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Abstract
Graph-based semantic parsing aims to repre-
sent textual meaning through directed graphs.
As one of the most promising general-purpose
meaning representations, these structures and
their parsing have gained a significant interest
momentum during recent years, with several di-
verse formalisms being proposed. Yet, owing
to this very heterogeneity, most of the research
effort has focused mainly on solutions specific
to a given formalism. In this work, instead,
we reframe semantic parsing towards multi-
ple formalisms as Multilingual Neural Ma-
chine Translation (MNMT), and propose SGL,
a many-to-many seq2seq architecture trained
with an MNMT objective. Backed by several
experiments, we show that this framework is
indeed effective once the learning procedure
is enhanced with large parallel corpora com-
ing from Machine Translation: we report com-
petitive performances on AMR and UCCA pars-
ing, especially once paired with pre-trained ar-
chitectures. Furthermore, we find that mod-
els trained under this configuration scale re-
markably well to tasks such as cross-lingual
AMR parsing: SGL outperforms all its com-
petitors by a large margin without even explic-
itly seeing non-English to AMR examples at
training time and, once these examples are in-
cluded as well, sets an unprecedented state of
the art in this task. We release our code and
our models for research purposes at https:
//github.com/SapienzaNLP/sgl.

1 Introduction

Being able to associate natural language text with
well-defined and machine-actionable meaning rep-
resentations, i.e. the task of semantic parsing
(SP), is one of the holy grails in Natural Lan-
guage Processing (NLP) and Understanding (Nav-
igli, 2018). Considering how a breakthrough in
this direction would empower NLP systems to ex-
plictly make sense of natural language, the ever-
growing interest semantic parsing has been receiv-
ing really comes as no surprise. Graph-based

formalisms such as Abstract Meaning Represen-
tation (Banarescu et al., 2013, AMR), Elemen-
tary Dependency Structures (Oepen and Lønning,
2006, EDS), Prague Tectogrammatical Graphs (Ha-
jič et al., 2012, PTG), Universal Conceptual Cog-
nitive Annotation (Abend and Rappoport, 2013,
UCCA), inter alia, are emerging as the de facto stan-
dard for general-purpose meaning representations
and have shown potential in Machine Translation
(Song et al., 2019), Text Summarization (Hardy and
Vlachos, 2018), Human-Robot Interaction (Bonial
et al., 2020), and as evaluation metrics (Sulem et al.,
2018; Xu et al., 2020b). These formalisms propose
encoding meaning through directed graphs, how-
ever, each of them builds upon different linguistic
assumptions, aims to target different objectives and,
at a more practical level, assigns different functions
to nodes and edges. For instance, while AMR uses
nodes to encode concepts and edges to express the
semantic relations between them, UCCA proposes
using text tokens as terminal nodes and building
graphs on top of them.

As a result of this heterogeneous landscape, of-
ten referred to as framework-specific balkanization
(Oepen et al., 2020), graph-based semantic pars-
ing has seen a proliferation of framework-specific
solutions. However, approaches capable of com-
petitively scaling across formalisms represent a
natural desideratum, and recent works have started
to explore this direction, examining the usage of
multi-task learning in different architectures (Her-
shcovich et al., 2018; Oepen et al., 2019), or cast-
ing different formalisms under a unified framework
where models can be trained to perform graph trans-
duction (Zhang et al., 2019b). Nevertheless, despite
achieving promising results, research in this direc-
tion has been hindered by the general lack of train-
ing data that afflicts semantic parsing. Indeed, due
to the inherent complexity of this task, annotated
corpora are still scarce and prohibitively expensive
to expand.

https://github.com/SapienzaNLP/sgl
https://github.com/SapienzaNLP/sgl
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In this work, we set ourselves to address these
issues and, in particular, we propose Speak the
Graph Languages (SGL), a many-to-many seq2seq
architecture which we show to competitively scale
across formalisms and across languages.1 The key
idea is to train a seq2seq model with a Multilin-
gual Neural Machine Translation (MNMT) objec-
tive, where, given an input text and an identifier
denoting the desired output formalism, a single
shared model has to learn to translate towards the
corresponding linearized graph. We use AMR and
UCCA as our cases in point to show the effective-
ness of this framework. In particular, we show that,
once the learning procedure also considers large
parallel corpora coming from Machine Translation
(MT), this configuration becomes an effective ap-
proach for framework-independent parsing via a
single model. Even more interestingly, this model
scales surprisingly well to cross-lingual parsing
and is capable of navigating through translation
paths like IT → AMR,2 which it has never seen
during training. The contributions of this work are
therefore as follows:

• We reframe semantic parsing towards multiple
formalisms and from multiple languages as
multilingual machine translation;

• On AMR parsing, our framework achieves
competitive performances, surpassing most
of its current competitors once paired with a
pre-trained Transformer;

• We outperform all current alternatives in cross-
lingual AMR parsing without ever seeing non-
English to AMR examples at training time and
push the current state of the art even further
once we include these examples;

• On UCCA parsing, we reach competitive re-
sults, outperforming a strong BERT-powered
baseline (Hershcovich and Arviv, 2019).

