
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4626–4634

June 6–11, 2021. ©2021 Association for Computational Linguistics

4626

Does Structure Matter? Encoding Documents for
Machine Reading Comprehension

Hui Wan Song Feng Chulaka Gunasekara Siva Sankalp Patel
Sachindra Joshi Luis A. Lastras

IBM Research AI
{hwan@us, sfeng@us, chulaka.gunasekara@}.ibm.com

{siva.sankalp.patel@, jsachind@in, lastrasl@us}.ibm.com

Abstract

Machine reading comprehension is a chal-
lenging task especially for querying docu-
ments with deep and interconnected contexts.
Transformer-based methods have shown ad-
vanced performances on this task; however,
most of them still treat documents as a flat se-
quence of tokens. This work proposes a new
Transformer-based method that reads a docu-
ment as tree slices. It contains two modules
for identifying more relevant text passage and
the best answer span respectively, which are
not only jointly trained but also jointly con-
sulted at inference time. Our evaluation re-
sults show that our proposed method outper-
forms several competitive baseline approaches
on two datasets from varied domains.

1 Introduction

Machine Reading Comprehension (MRC) is the
task of reading a given text and answering ques-
tions about it (Liu et al., 2019). Some MRC tasks
such as SQuAD (Rajpurkar et al., 2016, 2018),and
ShARC (Saeidi et al., 2018) provide a short text
snippets as the context documents; while others
such as TriviaQA (Joshi et al., 2017), Natural Ques-
tions (Kwiatkowski et al., 2019) and Doc2Dial
(Feng et al., 2020) use full articles as documents.
Most top performing models on MRC tasks use
different variants of Transformers (Vaswani et al.,
2017). Transformer-based models typically only
consider a certain number of tokens, utilize a slid-
ing window approach (Richardson et al., 2013) or
segment the document into passages (Hu et al.,
2019; Wang et al., 2019) due to the constraint on
the size of input sequence. More recent works ex-
plore how to scale up input length (Yang et al.,
2019; Beltagy et al., 2020; Kitaev et al., 2020;
Wang et al., 2020; Ainslie et al., 2020) but still
mainly focus on flat sequences. In addition to scal-
ing up input length, ETC(Ainslie et al., 2020) also
propose to deal with encoding structured inputs

How to appeal a
TVB ticket

You can appeal
online if

you have been
convicted in a

NYSTVB

the TVB
traffic ticket

number

full name,
date of birth,
and gender

...

U1: I prefer not to deal with mail. How else can I
 appeal my ticket please?
A1: You can appeal online.
U2: What do I need?
A2: You will need TVB traffic ticket No., full name,...

By Mail

the conviction
occurred within
the last 30 days

At a TVB
office Online

You will need

Tree View

...

... ...

...

<h2>How to appeal a TVB ticket</h2>

<h3>When can appeal a TVB ... </h3>

<p>You must file your appeal within 30 days... </p>

<h3>At a TVB office</h3>

<p> Sorry you cannot submit at a TVB office ... </p>

<h3>By Mail</h3>

...

<h3>Online </h3>

<h4>You can appeal online if</h4>

you have been convicted in a NYSTVB
the conviction occurred within the last 30 days

<h4>You will need</h4>

the TVB traffic ticket number

full name, date of birth, and gender

<h3>How to check the status of appeal</h3>
...

Sequence View

Figure 1: A sample document segment with the hierar-
chical structure (left), the partial tree slices (right) and
sample dialogue turns (bottom right).

based on relative position encoding (Shaw et al.,
2018) through the global-local mechanism.

A series of recent work explores incorporating
structured knowledge embedded in text into MRC
(Shen et al., 2020; Dhingra et al., 2020). How-
ever, such kind of linking information for creating
triples is not necessarily prominent in documents
other than Wikipedia. Some works segment the
document content based on its semantic structures
and rank them based on their relevance to the query
(Yan et al., 2019; Lee et al., 2018; Wang et al.,
2018; Zheng et al., 2020; Liu et al., 2020).

Another thread of works, on hierarchical docu-
ment encoding (Li et al., 2015; Yang et al., 2016;
Zhang et al., 2019; Guo et al., 2019), first obtain
sentence level representations then encode docu-
ment based on the sentence vectors. Those works
do not directly apply on fine-grained answer extrac-
tion across sentences.

