataset. Our work seeks
to complement this by generating Natural Logic-
like inferences from ULFs. Furthermore, we start
our inferences from English using a symbolic trans-
ducer from English constituency parses and expand
the scope of inferences to enable automatic evalua-
tion on pre-constructed datasets.

2.1 Theoretical Inference Method

Kim et al. (2020) present a proof-based inference
method which uses ULF as the base semantic rep-
resentation. Polarities are computed respective to
specific scopings of ULFs—in the form of scoped
logical forms (SLFs)—then propagated back to the
ULFs to enable inferences that are contingent on
the polarity context. This method includes infer-
ence rules for ULFs that correspond directly to
inference rules in Sánchez-Valencia’s (1991) for-
mulation of Natural Logic. The most notable infer-
ence rules are

Monotonicity (UMI)

φ[P1▲], ((every.d P1) (be.v (= (a.d P2))))

φ[P2] ,

φ[P2▼], ((every.d P1) (be.v (= (a.d P2))))

φ[P1]
Conversion (UCI)
((d1 P ) (be.v (= (d2 Q))))
((d1 Q) (be.v (= (d2 P ))))

where d1 ∈ {some.d, a.d, no.d}
and d2 ∈ {some.d, a.d}.

Polarity contexts that are necessitated by operators
present in the formulas are omitted for clarity, e.g.,
every.d imposes a negative polarity on its restrictor
and a positive polarity on its body. The remaining

inference rules are Polarity Marking and Negation
Introduction/Elimination.

Below is an simple inference example from the
FraCaS dataset—the actual output of our system—
which demonstrates a simple use of the UMI in-
ference rule.2 This example also shows some dif-
ferences between our system and the original the-
oretical method presented by Kim et al. (2020).
Namely, our UMI rules generalize to variants of
every A is a B (in this case all As are Bs), our initial
polarity marking method circumvents the need for
SLFs (Sections 3.3 and 3.4), and we haves rules to
generate monotonicity relations from intersective
predicate modification (Section 3.4).

Inference Example (FraCaS Problem 24)
1. ((many.d (plur delegate.n))

((past obtain.v)
(k (interesting.a (plur result.n)))
(adv-a (from.p (the.d survey.n)))))

Assumption

2. ((all.d (interesting.a (plur result.n)))
((pres be.v) (= (k (plur result.n)))))

Inter. modifier
relation, 1.

3. ((many.d (plur delegate.n)∎)
((past obtain.v)

(k (interesting.a (plur result.n))▲)
(adv-a (from.p (the.d survey.n)))))

Pol marking 1.

4. ((many.d (plur delegate.n))
((past obtain.v) (k (plur result.n))

(adv-a (from.p (the.d survey.n)))))

UMI 2.,3.

For the syntactic conventions of ULF, such as the
type-designating suffixes ‘.d’, ‘.v’, and ‘.n’, see
the descriptions provided by Kim and Schubert
(2019b) or Kim et al. (2020).

2.2 Automated Monotonicity Inference

Building computational approaches to natural logic
inference—distinct from general natural language
inference—is an active area of research (Angeli and
Manning, 2014; Tian et al., 2014; Mineshima et al.,
2015; Abzianidze, 2016; Hu et al., 2019; Haruta
et al., 2020). In order to evaluate our monotonicity-
specific inference system fairly, we focus on the
FraCaS dataset (Cooper et al., 1996) which care-
fully presents monotonicity-based entailments, for
evaluation, and aim to show competence on mono-
tonicity, rather than state-of-the-art (SOTA) perfor-
mance. In our experiments (Section 5) we compare
against a few notable systems that were previously
evaluated on the same parts of the FraCaS dataset:
Mineshima et al. (2015), Abzianidze (2016), Hu
et al. (2019), and Haruta et al. (2020).

2Irrelevant polarity marking symbols are omitted for
brevity and clarity.
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Figure 2: A diagram of the inference system component dependencies.