We release our code and our models for research
purposes.

2 Related Work

Our work is mainly concerned with semantic pars-
ing in UCCA and AMR, considering also the cross-

1By across languages, we mean that the model is capa-
ble of performing cross-lingual semantic parsing as defined
for AMR by Damonte and Cohen (2018). Unless otherwise
specified, we will follow this perspective throughout the paper.

2 IT stands for Italian.

lingual setting introduced by Damonte and Cohen
(2018) for the latter.

Semantic Parsing Arguably among the for-
malisms that have drawn the most interest, AMR

has seen the emergence of a rich yet dedicated lit-
erature, with recent approaches that can be roughly
clustered into two groups. On the one hand, several
graph-based solutions have been proposed (Lyu
and Titov, 2018; Zhang et al., 2019a,b; Zhou et al.,
2020; Cai and Lam, 2020); among these solutions,
Zhou et al. (2020) show the effectiveness of en-
hancing an aligner-free parser with latent syntactic
information, whereas Cai and Lam (2020) present
an iterative method to build and refine AMR graphs
incrementally. On the other hand, translation-based
approaches, where seq2seq models are trained to
translate from natural language text to linearized
graphs, have been shown to reach competitive per-
formances, despite the scarcity of training data
(Konstas et al., 2017; van Noord and Bos, 2017;
Ge et al., 2019). Continuing this latter direction
and arguably closest to our work, Xu et al. (2020a)
and Bevilacqua et al. (2021) show that these mod-
els, once paired with adequate pre-training, can
behave on par or better than dedicated and more so-
phisticated graph-based alternatives, surpassing the
performances of Cai and Lam (2020). In particular,
similarly to our work, Xu et al. (2020a) leverage a
multilingual framework inspired by Johnson et al.
(2017) and explore the possibility of pre-training
on a range of related tasks, including MT; however,
their focus is limited to showing the effectiveness
of transfer learning from related tasks to English
AMR parsing.

Conversely, here we show that the benefits of
multilingual seq2seq frameworks are not limited
to English TEXT-to-AMR but, rather, that they en-
able astonishing performances on unseen transla-
tion paths such as IT → AMR and competitive
results on other frameworks, using UCCA as our
case in point. In this sense, we continue the re-
cent cross-framework trend formally started by the
shared task of Oepen et al. (2019), exploring the
possibility of using translation-based approaches
for framework-independent parsing, as opposed to
the transition-based parsers proposed in that semi-
nal work. Our findings are in line with the recent
results reported by Oepen et al. (2020) and, in par-
ticular, by Ozaki et al. (2020), where the authors
cast semantic parsing in multiple formalisms as
translation towards a novel Plain Graph Notation
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(a) AMR graph

( move-01
:ARG0 ( person

:name ( name
:op1 " John " ) )

:ARG2 ( city
:name ( name

:op1 " Paris " ) )
:time ( after

:op1 ( graduate-01
:ARG0 ( person ) ) ) )

(b) AMR Linearization (c) UCCA graph

[ <root_0>
L [ <L_0> T [ After ] ]
H [ <H_0>

P [ <P_0> T [ graduation ] ]
A* [ <A_0> T [ John ] ] ]

U [ <U_0> T [ , ] ] ]
H [ <H_1>

A [ <A_1>
R [ <R_0> T [ to ] ]
C [ <C_0> T [ Paris ] ] ]

A <A_0>
P [ <P_1> T [ moved ] ] ]

(d) UCCA Linearization

Figure 1: AMR and UCCA graphs, along with their linearizations, for the sentence "After graduation, John moved
to Paris". To ease readability, linearizations are shown with newlines and indentation; however, when fed to the
neural model, they are in a single-line single-space format.

(PGN) they devise. However, whereas they train
different independent models for each framework,
we explore the possibility of using a single multi-
lingual model.

Cross-lingual AMR While most of the research
effort in the AMR community has been focused on
English only, the seminal work of Damonte and
Cohen (2018) gave rise to an interesting new di-
rection, i.e. exploring the extent to which AMR

can act as an interlingua. The authors introduced a
new problem, cross-lingual AMR parsing, and de-
fined it as the task of recovering, given a sentence
in any language, the AMR graph corresponding to
its English translation. Using an adapted version
of the transition-based parser originally proposed
by Damonte et al. (2017) and training it on silver
data generated through annotation projection, they
examined whether AMR graphs could be recovered
starting from non-English sentences. Even though
their models fell short when compared to MT al-
ternatives,3 their work showed promising results
and suggested that, despite translation divergences,
AMR could act effectively as an interlingua.