In many online documents, certain important in-
formation unfolds through the semantic relations
of hierarchical structures such as parent-child and
siblings between different parts of the document.
Figure 1 illustrates the difference when using a doc-

4627

ument with and without the structure information
for a MRC task. For query U1, it is crucial to keep
in mind we are in the context of “How to appeal a
TVB ticket” and “Online” while reading the pas-
sage of “You will need” to find the answer to the
user query. However, conventional Transformers
fail to capture such contextual information when
the text is too long to fit in the maximum sequence
length allowed.

In this work, we explore the utilization of docu-
ment structure for the focused task of fine-grained
Machine Reading Comprehension on document.
We propose a Transformer-based method that reads
a document as tree slices; it jointly learns the rele-
vance of paragraphs and spans, and then performs
a cascaded inference to find the best answer span.
Our work is intuitively inspired by how people
read through documents (Choi et al., 2017) based
on structural cues such as titles and subtitles, and
then focus on the relevant parts to search for an
answer. We utilize the structural information natu-
rally available in online documents for identifying
tree slices. Each slice corresponds to nodes along
a path from a root node to a lower level child node
as illustrated by the right part of Figure 1. Thus,
we are able to capture the essential structural in-
formation for the inference that could be outside
of a conventional sliding window or text segment.
Compared to approaches such as Longformer (Belt-
agy et al., 2020) or ETC (Ainslie et al., 2020), our
approach can be directly applied to many exist-
ing pretrained models, and has a small GPU mem-
ory footprint. RikiNet (Liu et al., 2020) employs
a dynamic paragraph dual-attention reader and a
multi-level cascaded answer predictor, while our
tree slices consider hierarchical structures above
paragraphs, and our cascaded inference is in beam
search style rather than greedy decoding style in
RikiNet.

We evaluate on two datasets with structured
documents: one obtained from Natural Questions
(Kwiatkowski et al., 2019), which is based on
Wikipedia articles, and one from Doc2Dial (Feng
et al., 2020), which is based on web pages of sev-
eral domains. Our proposed method is compared
with several baselines to see performance gain on
both datasets. For example, our method achieves
4% gain of F1 on Doc2Dial, which shows its su-
periority on small-scaled dataset across multiple
domains.

Our contributions can be summarized as follows:

(1) We propose a Transformer-based method that
reads a document as a tree. It simultaneously iden-
tifies the relevance of paragraphs and finds the an-
swer span via jointly trained models with cascaded
inference. (2) Our method can utilize common
structures as seen in many web documents. It al-
lows Transformer models to read in more focused
content but with deep context; thus it can be used to
handle long documents in an efficient way. (3) Our
proposed method outperforms several competitive
baseline methods on two kinds of MRC tasks with
documents from varied domains.

2 Approach

We adopt a Transformer-based document-tree-slice
encoder with joint learning and cascaded inference.
Our approach is influenced by the pattern of human
behavior during reading (Choi et al., 2017), which
is to focus on a smaller portion at a time and favor
the more relevant parts while looking for answer.
This approach can also overcome the constraint on
fixed-length input allowed by the common Trans-
former architecture (Vaswani et al., 2017). More
importantly, this enables us to always include im-
portant structural context information during en-
coding.

2.1 Tree Slicing

To obtain the tree representation of a web page, we
consider the different levels of HTML title tags as
the main indicators of the hierarchical structures
such as parent-child and siblings in Figure 1. More
details are provided in Section 3.

Formally, we define an example in the dataset
as (Q,D, s, e) where Q is a question, D is a docu-
ment, s and e denote the inclusive indices pointing
to the start and end of the target answer span.

Suppose one does not consider the structure
information, D is treated as a sequence and
sent to Transformer encoder. For long docu-
ments, the sliding window approach is widely
used to truncate D into m overlapping frag-
ments D1, ...Dm, and (Q,D, s, e) is converted
to m training instances (Ci, si, ei) where Ci =
([CLS], Q1, ..., Q|Q|, [SEP], Di,1, ..., Di,|Di|, [SEP]),
si and ei are mapped indices in Ci. If Di does not
contain the target answer, si and ei are set to the
index of the [CLS] token.