Mineshima et al. (2015) and Abzianidze (2016)
extend first-order lambda logical forms with higher-
order terms (e.g most, many, half of, etc.) and
augment first-order inference with rules geared to-
wards those terms. Haruta et al. (2020) achieve
SOTA performance by employing degree and event
semantics to approximate key higher-order logic
features presented in different linguistic phenom-
ena. Hu et al. (2019) differs from the others by
running directly on the natural language text, with
a combinatory categorical grammar (CCG)-based
monotonicity labeling system.

Our approach most resembles Hu et al.’s (2019)
system because our logical form closely matches
the form and expressiveness of natural language,
which enables monotonic reasoning using a rela-
tively compact set of inference rules and we also
use an auxiliary representation to obtain monotonic-
ity labels. Our goal is not to achieve the SOTA per-
formance on this dataset; rather the SOTA system
results are provided to contextualize our system’s
performance with respect to the wider research ef-
forts on this dataset.

3 System Description

Our inference system starts with a set of premise
sentences and a hypothesis sentence in English
which are automatically converted to ULF and then
used to determine an entailment, contradiction, or
unknown relationship between the premises and the
hypothesis through a forward inference search from
the premises. The inference process is modeled af-
ter the theoretical framework described by Kim

et al. (2020) which uses SLFs for identifying the
polarity operator scopes and computing the global
polarity context of each sub-expression. These po-
larities are then mapped back to the corresponding
ULFs which are used as the basis for the inference
rules.

We simplify Kim et al.’s (2020) framework in
two ways. First, we do not include the scoping pos-
sibilities in the proof process. That is, we compute
a single SLF for each ULF and assume that it is the
correct scoping. Second, we introduce variations
of the monotonicity and conversion inference rules
that correspond to ULF macros and specific syntax.
These reduce two steps of inference (expanding the
macro and then applying the inference rule) to a
single step. Both of these simplifications are intro-
duced to reduce the search space and speed up the
inference process.

Here we describe an example of the second
simplification. We directly extract the monotonic-
ity relation from the complex expression contain-
ing the nominal predicate with its premodifiers
and postmodifiers (i.e., all but the determiner or
kind-forming operator of the term derived from
a noun phrase). In postnominal modification, the
operands of the n+preds macro—combining a nom-
inal predicate with postmodifying predicates—are
used directly for inference, without expansion of
the macro construct to a conjunctive lambda predi-
cate. For example, for a postmodified noun, as in
the phrase a dog in the park, we directly extract
the entailments every dog in the park is a dog and
every dog in the park is in the park, rather than first
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converting the phrase to something that is a dog
and that is in the park and indirectly computing
the rules via explicit predicate intersection. For an
intersective prenominal modifier, as in the phrase
a happy dog, we directly extract the entailments
every happy dog is a dog and every happy dog is
happy, rather than first converting the phrase to
something that is happy and that is a dog first.

The inference system has the following high-
level components:

• a heuristic-based inference search function
• a constituency parse to ULF tree transducer
• a global polarity marking function
• inference rules with polarity propagators
• external knowledge resources

Figure 2 shows a diagram of the component de-
pendencies. While most of the inference system
is symbolic, the initial constituency parses and ini-
tial polarity marking—used for ULF transduction
and scope selection, respectively—are computed
using NN and ML methods. Furthermore, the ML-
based polarity marking is used when the symbolic
polarity propagation methods fail or take too long.

3.1 Search Process
Our inference process is guided by a simple heuris-
tic forward search. Algorithm 1 describes this pro-
cess in detail. In order to retain completeness while
using fast and naive heuristic functions, the search
process alternates between heuristic guided search
and breadth-first search every several steps. This
is a generic search process, where h is a heuristic
function which estimates the distance from some
formula, x, to the goal formula, ε is a small positive
number which is used to gives preference formulas
reached earlier in the search process in cases of
ties, and c is the number of search steps in a row
that the search process uses heuristic search before
switching to BGS and vice-versa. Section 4 speci-
fies the values of these parameters that we use in
our experiments.