Annotation projection has been focal in subse-
quent work as well. Blloshmi et al. (2020) propose
an aligner-free cross-lingual parser, thus disposing
of the need for word alignments in the annotation
projection pipeline; their parser manages to outper-
form MT alternatives when both annotation projec-
tion and these baselines have access to comparable
amounts of data. Conversely, Sheth et al. (2021)
leverage powerful contextualized word embeddings
to improve the foreign-text-to-English-AMR align-
ments, surpassing all previous approaches and,
most importantly, the yet-unbeaten MT baselines
that have access to larger amounts of data.

3The input sentence is first translated towards English and,
then, an English parser is used.

We stand out from previous research and show
that, as a matter of fact, annotation projection tech-
niques are not needed to perform cross-lingual
AMR parsing. By jointly training on parallel cor-
pora from MT and the EN → SP data we have, we
find that a multilingual model can navigate unseen
translation paths such as IT → AMR effectively,
outperforming all current approaches by a signifi-
cant margin; yet, annotation projection is naturally
beneficial and, when its training data are taken into
account as well, SGL pushes performances even
further.

3 Speak the Graph Languages (SGL)

In this section, we describe SGL, our proposed
approach to graph-based semantic parsing. We
first explain the graph linearizations we employ for
AMR and UCCA, along with their delinearizations
(§3.1). We then describe the seq2seq modelling
approach we use (§3.2) and, finally, we present our
multilingual framework (§3.3).

3.1 Graph Linearizations

We now describe how we convert the considered
meaning representations into translatable text se-
quences (linearization), along with their reverse
process (delinearization).

For AMR parsing, as in van Noord and Bos
(2017), we first simplify AMR graphs by remov-
ing variables and wiki links. We then convert these
stripped AMR graphs into trees by duplicating co-
referring nodes. At this point, in order to obtain
the final linearized version of a given AMR, we
concatenate all the lines of its PENMAN notation
(Goodman, 2020) together, replacing newlines and
multiple spaces with single spaces (Figure 1a and
1b). Conversely, delinearization is performed by
assigning a variable to each predicted concept, per-
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forming Wikification,4 restoring co-referring nodes
and, where possible, repairing any syntactically
malformed subgraph.5 For both phases, we use the
scripts released by van Noord and Bos (2017).6

For UCCA parsing, we employ a Depth-First
Search (DFS) approach: starting from the root, we
navigate the graph, using square brackets to de-
limit subgraph boundaries and special variables to
denote terminal and non-terminal nodes; remote
edges are denoted by a special modifier appended
to their labels, while re-entrancies, that is, edges
whose target is a node already seen, are handled
by simply entering the respective variable (Figure
1c and 1d). Similarly to AMR, delinearization is
performed by back-parsing this sequence into a
UCCA graph, repairing malformed subgraphs when
possible;7 additionally, as terminal nodes are an-
chored in UCCA, we remove those whose anchoring
is impossible. The linearization and delinearization
scripts for this schema are released along with the
rest of our code.

3.2 Sequence-to-sequence Modelling
We employ neural seq2seq models based upon the
Transformer architecture (Vaswani et al., 2017).
This architecture is essentially composed of two
building blocks, namely, a Transformer encoder
and a Transformer decoder. The encoder is a stack
of N identical layers, each made up of two sub-
layers: the first is a multi-head self-attention mech-
anism, while the second is a position-wise fully
connected feed-forward network. The decoder fol-
lows a similar architecture, presenting, however,
an additional sub-layer that performs multi-head
attention over the output of the encoder.

Within this work, we use two different kinds of
Transformer architecture, Cross and mBART (Liu
et al., 2020). Cross is a randomly initialized Trans-
former closely following the architecture depicted
by Vaswani et al. (2017), except for a significant
difference: we leverage a factorized embedding
parameterization (Lan et al., 2020), that is, we
decompose the large vocabulary embedding ma-
trix into two smaller matrices. While the first of
these represents the actual embedding matrix and
projects one-hot vectors into an embedding space

4We use DBpedia Spotlight API (Daiber et al., 2013).
5Although trained to generate syntactically correct graphs,

the outputs seq2seq models produce may contain syntactic
errors, such as brackets that do not match.

6https://github.com/RikVN/AMR
7Should repairing fail, the faulty subgraph is discarded

altogether.

whose dimension is lower than the Transformer
hidden size, the second one takes care of project-
ing these intermediate representations towards the
actual Transformer hidden space. This technique
significantly reduces the number of parameters and,
within the context of our experiments, did not show
any significant performance penalty.

On the other hand, mBART is a multilingual
Transformer pre-trained in many languages over
large-scale monolingual corpora. As AMR and
UCCA are naturally not included among the sup-
ported languages in the vocabulary, we apply an
architectural change to mBART and increase its vo-
cabulary with two new language ids. More specifi-
cally, we augment its embedding matrix by adding
two additional vectors, which we randomly initial-
ize as in Tang et al. (2021).