In our proposed approach to encode a document,
we consider the structured information along
with its content. Given a document D, let k be

4628

Figure 2: Joint Model with Cascaded Inference.

the number of leaf nodes in its tree structure.
We first convert (Q,D, s, e) into k examples
(Q,Ai, Pi, si, ei), where Pi is a leaf node, si
and ei are mapped indices in Pi, and Ai denotes
Pi’s ancestor chain in the document tree of D.
Each (Q,Ai, Pi) is then encoded with Trans-
formers as a sequence Ci = ([CLS], Q1, ..., Q|Q|,
[SEP], Ai,1, ..., Ai,|Ai|, [SEP], Pi,1, ..., Pi,|Pi|, [SEP]).
An example Ai in Figure 1 would be the list
of {‘How to appeal a TVB ticket conviction’,

‘Online’, ‘You will need’}. Intuitively, the tree slice
approach ensures that the most relevant structural
information, the ancestor chain, is always taken
into account and attended to with Transformer
encoder, while this is unlikely to be guaranteed by
the sliding window truncation.

2.2 Joint Model with Cascaded Inference

With tree slicing approach, from each document
we have many paragraphs to select the answer span
from, as compared to the case of sliding windows.
In order to teach the model to favor the candidates
from the more relevant parts of the document, we
train a joint model to simultaneously learn to iden-
tify the relevance of paragraphs and find the answer
span. Then we perform a cascaded inference to first
find the most relevant paragraphs and then find the
best answer span from them, based on the scores
from the joint model, as Figure 2 shows.

Joint model The encoded representation of C
can be used to perform two tasks, each being han-
dled by a separate module: 1) the pooler layer and
the matching layer (both linear layers) predict how
likely a paragraph P contains the answer; 2) the
span selection layer (another linear layer) identifies
the answer span from P . Each training instance is
converted to (C, s, e, g) where g ∈ {0, 1} denotes
whether P contains the answer. We define the loss

function to be

Loss(g, s, e, C; θ) = LCE(fhit(g, C; θ))
+ λ ∗ (LCE(fstart(s, C; θ))

+ LCE(fend(e, C; θ)))

where LCE is the Cross Entropy loss function, θ
denotes the model parameters, and each f is the
score obtained by the corresponding linear layer on
top of the last layer representation of Transformer
encoder: fhit by the pooler layer and the matching
layer, and fstart and fend by the span selection
layer.

Cascaded inference After the two modules of
the model are jointly trained, we conduct a cas-
caded inference in a beam search style.

• First, from all the instances corresponding to
tree slices of a single document, we select the
top n instances ranked by fhit(g = 1, C; θ).
This is important for filtering out high scored
spans from irrelevant tree slices.

• Then, from these top instances, each candidate
document span is assigned a score attributed
from both modules of the model:

Score(C, s, e) = fhit(g = 1, C; θ)

+ γ ∗ (Scorestart(s, C; θ)
+ Scoreend(e, C; θ))

where we adopted the trick from
(Alberti et al., 2019) to define
Scorestart(s, C; θ) = fstart(s, C; θ) −
fstart(IdxCLS, C; θ), and Scoreend(e, C; θ)
as fend(e, C; θ)− fend(IdxCLS, C; θ).

• Finally, we choose the document span with
the highest Score(C, s, e) as the answer.

Given a document with tree slices, we would
create more instances than the sliding window ap-
proach. However, with the joint training and cas-
caded inference, our model reaches better accuracy
in less training time, as will be shown in Section 4.

3 Data

Our focused task is utilizing document structure
in contextual representation for fine-grained MRC.
Since there is very few prior MRC datasets that
provides document structure information, we iden-
tified two public datasets where HTML markup
tags are available in the document data together

4629

with QA pairs, and extract tree structure out of the
HTML documents for MRC. Data script could be
found at http://html2struct.github.io.