3.2 ULF Transducer
The ULF transducer converts constituency parses
into ULFs with a series of simple correspondences
from the phrase structure and POS tags to ULF ex-
pressions. This technique is the same as those used
in the initial stages of prior transduction-based EL
parsers (Schubert, 2002; Schubert and Tong, 2003;
Gordon and Schubert, 2010; Schubert, 2014), but
modified for Kim and Schubert’s (2019b) modern

Algorithm 1 Heuristic search. Inference rules map
a set ULF premises to a set of ULF inferences.

Inputs: Φ, a set of premises; ψ, a goal ULF; h,
a heuristic function; M , a search depth limit.
Outputs: The entailment classification.
Global Constants: U , a list of unary rules; B,
a list of binary rules; ε, a small positive number;
c, a step count for search method change.
Procedure:
Initialize n← 0, KB← Φ.
Initialize Qh ← empty priority queue.
Initialize Qbfs ← empty basic queue.
Initialize Q← Qh.
Initialize Qother ← Qbfs.
loop

If n >M or Q = ∅, return UNKNOWN.
If ψ ∈ KB, return ENTAILMENT.
If ¬ψ ∈ KB, return CONTRADICTION.
ν ← Q.pop().
tunary ← U × ν.
tbinary ← B×((ν×ν)∪(ν×KB)∪(KB×ν)).
Push all results x of computing the tuples in
tunary and tbinary that are not contained
in KB to Qh with key h(x) + nε and Qbfs.

KB← KB ∪ ν.
n← n + 1.
if n mod c = 0 then

tmp← Q.
Q← Qother.
Qother ← tmp.

end if
end loop

ULF specification. Some transduction rules add
type assumptions that are not necessarily true, but
are unlikely to affect the monotonicity inferences.
For example, ULF makes a semantic distinction be-
tween event modifiers (e.g. today) and proposition
modifiers (e.g. surprisingly) which is not relevant
for monotonicity inferences. If the parser fails to
eliminate one of these options, it assumes that it is
an event modifier.3

We use the Berkeley neural parser (Kitaev and
Klein, 2018) to get the constituency trees.4 A neu-
ral network-based ULF parser has recently become

3The transduction rules are written in a combination of the
tree-to-tree transduction language (Purtee and Schubert, 2012)
and a simplified variant.

4The version 0.2.0 release and the benepar_en3
model available at https://github.com/nikitakit/
self-attentive-parser/.
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available (Kim et al., 2021), but we opted not to
use it because sentences in monotonicity datasets
tend to be fairly short and follow written English
syntax. Kim et al.’s (2021) parser is more robust to
language length and variety. However, for our eval-
uation datasets we found a symbolic transduction
to be more reliable. Additionally, our symbolic
transductions have more predictable and regular
errors. This allows monotonicity inferences to suc-
ceed even with minor errors.

3.3 Polarity Marking

We delegate the initial polarity marking problem
to a component of the Natlog and NaturalLi sys-
tems (MacCartney and Manning, 2008; Angeli and
Manning, 2014) which runs over raw English text.5

We then align the polarities of each token to the
corresponding ULF sub-expression. Rather than
using the actual English premises and hypothesis
we use the output of the ULF2English system (Kim
et al., 2019) so that we can use its subroutines to
assist in subexpression alignment.

This alignment is then used to select the scop-
ing by finding the possible SLF that minimizes the
number of polarity discrepancies between the Nat-
Log polarity labels and the labels inferred from
the scoping and a manually curated list of negative
polarity operators. The inference rules propagate
the polarities so this is only performed on the input
sentences (Section 3.4). During the inference pro-
cess, this polarity marking is reserved as a fallback
in cases where polarity propagation via inference
rules fails or takes too long.