3.3 Multilingual Framework

In order to empower our models to support transla-
tion from and towards multiple languages, we em-
ploy a data-driven approach: we replace the start
token of the decoder with a special tag specifying
the language the encoder representations should be
unrolled towards. Figure 2 shows an example of
this schema. It is worth pointing out that, while for
Cross we do not feed the source language to the
encoder, when using the mBART model we follow
its input format and do provide it.

Once data have been tagged according to this
schema, we train a many-to-many translation
model on both the semantic parsing and English-
centric parallel corpora.8 Considering that our fo-
cus is on semantic parsing, we perform oversam-
pling on the AMR and UCCA datasets. Furthermore,
when considering the parallel corpora from MT,
we flip the training direction with probability 0.5,
hence allowing our model to see at training time
both the X → EN and EN → X training directions;
we argue that this stochastic flip benefits our mod-
els in multiple ways:

• As EN → X shares the source language with
both EN → AMR and EN → UCCA, this re-
sults in positive transfer;

• As AMR, UCCA and EN are significantly re-
lated, X → EN also results in positive transfer
(similar target language);

8Henceforth, without loss of generality, we will use En-
glish as the source language of the MT data and denote by X
all the target-side languages.

https://github.com/RikVN/AMR
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Figure 2: Our SGL multilingual translation framework. Best seen in color.

• Finally, X → EN allows our model to navigate
unseen translation paths (i.e. zero-shot) such
as IT → AMR and thus tackle tasks like cross-
lingual AMR parsing.

4 Experimental Setup

We assess the effectiveness of our proposed ap-
proach by evaluating its performance on all trans-
lation paths where the target language is a graph
formalism, the only exception being X → UCCA,
with X any language but English. This choice is
motivated by the fact that, differently from AMR

where cross-lingual AMR aims to produce English-
based meaning representations (Damonte and Co-
hen, 2018), UCCA builds graphs on top of its tokens
which are, consequently, inherently in the same lan-
guage as the input text (Hershcovich et al., 2019);
we leave exploring this direction to future work.

4.1 Models

We choose to use both Cross, a randomly initial-
ized Transformer, and mBART , a multilingual pre-
trained Transformer, to better grasp the effects
of this joint multilingual framework in different
regimes. In particular, we explore the following
configurations:

• models trained only on a single semantic pars-
ing task (AMR or UCCA parsing) and with-
out considering any parallel data, denoted by
Crossst and mBARTst;

• models trained on both semantic parsing tasks
and the MT data, denoted by Crossmt and
mBARTmt.

Furthermore, so as to explore whether the training
schedules we use result in underfitting for AMR and

UCCA, we also consider Crossftmt and mBARTft
mt,

that is, Crossmt and mBARTmt fine-tuned with a
training schedule biased towards the semantic pars-
ing formalism that is being considered.9

4.2 Datasets and Preprocessing
AMR For AMR parsing, we use AMR-2.0
(LDC2017T10) and its recently released expan-
sion, AMR-3.0 (LDC2020T02), amounting, re-
spectively, to 39 260 and 59 255 manually-created
sentence-graph pairs.

Cross-Lingual AMR We use Abstract Meaning
Representation 2.0 - Four Translations (Damonte
and Cohen, 2020) to investigate the performance
of SGL on cross-lingual AMR parsing. This corpus
contains translations of the sentences in the test
set of AMR-2.0 in Chinese (ZH), German (DE),
Italian (IT) and Spanish (ES).

UCCA We replicate the setting of the CoNLL
2019 Shared Task (Oepen et al., 2019). We train our
models using the freely available10 UCCA portion
of the training data; this corpus amounts to 6 572
sentence-graph pairs, drawn from the English Web
Treebank (2012T13) and English Wikipedia arti-
cles on celebrities. As no official development set
was included in the data release, following Hersh-
covich and Arviv (2019), we reserve 500 instances
and use them as the validation set. To the best of
our knowledge, the full evaluation data have not
been released yet and, therefore, we compare with
state-of-the-art alternatives and report results only
on The Little Prince, a released subset consisting
of 100 manually-tagged sentences sampled from
the homonymous novel.

9We report further details on schedules, models and the
training procedure in Appendices A and B.

10Available on the UCCA website.
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Model Smatch Unlabeled No-WSD Concepts Wiki NER Reentrancies Negations SRL
A

M
R

-2
.0

Ge et al. (2019) 74.3 77.3 74.8 84.2 71.3 82.4 58.3 64.0 70.4
Zhang et al. (2019b) 77.0 80.0 78.0 86.0 86.0 79.0 61.0 77.0 71.0
Zhou et al. (2020) 77.5 80.4 78.2 85.9 86.5 78.8 61.1 76.1 71.0
Cai and Lam (2020) 80.2 82.8 80.0 88.1 86.3 81.1 64.6 78.9 74.2
Xu et al. (2020a) 80.2 83.7 80.8 87.4 75.1 85.4 66.5 71.5 78.9
SPRINGbart 83.8 86.1 84.4 90.2 84.3 90.6 70.8 74.4 79.6
SPRING 84.5 86.7 84.9 89.6 87.3 83.7 72.3 79.9 79.7