Extract Tree Structure To obtain the tree repre-
sentation of documents from the two datasets, we
first parse HTML files to get markup tags of the
textual content elements, which corresponds to the
titles, lists, tables and paragraphs. We consider the
different levels of title tags as the main indicators
of the hierarchical structures such as parent-child
and siblings. Thus, the stem nodes are inherently
section or subsection titles of the article and leaf
nodes are typically paragraphs, list content or table
content. We assign the article title as the tree root.
Please refer to Appendix A for more details about
the data statistics for the experiment.

NQStruct Natural Question (Kwiatkowski et al.,
2019) provides QA pairs that are grounded in
Wikipedia articles. The original task provides an-
swers in two formats: long answer, typically a para-
graph or table; short answer, typically one or more
entities. In our task, we focus on identifying the
short answer given the whole document as the input,
and do not use the long answers data. We observe
the bias on answers appearing in first paragraph,
which is significant enough to serve as a baseline
(Kwiatkowski et al., 2019). Thus, we follow Geva
and Berant (2018) to alleviate such bias by only
considering the questions where the short answer
does not come from the first paragraph. As a result,
we derive a subset of 48K examples from about
100K examples with short answers from training
and dev sets.

D2DStruct Doc2Dial (Feng et al., 2020) pro-
vides document-grounded dialogues with annota-
tions of dialogue scenes, which allow us to identify
question-answer pairs that are most related to our
target task. Specifically, we combine each turn
of the agent responding to a user query, together
with the previous dialogue context, as a question.
The public dataset contains over 4.1K document-
grounded dialogues based on about 450 documents
from different domains, and we derive 9.3K QA
pairs out of it.

4 Experiments and Results

We compare our proposed method (TreeJC in
short) with several baseline methods. Next we
describe the baselines, the experiment settings, and
present the evaluation results.

Model F1 Exact Match Train hrs
SW 49.6± 0.1 32.2± 0.2 1.75
Longformer 54.2± 0.5 33.7± 0.2 8
IR+SW 40.3± 0.5 26.7± 0.5 1
LeafJC 53.1± 0.5 33.7± 0.8 1.5
TreeJC 53.7± 0.6 34.5± 0.3 1.5

Table 1: Results on D2DStruct test set.

Model F1 Exact Match Train hrs
SW 52.4± 0.1 41.8± 0.3 32
Longformer 51.8± 0.2 41.4± 0.3 46
IR+SW 46.9± 0.4 35.6± 0.4 9
LeafJC 53.0± 0.4 42.6± 0.2 15
TreeJC 54.9± 0.4 44.2± 0.3 16

Table 2: Results on NQStruct test set.

4.1 Baselines

Sliding Window (SW) is a popular question an-
swering baseline that trains a span selection model
with Transformer encoding document trunks as de-
scribed in Section 2.

Longformer is a Transformer model that han-
dles long documents (Beltagy et al., 2020). We ex-
periment the sliding window approach above with
Longformer-base pretrained model with max
sequence length of 4096 and a stride of 3072.

IR+SW is a pipeline approach that first identifies
small number of k candidate paragraphs (k = 10 in
the experiments here) via an information retrieval
mechanism BM25 (Robertson et al., 1995), and
then uses the SW approach. We consider it as a
solution with reduced time complexity from the
traditional SW approach for us to compare with.

LeafJC For ablation study, we experiment with a
variant of TreeJC approach that excludes ancestors
during encoding. The other implementation and
experimental details are similar to TreeJC.

4.2 Experiment Settings

All models are implemented in PyTorch. Pretrained
models are Roberta-base for SW, IR+SW,
LeafJC and TreeJC, and Longformer-base for
Longformer. Implementations of SW, Longformer
and IR+SW are adapted from the SQuAD example
code1 in HuggingFace Transformers (Wolf et al.,

1https://github.com/huggingface/
transformers/blob/master/examples/
legacy/question-answering/. It is customized
to fit the data format and to fix a tokenization issue in the
original HuggingFace code.

http://html2struct.github.io
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers/blob/master/examples/legacy/question-answering/
https://github.com/huggingface/transformers/blob/master/examples/legacy/question-answering/
https://github.com/huggingface/transformers/blob/master/examples/legacy/question-answering/

4630

Doc length (# tokens) SW TreeJC
≤ 0.5k 50.3/64.5 55.0/68.1
0.5k-1k 45.1/57.6 45.4/57.9
1k-2k 45.0/56.3 45.8/57.5
2k-4k 44.4/54.4 45.9/56.1
4k-8k 39.5/48.5 40.6/49.7
>8k 34.9/45.1 38.1/48.4

Table 3: Breakdown of results in Exact_Match/F1 on
NQStruct test set.