Possible SLFs are computed by generating every
possible scope configuration while accounting for
island constraints. We roughly model scope island
constraints with the following rule: Scoping opera-
tors cannot scope outside of ancestors that are ULF
type-shifters. This rule handles complex modifiers
(which are shifted from predicates to modifiers)
and reified clausal complements (e.g., I believe
that everyone thinks.) and is implemented trivially
with the ULF type system. This is an approxima-
tion of the full range of actual island constraints,
which come in various classes and with nuances
that are still under active investigation in linguistics
research. Our rule tends to be stricter than actual
scope island constraints leading to some losses in
expressive capacity, such as exceptions to com-

5This is available through the Natural Logic component of
Stanford CoreNLP.

monly accepted island constraints (Barker, 2021)
and the de dicto / de re distinction for clausally-
embedded indefinite quantifiers (Donnellan, 1966;
Burge, 1977).6 However, this is only a limitation of
our implementation of scoping and polarity prop-
agation. A more nuanced treatment of available
scopings can be accommodated by the underlying
theoretical inference framework (Kim et al., 2020).

3.4 Inference Rules
All of our inference rules fall under one of four
categories.

1. Monotonicity Substitution

This is the core monotonicity inference. Given
the premise Every A is a B, B is substituted for A
in positive polarity contexts and A is substituted
for B in negative polarity contexts. In order
to reduce the proof lengths, we suppress ULF
macro expansion rules and extract monotonicity
relations directly from macro instances.

2. Conversion

Some A is a B⇔ Some B is an A

3. Conservativity

δ As are Bs ⇔ δ As are As that/who are Bs,
where δ is a determiner. This is a category of in-
ferences in the FraCaS dataset and a commonly
used inference step for introducing and elimi-
nating relative clauses in simple quantified ex-
pressions.

4. Equivalences

This includes equivalent determiner substitu-
tions (e.g., Every dog is happy⇔ All dogs are
happy) and predicate synonym substitutions
(e.g., I saw the accident⇔ I witnessed the ac-
cident).

We have 9 total inference rules when accounting for
specializations for macros—though some of these
inference rules themselves include several distinct
transduction patterns to account for minor syntactic
variations.

In order to identify whether a modification is
intersective, we use the non-subsective adjective
list by Nayak et al. (2014) expanded to words in
the WordNet (Miller, 1995) synsets.

6For example, the referential reading of someone in the
sentence I know that someone lied is not available if the in-
definite quantifier is not allowed to take wide scope over the
sentence.
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Polarity Propagation For computational effi-
ciency, each inference rule has a corresponding
polarity propagation function. The polarity prop-
agation function takes the premise ULF formulas,
their polarity markings, and the conclusion and
computes the polarity marking of the conclusion.

As a concrete example, consider the polarity
propagation function for the UMI inference rule
with the premises and conclusions based on FraCaS
problem 24 described in section 2.1. The premises
are steps 1 (many delegates obtained interesting re-
sults from the survery) and 2 (all interesting results
are results) in the inference example and the con-
clusion is step 4 (many delegates obtained results
from the survey). The polarity marking7 for step 1
is step 3 of the proof and the polarity marking for
step 2 is (all.d (interesting.a (plur result.n))▼ ((pres
be.v) (= (k (plur result.n)▲)))).

The propagation function identifies that (plur
result.n)▲ is the polarized version of the subex-
pression that substituted for (interesting.a (plur re-
sult.n)) in the step 1 premise. Thus, most polarity
markings are transferred over from the step 1 polar-
ity marking except the marking for (plur result.n)
in the substituted subexpression. This leads to the
following polarity marking of the conclusion.8

((many.d (plur delegate.n)∎)
((past obtain.v) (k (plur result.n)▲)

(adv-a (from.p (the.d survey.n)))))
Most of these propagation functions can be im-

plemented efficiently without accessing the corre-
sponding SLFs because the inference context elim-
inates the possibility of polarity operators interact-
ing outside of the localized expression substitution
due to scope island constraints (Fodor and Sag,
1982; Park, 1995; Ruys and Winter, 2011; Barker,
2015). For example, the conversion rule substitutes
two nominal predicates for each other in sentences
with the main verb be, an indefinitely quantified
subject, and a nominal subject complement. In this
case, any quantifier embedded within either nom-
inal predicate is constrained by the Complex NP
Constraint (Ross, 1967).

A notable exception is the monotonicity sub-
stitution of determiners: the polarity propagation
function must have access to the SLFs and can-
not be implemented as efficiently because the new
determiner may induce different polarities in its
restrictor and body than the replaced determiner.9

7Omitting irrelevant polarities.
8Again, omitting irrelevant polarities.
9For example, in positive contexts, the may be replaced

Properly computing the global polarity from this
requires access to the quantifier scopes.