Crossst 70.7 75.1 71.3 80.3 75.7 78.9 58.9 58.6 68.5
Crossmt 78.1 82.1 78.7 85.1 80.6 85.0 66.6 71.5 75.2

Crossftmt 79.5 83.2 80.2 86.5 80.7 85.9 68.4 71.8 77.1

mBARTst 81.7 85.1 82.1 88.4 81.9 90.3 70.7 73.4 79.7
mBARTmt 81.9 85.3 82.3 88.5 81.0 89.4 71.0 75.3 80.0

mBARTft
mt 82.3 85.7 82.8 88.9 82.3 89.3 71.5 73.7 80.4

A
M

R
-3

.0

SPRING 83.0 85.4 83.5 89.8 82.7 87.2 70.4 73.0 78.9

Crossftmt 78.1 81.9 78.7 85.3 76.6 81.3 67.6 68.5 76.2
mBARTst 80.0 83.2 80.5 86.6 77.2 86.3 70.0 68.5 78.4

mBARTft
mt 81.2 84.4 81.6 88.4 77.7 86.5 71.1 69.7 79.7

Table 1: Smatch and fine-grained results on AMR-2.0 (top) and AMR-3.0 (bottom).

Parallel Data We use English-centric paral-
lel corpora in four languages, namely, Chinese,
German, Italian and Spanish; we employ Mul-
tiUN (Tiedemann, 2012) for Chinese and Spanish,
ParaCrawl (Esplà et al., 2019) for German, and
Europarl (Tiedemann, 2012) for Italian. We per-
form a mild filtering over all the available parallel
sentences and then take the first 5M out of these.11

Preprocessing We do not perform any prepro-
cessing or tokenization, except for the graph lin-
earizations explained in §3.1 and Chinese simpli-
fication.12 Instead, we directly apply subword to-
kenization with a Unigram Model (Kudo, 2018).
When working with Cross in a single-task setting
on AMR or UCCA, we follow Ge et al. (2019) and
use a vocabulary size of 20k subwords; instead,
when working in the multilingual setting, we in-
crease this value to 50k so as to better accom-
modate the increased amount of languages. Con-
versely, when using mBART , we always use the
original vocabulary consisting of 250k subwords.

4.3 Evaluation

We evaluate AMR and cross-lingual AMR parsing by
using the Smatch score13 (Cai and Knight, 2013),
a metric that computes the overlap between two
graphs. Furthermore, in order to have a better
picture of the systems’ performances, we also re-

11See Appendix C for further details.
12We use the hanziconv library (https://github.

com/berniey/hanziconv).
13https://github.com/snowblink14/smatch

port the fine-grained scores as computed by the
evaluation toolkit14 of Damonte et al. (2017). For
UCCA parsing, we employ the official evaluation
metric15 of the shared task, conceptually similar to
the Smatch score.

5 Results

We now report the results SGL achieves focusing
on the following translation paths: i) EN → AMR

(§5.1); ii) X → AMR, with X any language among
Chinese, German, Italian and Spanish (§5.2);
iii) EN → UCCA (§5.3).

5.1 AMR Parsing

We report the Smatch and fine-grained scores that
SGL and its current state-of-the-art alternatives at-
tain on AMR-2.0 in Table 1 (top). Among the
competing systems considered, for Bevilacqua et al.
(2021) we report their BART-powered baseline
(SPRINGbart) and their best performing model
(SPRING).

As a first result, we want to highlight the signifi-
cant boost that jointly training within our proposed
framework on MT data provides; Crossmt outper-
forms Crossst by more than 7 points and reaches
competitive performances when compared with cur-
rent state-of-the-art approaches. Furthermore, the
gap of 1.4 points between Crossmt and Crossftmt

shows that the training schedule we use for Cross
14https://github.com/mdtux89/

amr-evaluation
15https://github.com/cfmrp/mtool

https://github.com/berniey/hanziconv
https://github.com/berniey/hanziconv
https://github.com/snowblink14/smatch
https://github.com/mdtux89/amr-evaluation
https://github.com/mdtux89/amr-evaluation
https://github.com/cfmrp/mtool
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does indeed result in underfitting for AMR and that
further training is beneficial; this fine-tuned alter-
native achieves 79.5 Smatch score, less than one
point behind Xu et al. (2020a). Considering the
similarity between the two approaches, this differ-
ence is likely caused by the increased number of
tasks our model is asked to handle.

Once we replace Cross with mBART , all per-
formances rise significantly. In particular, even
mBARTst, a single-task variant with no addi-
tional data, outperforms all its alternatives ex-
cept for SPRING and SPRINGbart (Bevilac-
qua et al., 2021), highlighting the potential of
fully pre-trained Transformer language models
for translation-based approaches. mBARTmt and
mBARTft

mt push performances further up, showing
that the MT data are beneficial even in this pre-
trained setting and that the multi-task training set,
which enables a single shared model to scale across
formalisms and languages, is not detrimental to En-
glish AMR parsing.