2019). For a fair comparison, input to SW, Long-
former and IR+SW is flattened equivalent of the
tree input to LeafJC and TreeJC and does not in-
clude the HTML tags of web pages.

All experiments were done on a single V100
GPU. In order to encode long sequences, Long-
former requires much larger GPU memory, only 2
instances could fit in one V100 GPU, whereas 27
instances could fit in one V100 GPU with Roberta.
Please see Appendix B for more details about ex-
periment setup.

For the training of our approach TreeJC, positive
instances are up-sampled to reach a balanced pro-
portion of positive and negative training instances.
To avoid the consequent bias towards longer docu-
ments, the loss from each example (document QA
pair) is scaled down by the number of training in-
stances from this example. λ and γ in Section 2 is
set to be 0.5 and 1, respectively.

4.3 Results

For evaluation, we use exact match score and token-
level F1 score (Rajpurkar et al., 2018). Table 1
and Table 2 present the evaluation results on the
test sets of D2DStruct and NQStruct respectively
along with the training time. All numbers are in
the form of mean± std, which is from three runs
with different random seeds.

We observe consistent performance gains by
TreeJC over almost all baselines. TreeJC shows a
significant improvement over SW, which indicates
the effectiveness of encoding the structure informa-
tion with our joint model with cascaded inference.
LeafJC performs better than SW but worse than
TreeJC, which confirms the importance of includ-
ing ancestor nodes during encoding. Longformer 2

serves as a competitive baseline and it achieves half
a point higher F1 for D2DStruct dataset, however,
at the cost of much longer training time. IR+SW
method, on the other hand, shows high efficiency

25 epochs were finished on NQStruct, as in experiments
in (Beltagy et al., 2020).

but suffers lower effectiveness, attributing to the
fact that the IR method only achieves around 73%
recall. In order to further examine how our ap-
proach performs on documents with different sizes,
we break down the results on NQStruct dataset and
compare the performances in Table 3. The results
show that our approach has a clear gain on all doc-
ument lengths over SW, especially on very long
documents.

5 Conclusion

We introduce a new Transformer-based method
with joint learning and cascaded inference inspired
by the tree structures of documents for machine
reading comprehension. It outperforms several
competitive baselines on two datasets from multi-
ple domains. In particular, our study demonstrates
that the proposed model is effective to encode
longer documents with deep contexts for MRC
tasks.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268–284, Online. Asso-
ciation for Computational Linguistics.

Chris Alberti, Kenton Lee, and Michael Collins. 2019.
A BERT baseline for the natural questions. CoRR,
abs/1901.08634.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 209–220,
Vancouver, Canada. Association for Computational
Linguistics.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachan-
dran, Graham Neubig, Ruslan Salakhutdinov, and
William W. Cohen. 2020. Differentiable reasoning
over a virtual knowledge base.

Song Feng, Hui Wan, Chulaka Gunasekara, Siva
Patel, Sachindra Joshi, and Luis Lastras. 2020.
doc2dial: A goal-oriented document-grounded dia-
logue dataset. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language

https://www.aclweb.org/anthology/2020.emnlp-main.19
https://www.aclweb.org/anthology/2020.emnlp-main.19
http://arxiv.org/abs/1901.08634
https://doi.org/10.18653/v1/P17-1020
https://doi.org/10.18653/v1/P17-1020
http://arxiv.org/abs/2002.10640
http://arxiv.org/abs/2002.10640
https://www.aclweb.org/anthology/2020.emnlp-main.652
https://www.aclweb.org/anthology/2020.emnlp-main.652

4631

Processing (EMNLP), pages 8118–8128, Online. As-
sociation for Computational Linguistics.