4 Experimental Setup

In our experiments we allow a maximum of 50
inference steps and use a leaf label F1 heuristic
(LL-F1) which alternates with breadth-first search
(BFS) every 5 inference steps. LL-F1 computes
the F1 score between the leaf labels of the new
formula and the goal formula, ignoring order, but
preserving repetitions. This is turned into a cost
ranging 0-to-1 by subtracting it from 1.

The FraCaS dataset is a set of entailment ques-
tions related to specific semantic phenomena that
were curated by semanticists (Cooper et al., 1996).
It contains 346 problems, of which 12 do not have
well-defined answers. We focus on the most rele-
vant section of the FraCaS dataset, section 1: Gen-
eralized Quantifiers (GQs). This is also the largest
section, making up almost a quarter of the dataset.
Due to the small size of the FraCaS dataset and the
challenging phenomena it contains, prior research
has trained and tested models on the same prob-
lems, focusing on the capacity of their systems to
perform such inferences, rather than their compe-
tence in learning and generalizing to a larger scale.
This aligns nicely with our goal to demonstrate the
capacity to use ULFs as the basis for monotonic
inferences, rather than present a system to compete
with the state-of-the-art on entailment tasks.

5 Results

Our experiments show that our system is able to
precisely cover a variety of semantic phenomena
and constructions, but, as expected from a demon-
stration system, does not achieve the robustness of
SOTA entailment systems.

Table 2 shows the confusion matrix of our sys-
tem on the FraCaS dataset. Our system shows very
high precision (it is never incorrect when it makes
a definitive conclusion—not UNK) because of the
soundness of our inference rules. While our system
fails to correctly identify any contradictions, this
is not an inherent limitation of the system. It was
simply the case that parser errors led to the inability
to match the inferred negated formula with the hy-
pothesis in the 5 problems that have contradiction
labels.
with a, as in, I saw the dog⇒ I saw a dog. The imposes a flat
entailment context on its restrictor whereas a imposes a posi-
tive entailment context which warrants a fresh computation of
the global polarity markings.
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Accuracy %
Section Single-premise Multi-premise Overall

BL Ours MN LP BL Ours MN LP BL Ours MN LP HU HR
1 GQs 45 73 82 93 57 67 73 93 50 70 78 93 88 99

Table 1: FraCaS performance of our system (Ours) compared against a majority class (ENT) baseline (BL) and
several notable RTE systems: MN (Mineshima et al., 2015), LP (Abzianidze, 2016), HU (Hu et al., 2019), and HR
(Haruta et al., 2020). Hu et al. (2019) and Haruta et al. (2020) only report the overall accuracy of their systems.

Gold\Pred. ENT CON UNK

ENT 22 0 15
CON 0 0 5
UNK 0 0 32

Table 2: Confusion matrix on the FraCaS dataset.

In Table 1, the accuracy of our system is com-
pared to the majority class baseline and other nat-
ural logic systems that focus on monotonicity and
FraCaS inferences. According to the table, a variety
of methods prove effective at monotonic reasoning
over a variety of linguistic phenomena. LP and
HR perform notably well and both rely on CCG
parses for obtaining the representation and theo-
rem provers for managing inferences. Although
our system falls short of the performance of SOTA
systems on FraCaS, we still perform noticeably bet-
ter than the majority class baseline. Investigating
the error cases of our system makes clear that the
shortfalls of our system are not inherent in the the-
oretical approach—rather they are due to syntactic
and inference cases that were not addressed in this
exploratory inference system.

The polarity propagation system used the fall-
back system (the polarity marking component of
the Natlog system) in 42 out of the 3,109 (1.3%)
total polarity propagation calls made in the GQs
section of the FraCaS evaluation.