However, arguably more interesting is the com-
parison between the performances of mBART
models and SPRING, which, in contrast, builds
upon the English-only BART (Lewis et al., 2020).
In particular, as SPRINGbart outperforms even
mBARTft

mt, this finding suggests that, as expected,
BART is more suitable than mBART when deal-
ing with English AMR. However, as we show in
§5.2, our choice is beneficial for cross-lingual AMR

parsing and results in an interesting trade-off.
Finally, we also evaluate SGL on AMR-3.0

and report the results of Crossftmt, mBARTst and
mBARTft

mt when trained on this dataset (Figure 1
bottom). Overall, we witness a similar trend com-
pared to AMR-2.0.

5.2 Cross-lingual AMR Parsing

We now show the performances of SGL on cross-
lingual AMR parsing in terms of Smatch score
over Chinese (ZH), German (DE), Italian (IT) and
Spanish (ES). For comparison, we report the re-
sults of the systems proposed by Damonte and Co-
hen (2018, AMREAGER), Blloshmi et al. (2020,
XL-AMR) and Sheth et al. (2021); along with
their best systems, we also show the strongest MT

baseline reported in Damonte and Cohen (2018,
AMREAGERMT ) and the zero-shot configuration
explored in Blloshmi et al. (2020, XL-AMR∅).

Table 2 (top) shows a very interesting trend. First
of all, Crossftmt achieves competitive performances,

Model DE ES IT ZH

H
T

AMREAGER 39.0 42.0 43.0 35.0
AMREAGERMT 57.0 60.0 58.0 50.0

XL-AMR∅ 32.7 39.1 37.1 25.9
XL-AMR 53.0 58.0 58.1 41.5
Sheth et al. (2021) 62.7 67.9 67.4 −

Crossmt 60.8 62.9 63.2 51.8

Crossftmt 61.8 63.7 64.1 52.6
mBARTst 54.8 60.4 63.6 47.8
mBARTmt 66.3 69.0 69.8 55.4

mBARTft
mt 65.8 69.2 69.6 54.8

mBARTft
mt + AP 69.8 72.4 72.3 58.0

M
T Sheth et al. (2021) 66.9 69.6 71.0 −

mBARTft
mt + AP 73.3 73.9 73.4 64.9

Table 2: Smatch scores on cross-lingual AMR parsing
for both human (top, HT) and machine (bottom, MT)
translations of the test set.

falling short only when compared to the recent
work of Sheth et al. (2021); in particular, it sur-
passes the strong AMREAGERMT baseline. The
most interesting aspect of this result is that Crossftmt

attains these performances without ever seeing at
training time any X → AMR translation path; this is
in marked contrast with all previous literature and
with the systems we report in Table 2. This finding
clearly highlights the effectiveness of transfer learn-
ing and, by extension, of our proposed framework
in this setting.

Secondly, the performances mBARTst achieve
are astounding under multiple perspectives. First,
to the best of our knowledge, it is the first reported
result of AMR systems achieving competitive per-
formances on cross-lingual AMR parsing in a fully
zero-shot configuration: mBARTst is fine-tuned
solely on EN → AMR and then applied directly
to X → AMR translation; especially when com-
pared to XL-AMR∅, the only similar approach we
are aware of, the gap is significant. Second, among
the languages we consider, the case of Chinese is
especially interesting as it appears to require con-
strained decoding in order to work properly: in
particular, we restrict the model to generate only
subwords whose characters belong to the English
alphabet.16 If we were to perform ZH → AMR

parsing with no additional decoding machinery,
as for the other languages, performances would
be significantly lower, with mBARTst attaining
only 31.9. This performance drop is caused by

16The reported results on Chinese of all mBART models
have been computed using this form of decoding.
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the model leaving some nodes of the graph un-
translated, i.e. named entities left written in Chi-
nese (奥巴马 rather than Obama), which disrupts
the auto-regressive nature of the decoding proce-
dure and, besides, eventually results in a penalized
Smatch score. Finally, despite the larger amount
of pre-training mBART has been exposed to, its
bigger capacity and better Smatch score on En-
glish, mBARTst still falls short when compared to
Crossftmt, highlighting the benefits of seeing related
translation directions at training time.

mBARTmt pushes the bar further up, with per-
formances on German, Spanish and Italian that are
now only roughly 10 points behind their English
counterparts. As mBARTmt significantly outper-
forms mBARTst, this result shows that, despite the
massive pretraining, parallel data are still benefi-
cial for cross-lingual AMR. Moreover, differently
from English AMR, mBARTft

mt does not yield an
improvement and, in fact, performances slightly
drop on average.