Mor Geva and Jonathan Berant. 2018. Learning to
search in long documents using document structure.
In Proceedings of the 27th International Confer-
ence on Computational Linguistics, pages 161–176,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Mandy Guo, Yinfei Yang, Keith Stevens, Daniel Cer,
Heming Ge, Yun-hsuan Sung, Brian Strope, and Ray
Kurzweil. 2019. Hierarchical document encoder for
parallel corpus mining. In Proceedings of the Fourth
Conference on Machine Translation (Volume 1: Re-
search Papers), pages 64–72, Florence, Italy. Asso-
ciation for Computational Linguistics.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. Retrieve, read, rerank: Towards
end-to-end multi-document reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2285–2295, Florence, Italy. Association for Compu-
tational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601–1611, Van-
couver, Canada. Association for Computational Lin-
guistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452–466.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 565–569, Brussels, Belgium. As-
sociation for Computational Linguistics.

Jiwei Li, Thang Luong, and Dan Jurafsky. 2015. A
hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1106–1115, Beijing, China. Association for
Computational Linguistics.

Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng
Chen, Daxin Jiang, Jiancheng Lv, and Nan Duan.
2020. RikiNet: Reading Wikipedia pages for nat-
ural question answering. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 6762–6771, Online. Asso-
ciation for Computational Linguistics.

Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang,
and Weiming Zhang. 2019. Neural machine reading
comprehension: Methods and trends. Applied Sci-
ences, 9(18):3698.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume
Bouchard, and Sebastian Riedel. 2018. Interpreta-
tion of natural language rules in conversational ma-
chine reading. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2087–2097, Brussels, Belgium.
Association for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tao Shen, Yi Mao, Pengcheng He, Guodong Long,
Adam Trischler, and Weizhu Chen. 2020. Exploit-
ing structured knowledge in text via graph-guided
representation learning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8980–8994, On-
line. Association for Computational Linguistics.

https://www.aclweb.org/anthology/C18-1014
https://www.aclweb.org/anthology/C18-1014
https://doi.org/10.18653/v1/W19-5207
https://doi.org/10.18653/v1/W19-5207
https://doi.org/10.18653/v1/P19-1221
https://doi.org/10.18653/v1/P19-1221
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/D18-1053
https://doi.org/10.18653/v1/D18-1053
https://doi.org/10.18653/v1/D18-1053
https://doi.org/10.3115/v1/P15-1107
https://doi.org/10.3115/v1/P15-1107
https://doi.org/10.3115/v1/P15-1107
https://doi.org/10.18653/v1/2020.acl-main.604
https://doi.org/10.18653/v1/2020.acl-main.604
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://www.aclweb.org/anthology/2020.emnlp-main.722
https://www.aclweb.org/anthology/2020.emnlp-main.722
https://www.aclweb.org/anthology/2020.emnlp-main.722

4632

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaox-
iao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger,
Gerald Tesauro, and Murray Campbell. 2018. Ev-
idence aggregation for answer re-ranking in open-
domain question answering. In International Con-
ference on Learning Representations.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun
Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and Jingjing
Liu. 2020. Cluster-former: Clustering-based sparse
transformer for long-range dependency encoding.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
BERT: A globally normalized BERT model for
open-domain question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5878–5882, Hong Kong,
China. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Ming Yan, Jiangnan Xia, Chen Wu, Bin Bi, Zhongzhou
Zhao, Ji Zhang, Luo Si, Rui Wang, Wei Wang, and
Haiqing Chen. 2019. A deep cascade model for
multi-document reading comprehension. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 7354–7361.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics,
pages 5059–5069, Florence, Italy. Association for
Computational Linguistics.

Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan,
Wanxiang Che, Daxin Jiang, Ming Zhou, and Ting
Liu. 2020. Document modeling with graph attention
networks for multi-grained machine reading compre-
hension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6708–6718, Online. Association for Computa-
tional Linguistics.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJl3yM-Ab
https://openreview.net/forum?id=rJl3yM-Ab
https://openreview.net/forum?id=rJl3yM-Ab
http://arxiv.org/abs/2009.06097
http://arxiv.org/abs/2009.06097
https://doi.org/10.18653/v1/D19-1599
https://doi.org/10.18653/v1/D19-1599
https://doi.org/10.18653/v1/D19-1599
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.acl-main.599

4633

A Data

A.1 Data

NQStruct We derive a subset of 46k examples
from about 100k training examples with short an-
swers. From the set of 46K, we set aside a subset of
2.5K examples as our dev set. Similarly, we derive
a subset of 2.3K examples from the original NQ
dev set, and use that as our test set. In the cases
that multiple short answers are available, we use
the first one for training and evaluation. The num-
ber of examples in training/dev/test split is shown
in Table 4. The distribution of document length is
shown in Table 5.