5.1 Qualitative Analysis
Figure 3 shows three distinct success and three
distinct failure cases of our system. First looking
at the successes, example 18 is a multi-premise
entailment problem which requires conservativity
inference and multiple UMIapplications in both pos-
itive and negative contexts. Example 59 has two
distinct components—first the determiner a few
must be generalized to at least a few, second fe-
male must be recognized as an intersective modifier
and removed to generalize the nominal predicate
in positive polarity context. Example 60 again has

the intersective modifier female, but must not trig-
ger an inference because of the negative polarity
context.

Now taking a look at the failures, example 25 re-
quires the recognition of in major national newspa-
pers as an adjunct that may be dropped for a more
general meaning. Our system parses the premise
incorrectly—specifically “results published in ma-
jor national newspapers“ is parsed as a single kind-
of-event10 argument rather than an argument and
an adjunct. This is can be addressed by an improve-
ment of the ULF parser, e.g., an expansion of the
verb subcategorization frames known by the ULF
transduction rules. Example 48 requires the intro-
duction of the phrase a lot of in negative polarity
context, since it acts as a specializing modifier. Our
system does not recognize a lot of as specializing
modifier and this sort of multi-word idiosyncratic
syntactic construction for a specializing modifier
needs to be addressed specifically in the grammar.
Finally, example 76 is a reversal of the intersective
modifier female that was in the successful example
59. Because we use a forward inference framework,
the proof-system does not have access to the modi-
fier female. This could be handled by extraction of
necessary intersective monotonicity rules from the
hypothesis or more generally keeping a lexicon of
intersective modifiers—though, the latter approach
would be less efficient if implemented naively.

6 Conclusion

We have presented a simple implementation of for-
ward monotonic inference starting with English
sentences and using ULFs as the representational
basis. Our system shows a high degree of pre-
cision on a variety of monotonicity phenomena,

10A kind-of-event is a type in the domain of discourse in
EL semantics corresponding to generic events. For example,
in the sentence “The news reporting on a missing kitten was
unexpected”, unexpected is a predicate over the kind-of-event
“The news reporting on a missing kitten”. This is distinct from
similar EL types of events, which are particular instances, and
propositions, which are statements that may be true or false.
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Successes
ID Correct inference
18 Every European has the right to live in Europe;

Every European is a person;
Every (person who has the right to live in Europe)▼ can travel freely within Europe⇒ Every European can travel freely within Europe

59 (A few)▲ (female committee members)▲ are from Scandinavia⇒ At least a few committee members are from Scandinavia

60 Few (female committee members)▼ are from southern Europe⇏ Few committee members are from southern Europe

Failures
ID Correct inference
25 Several delegates (got the results published in major national newspapers)▲⇒ Several delegates got the results published

48 At most ten commissioners spend (time)▼ at home⇒ At most ten commissioners spend a lot of time at home

76 Few (committee members)▼ are from southern Europe⇒ Few female committee members are from southern Europe

Figure 3: Several examples of inference successes and failures. The relevant polarity contexts for the final (or last
two if not overlapping) inference step is marked with (...)▲ or (...)▼ and the relevant spans are underlined in the
premises and hypothesis. Our inference system predicated UNK for each of the failure examples.

empirically confirming the final class of inferences
that Kim and Schubert (2019b) proposed would be
supported by ULF alongside a suite of pragmatics-
oriented inference capabilities of ULF described in
Kim et al. (2019). The present effort is a feasibility
demonstration and further engineering, expanding
the coverage, is needed to create a system competi-
tive with the state-of-the-art.

The specifics of our demonstration system and
the results point to many possible avenues of im-
provement. Beyond direct improvements to the
ULF parser, operator scoping, and inference rules
to cover more constructions, the proof-search pro-
cess can be expanded to explicitly include alter-
nate parsing and scoping choices thereby enabling
proper exploration of ambiguous constructions. For
example, each particular English-to-ULF parse and
each scoping choice leading to a distinct SLF can
be formulated as an inference rule that can be ex-
plored. The inference rules can also be made more
flexible by implementing the RI-1 and RI-2 rules
that Kim et al. (2020) describe as a generalization
of UMI. The direct access to syntactic structure
from ULF leaves room for a much more sophisti-
cated treatment of linguistic constraints (notably