While the scores mBARTmt attains are already
unprecedented, it is natural to wonder whether an-
notation projection (AP) might yield a further bene-
ficial effect. To this end, similarly to Blloshmi et al.
(2020), we translate the input sentences of AMR-
2.0 into the four languages under consideration17

and build a training set for each language by pair-
ing the translated sentence with the original AMR

graph. We further fine-tune mBARTft
mt, including

also these new datasets among the training data.
This model, which we denote by mBARTft

mt + AP,
surpasses further mBARTmt, clearly underlining
the beneficial effect of this technique.

Finally, following Sheth et al. (2021), we also
report the results of SGL when evaluated on the
machine-translated test set;18 similarly to their find-
ings, we observe that, as the mismatch between the
training and test set is reduced, our parser performs
better in this setting than on the human-translated
one.

5.3 UCCA Parsing

We report in Table 3 the performance of SGL on
UCCA parsing. We compare our approach with the
original multi-task baseline (Oepen et al., 2019)
and 3 transition-based parsers that participated; in

17We use the MarianMT models (Tiedemann and Thottin-
gal, 2020) available in the HuggingFace Transformers library
(Wolf et al., 2020).

18We use the same MT models we utilized for annotation
projection.

Model Type Score

Oepen et al. (2019) multi-task 41.0
Hershcovich and Arviv (2019) single-task 82.1
Hershcovich and Arviv (2019) multi-task 73.1
Che et al. (2019) multi-task 82.6

Crossst single-task 55.7
Crossmt multi-task 72.0

Crossftmt multi-task 75.1

mBARTst single-task 77.0
mBARTmt multi-task 79.9

mBARTft
mt multi-task 76.9

Table 3: UCCA results on The Little Prince.

particular, we report the score of Che et al. (2019),
the system that ranked first in both all-framework
and UCCA parsing.

First of all, we note the result of Crossst; while
its performance is far below the score Che et al.
(2019) achieve, it still outperforms the original pro-
posed baseline by more than 10 points. Further-
more, to the best of our knowledge, apart from the
recent works proposed in the latest shared task of
Oepen et al. (2020), this is the first reported result
of translation-based approaches on UCCA parsing.

Once plugged into our multilingual framework,
UCCA benefits from transfer learning to an even
greater extent than AMR parsing, likely owing to
the smaller amount of training data: Crossmt and
especially Crossftmt significantly reduce the gap be-
tween SGL and Che et al. (2019), with Crossftmt

outperforming the multi-task transition-based ap-
proach of Hershcovich and Arviv (2019). The
usage of mBART pushes up the system’s perfor-
mance further, with mBARTst achieving 77.0 and
mBARTmt 79.9; differently from AMR, mBARTft

mt

suffers from overfitting and its performance is actu-
ally lower than that of mBARTmt. Even though
these scores are lower than those of Che et al.
(2019), we argue that such results are still incred-
ibly promising as they demonstrate the effective-
ness of SGL in tackling cross-framework seman-
tic parsing. Indeed, these results show that mul-
tilingual translation-based approaches allow for a
single model to jointly accommodate different for-
malisms, each potentially linearized according to
a different linearization scheme. Furthermore, we
believe there is a significant margin for improve-
ment on both the linearization used and the model;
for instance, we did not consider node ids such as
<root_0> as special tokens, but instead had the uni-
gram tokenizer handle them as if they were normal
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AMR UCCA

Model EN DE ES IT ZH EN

Crossst 70.3 - - - - 55.7
Crossmt 78.1 60.8 62.9 63.2 51.8 72.0

CrossNmt 74.5 22.0 22.0 29.4 12.8 68.7

Table 4: Results on AMR, cross-lingual AMR and UCCA
parsing of Crossst, Crossmt and CrossNmt.

words.
Finally, we wish to point out that direct com-

parability between our system and those reported
is hindered by the fact that our training setting
is significantly different from theirs; in particular,
we limit ourselves to two frameworks only and
leverage resources (the parallel corpora from MT)
whose usage was forbidden to the shared task par-
ticipants.19 Nevertheless, we believe that their re-
sults are needed here to better contextualize the
performances SGL obtains.

6 Analysis: is MT the one helping?

Although the performances of Crossmt are remark-
able, mBARTst achieves competitive results on
cross-lingual parsing and fares even better on En-
glish parsing. While mBARTst admittedly features
a massive amount of pre-training, this pre-training
is over monolingual corpora and, as such, the
model has never seen any parallel data. We there-
fore wonder to what extent the parallel nature of the
additional MT data we use is crucial for Crossmt.