D2DStruct The public release of Doc2Dial only
provides train and dev sets 3. For filtering out
the non-answer agent turns, we filter out the cases
where agent turn is grounded on the (sub)section
titles. We combine the two and then create
train/dev/test splits as 70%, 15%, 15% where 50%
of the dev/test set are from documents unseen in
training set. The number of examples in train-
ing/dev/test split is shown in Table 4. The dis-
tribution of document length is shown in Table 5.

examples Training Dev Test
NQStruct 43294 2500 2333
D2DStruct 7184 1065 1144

Table 4: Number of examples in datasets.

Dataset ≤ 0.5k 0.5k-1k 1k-2k >2k
NQStruct 7% 9% 15% 69%
D2DStruct 25% 45% 24% 6%

Table 5: Statistics of document length (in tokens).

B Experiment Settings

The deep learning systems are in PyTorch, and
use Transformer encoder from HuggingFace Trans-
formers. We use Roberta-base pretrained
model and max sequence length of 512 unless oth-
erwise stated. All experiments were done with
fp16, on a single V100 GPU. Table 8 presents gen-
eration configurations and hyper-parameters that
are shared by both datasets. For evaluation, we use
the evaluation script 2.0 of SQuAD.
Table 9 presents configuration specifics for
D2DStruct. For each dialogue in Doc2Dial, we
combine all previous turns in reverse order as a

3http://doc2dial.github.io/data.html

query. Table 10 presents configuration specifics for
NQStruct.

C Results on Dev Sets

Table 6 and 7 present evaluation results on the dev
sets of D2DStruct and NQStruct datasets respec-
tively.

Model F1 Exact Match
SW 53.0± 0.4 36.3± 0.4
Longformer 56.6± 0.8 37.0± 0.6
IR+SW 44.5± 0.4 31.3± 0.5
LeafJC 56.2± 0.3 39.7± 0.3
TreeJC 57.3± 0.4 41.0± 0.3

Table 6: Results on D2DStruct dev set.

Model F1 Exact Match
SW 59.6± 0.3 49.3± 0.2
Longformer 57.8± 0.5 47.3± 0.5
IR+SW 50.6± 0.3 41.7± 0.4
LeafJC 58.5± 0.4 48.0± 0.5
TreeJC 61.3± 0.5 50.6± 0.7

Table 7: Results on NQStruct dev set.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
http://doc2dial.github.io/data.html

4634

SW Longformer IR+SW LeafJC TreeJC
Total batch size 54 64 54 54 54
Batch size per GPU 27 2 27 27 27
Learning rate 3e-5 3e-5 3e-5 3e-5 3e-5
Weight decay 0.01 0.01 0.01 0.01 0.01
N best size 20 20 20 5 5
Warmup proportion 10% 10% 10% 10% 10%
Checkpoint freq 1/4 epoch 1/4 epoch 1/4 epoch 1/10 epoch 1/10 epoch

Table 8: General parameters

SW Longformer IR+SW LeafJC TreeJC
epochs 8 8 8 1 1
instances per epoch 43, 961 7, 247 16, 441 266, 853 266, 951
max sequence length 512 4096 512 512 512
Document stride 128 3072 128 128 128
max query length 128 128 128 128 128
max answer length 30 30 30 30 30

Table 9: Dataset-specific parameters for D2DStruct experiments

SW Longformer IR+SW LeafJC TreeJC
epochs 8 5 8 1 1
instances per epoch 879, 249 84, 788 275, 261 3, 232, 359 3, 241, 152
max sequence length 512 4096 512 512 512
Document stride 256 3072 256 256 256
max query length 64 64 64 64 64
max answer length 30 30 30 30 30

Table 10: Dataset-specific parameters for NQStruct experiments