island constraints as discussed in section 3.4) and
the logical type structure makes ULF theoretically
capable of inferences from disjunctive conclusions;
e.g., Alice has a dog or a cat, given that Alice has
a furry pet and Furry pets are either dogs or cats.
Finally, in the vein of merging ML/DL and sym-
bolic approaches, ULF can be reliably translated
back into English (Kim et al., 2019) so that ML/DL
approaches that work over raw English text can be
accessed and used in conjunction with the symbolic
rules. In fact, the polarity marking component of
our system (section 3.3) is precisely an example of
such a bridging of methods.

7 Acknowledgments

This work was supported by NSF EAGER grant
NSF IIS-1908595, DARPA CwC subcontract
W911NF-15-1-0542, and a Sproull Graduate Fel-
lowship from the University of Rochester. We are
grateful to the anonymous reviewers for their help-
ful feedback.

78



References
Lasha Abzianidze. 2016. Natural solution to fracas en-

tailment problems. In Proceedings of the Fifth Joint
Conference on Lexical and Computational Seman-
tics, pages 64–74.

Gabor Angeli and Christopher D. Manning. 2014. Nat-
uralLI: Natural logic inference for common sense
reasoning. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 534–545, Doha, Qatar. Associ-
ation for Computational Linguistics.

Chris Barker. 2015. Scope. In Shalom Lappin and
Chris Fox, editors, Handbook of Contemporary Se-
mantics, 2 edition, chapter 2, pages 40–76. Wiley
Blackwell.

Chris Barker. 2021. Rethinking scope islands. Linguis-
tic Inquiry, pages 1–55.

Tyler Burge. 1977. Belief de re. The Journal of Philos-
ophy, 74(6):338–362.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Johan Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, and
Steve Pulman. 1996. Using the framework. Tech-
nical Report LRE 62-051 D-16, The FraCaS Con-
sortium.

Keith S Donnellan. 1966. Reference and definite de-
scriptions. The philosophical review, 75(3):281–
304.

J. Fodor and I. Sag. 1982. Referential and quantifi-
cational indefinites. Linguistics and Philosophy,
5:355–398.

Jonathan Gordon and Lenhart Schubert. 2010. Quan-
tificational sharpening of commonsense knowledge.
In Proceedings of the AAAI 2010 Fall Symposium on
Commonsense Knowledge.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki.
2020. Combining event semantics and degree se-
mantics for natural language inference. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 1758–1764, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Hai Hu, Qi Chen, and Larry Moss. 2019. Natu-
ral language inference with monotonicity. In Pro-
ceedings of the 13th International Conference on
Computational Semantics - Short Papers, pages 8–
15, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Gene Kim, Benjamin Kane, Viet Duong, Muskaan
Mendiratta, Graeme McGuire, Sophie Sackstein,
Georgiy Platonov, and Lenhart Schubert. 2019. Gen-
erating discourse inferences from unscoped episodic
logical formulas. In Proceedings of the First Inter-
national Workshop on Designing Meaning Represen-
tations, pages 56–65, Florence, Italy. Association
for Computational Linguistics.

Gene Kim and Lenhart Schubert. 2019a. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics, Gothenburg, Sweden. Association for Com-
putational Linguistics.

Gene Louis Kim, Viet Duong, Xin Lu, and Lenhart
Schubert. 2021. A transition-based parser for un-
scoped episodic logical forms.

Gene Louis Kim, Mandar Juvekar, and Lenhart Schu-
bert. 2020. Monotonic inference for underspecified
episodic logic. In Proceedings of the Workshop Nat-
ural Logic Meets Machine Learning.

Gene Louis Kim and Lenhart Schubert. 2019b. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics - Long Papers, pages 13–30, Gothenburg,
Sweden. Association for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Bill MacCartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in
natural language inference. In Proceedings of the
22nd International Conference on Computational
Linguistics (Coling 2008), pages 521–528, Manch-
ester, UK. Coling 2008 Organizing Committee.