To answer this question, we treat our MT corpora
as monolingual data by sampling, for each instance,
either the source or target side and converting the
translation task into a denoising one: given an in-
stance EN → IT, we sample either EN or IT with
equal probability, denoting the result by Z, and
convert the instance into g(Z)→ Z, where g is a
noising function that corrupts the input text. We
follow Lewis et al. (2020) and choose a noising
function that masks 35% of the words by random
sampling a span length from a Poisson distribution
(λ = 3.5). Applying this noisification scheme to
the MT data, we train a model identical to Crossmt

and denote it by CrossNmt.
As shown in Table 4, in this data regime, the

parallel nature is crucial both for English and, es-
pecially, for cross-lingual parsing. While CrossNmt

does yield a significant boost over Crossst, when

19Allowed resources are specified at: http://svn.
nlpl.eu/mrp/2019/public/resources.txt

compared instead to Crossmt, it is 4 points behind
on UCCA parsing and only half way on AMR pars-
ing. The difference is even more marked in the
cross-lingual setting, where CrossNmt simply does
not work.

7 Conclusion

In this work, we presented SGL, a novel framing
of semantic parsing towards multiple formalisms
as Multilingual Neural Machine Translation. That
is to say, given a sentence and the desired output
formalism, a many-to-many neural model has to
learn to translate from the input sentence to the
corresponding linearized graph. Within this frame-
work, we show that we can address the paucity of
annotated data that afflicts semantic parsing effec-
tively by performing the learning procedure jointly
on large parallel corpora coming from MT, and
leveraging the power of pre-trained Transformer
language models.

Using AMR and UCCA as our cases in point, we
report competitive performances on their parsing,
especially once pre-trained models enter the pic-
ture. Furthermore, we find that the benefit MT data
provide goes beyond merely improving English-
centric parsing, yielding astonishing performances
on cross-lingual AMR parsing as well, and allow-
ing SGL to outperform all existing approaches by a
large margin. Most interestingly, differently from
all previous literature, this result is attained without
ever explicitly seeing at training time the trans-
lation paths the model is tested upon. Once we
use annotation projection and include these data
as well, performances rise even further, attaining
unprecedented results.

As future work, thanks to the nimbleness with
which we can add new languages, we plan to as-
sess the scalability of this framework as more for-
malisms are taken into account.
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A Model and Training Details

Cross For Cross, we leverage the implementa-
tion available in OpenNMT-py20 (Klein et al., 2017)
and define a Transformer model closely following
Vaswani et al. (2017), except for the embedding
modification we described. We use 128 as the em-
bedding size and 512 as the Transformer hidden
size when training in single-task settings; when
scaling to the multilingual framework, we augment
the hidden size to 768 so as to increase the model
capacity. The number of layers in both the encoder
and the decoder is set to 6, while the number of
attention heads to 8; therefore, Crossst contains
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46M trainable parameters, while Crossmt 105M .
We optimize the models parameters using Adam
(Kingma and Ba, 2015) and the original scheduler
of Vaswani et al. (2017). We train with an effective
batch size of 8000 tokens and for a maximum of
300k steps on a NVIDIA GeForce RTX 2080 Ti,
using semantic parsing accuracy as the early stop-
ping criterion with 25k steps of patience; training
lasted 1 day for Crossst and roughly 4 days for
Crossmt. We did not perform any significant tun-
ing of decoding time parameters: we use 5 beams
and, following Ge et al. (2019), we set theGNMT
length penalty parameter alpha to 1.0.

MBart We use the mbart-large-cc25 model pro-
vided by the Huggingface’s transformers library
(Wolf et al., 2020) and follow the specifications
given in the original paper for the training config-
uration: we use 2500 warm-up steps, 3e− 5 max-
imum learning rate, Adam as the optimizer and
0.3 dropout. We used 8000 effective token batch
size and carried out training on a cloud-provided
NVIDIA GeForce 3090, using semantic parsing
accuracy as the early stopping criterion with 25k
steps of patience; training lasted slightly less than 2
days for mBARTst and around 4 days for mBARTmt.
As we fine-tune the original model, the number of
parameters is unchanged (but for the two additional
vectors for UCCA and AMR in the embedding ma-
trix), with both mBARTst and mBARTmt featuring
610M trainable parameters.

B Training Task Scheduler

When traning Crossmt and mBARTmt, we oversam-
ple semantic parsing instances by sampling from
the concatenation of AMR and UCCA with proba-
bility p1 = 0.15 and p1 = 0.4 respectively; the re-
maining probability p2 is uniformly divided among
the MT corpora. When considering Crossftmt and
mBARTft

mt, we bias the schedule towards the se-
mantic formalism under consideration by bringing
its probability to p3 = 0.8; we assign the remaining
p4 = 0.2 uniformly to the MT corpora.

C Filtering over Parallel Corpora

We perform a mild filtering over parallel sentences,
enforcing reasonable minimum, maximum and rel-
ative lengths; in particular, we discard sentences:

• that are shorter than 25 characters;

• that are longer than 1 000 characters;

• where the relative character ratio between
source and target is bigger than 3.0.

We then take the first 5M out of these. This pro-
cess results in 5M parallel sentences for all four
translation paths except EN → IT, where, owing
to the smaller size of Europarl, it results in only
1.6M sentence pairs.