George A. Miller. 1995. WordNet: A lexical
database for english. Communications of the ACM,
38(11):39–41.

Koji Mineshima, Pascual Martínez-Gómez, Yusuke
Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055–
2061.

Neha Nayak, Mark Kowarsky, Gabor Angeli, and
Christopher D Manning. 2014. A dictionary of non-
subsective adjectives. Technical Report CSTR 2014-
04, Department of Computer Science, Stanford Uni-
versity.

Jong C. Park. 1995. Quantifier scope and constituency.
In 33rd Annual Meeting of the Association for
Computational Linguistics, pages 205–212, Cam-
bridge, Massachusetts, USA. Association for Com-
putational Linguistics.

Adam Purtee and Lenhart Schubert. 2012. TTT: A
tree transduction language for syntactic and seman-
tic processing. In Proceedings of the Workshop on
Applications of Tree Automata Techniques in Natu-
ral Language Processing, ATANLP ’12, pages 21–
30, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

79



John Robert Ross. 1967. Constraints on Variables
in Syntax. Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

Eddy G Ruys and Yoad Winter. 2011. Quantifier scope
in formal linguistics. In Handbook of philosophical
logic, pages 159–225. Springer.

Victor Sánchez Valencia. 1991. Categorial grammar
and natural logic. ILTI Prepublication: Logic, Phi-
losophy and Linguistics (LP) Series.

Victor Sánchez-Valencia. 1991. Studies on Natural
Logic and Categorial Grammar. Ph.D. thesis, Uni-
versity of Amsterdam.

Lenhart Schubert. 2002. Can we derive general world
knowledge from texts? In Proceedings of the Sec-
ond International Conference on Human Language
Technology Research, HLT ’02, pages 94–97, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Lenhart Schubert. 2014. From treebank parses to
episodic logic and commonsense inference. In Pro-
ceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 55–60, Baltimore, MD. Association
for Computational Linguistics.

Lenhart Schubert and Matthew Tong. 2003. Extracting
and evaluating general world knowledge from the
brown corpus. In Proceedings of the HLT-NAACL
2003 Workshop on Text Meaning, pages 7–13.

Lenhart K. Schubert. 2000. The situations we talk
about. In Jack Minker, editor, Logic-based Artifi-
cial Intelligence, pages 407–439. Kluwer Academic
Publishers, Norwell, MA, USA.

Ran Tian, Yusuke Miyao, and Takuya Matsuzaki. 2014.
Logical inference on dependency-based composi-
tional semantics. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 79–89, Bal-
timore, Maryland. Association for Computational
Linguistics.

Johan Van Benthem et al. 1986. Essays in Logical Se-
mantics. Springer.

80



Author Index

Bernardy, Jean-Philippe, 60

Chatzikyriakidis, Stergios, 60
Chen, Zeming, 12
Cooper, Robin, 51

Duong, Viet, 71

Ekmekciu, Junis, 71

Feiman, Roman, 22
Ferreira, Deborah, 41
Freitas, André, 41

Grove, Julian, 60

Juvekar, Mandar, 26, 71

Kim, Gene, 26, 71
Kuehnert, Benjamin, 1

Langton, John, 7
Larsson, Staffan, 51
Lawley, Lane, 1

Pavlick, Ellie, 22

Rozanova, Julia, 41

Schubert, Lenhart, 1, 26, 71
Srihasam, Krishna, 7

Thayaparan, Mokanarangan, 41
Traylor, Aaron, 22

Valentino, Marco, 41

81


	Program
	Learning General Event Schemas with Episodic Logic
	Applied Medical Code Mapping with Character-based Deep Learning Models and Word-based Logic
	Attentive Tree-structured Network for Monotonicity Reasoning
	Transferring Representations of Logical Connectives
	Monotonic Inference for Underspecified Episodic Logic
	Supporting Context Monotonicity Abstractions in Neural NLI Models
	Bayesian Classification and Inference in a Probabilistic Type Theory with Records
	From compositional semantics to Bayesian pragmatics via logical inference
	A (Mostly) Symbolic System for Monotonic Inference with Unscoped Episodic Logical Forms

