
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3420–3428

June 6–11, 2021. ©2021 Association for Computational Linguistics

3420

Clipping Loops for Sample-Efficient Dialogue Policy Optimisation

Yen-Chen Wu
University of Cambridge
ycw30@cam.ac.uk

Carl Edward Rasmussen
University of Cambridge
cer54@cam.ac.uk

Abstract

Training dialogue agents requires a large num-
ber of interactions with users: agents have no
idea about which responses are bad among a
lengthy dialogue. In this paper, we propose
loop-clipping policy optimisation (LCPO) to
eliminate useless responses. LCPO consists of
two stages: loop clipping and advantage clip-
ping. In loop clipping, we clip off useless re-
sponses (called loops) from dialogue history
(called trajectories). The clipped trajectories
are more succinct than the original ones, and
the estimation of state-value is more accurate.
Second, in advantage clipping, we estimate
and clip the advantages of useless responses
and normal ones separately. The clipped ad-
vantage distinguishes useless actions from oth-
ers and reduces the probabilities of useless ac-
tions efficiently. In experiments on Cambridge
Restaurant Dialogue System, LCPO uses only
260 training dialogues to achieve 80% success
rate, while PPO baseline requires 2160 dia-
logues. Besides, LCPO receives 3.7/5 scores
in human evaluation where the agent interac-
tively collects 100 real-user dialogues in the
training phase.

1 Introduction

Based on dialogue policies, task-oriented dialogue
systems decide when and how to give or request in-
formation from users. Learning dialogue policies is
often formulated as a reinforcement learning (RL)
problem since we usually receive feedback from
users for the whole dialogue but not the correct
answer for a single response (Young et al., 2013;
Levin et al., 1997). With high-capacity of function
approximation, deep reinforcement learning has
been widely applied to dialogue policy optimisa-
tion (Su et al., 2016; Li et al., 2016; Casanueva
et al., 2017). Typically, when applying deep re-
inforcement learning for dialogue policy manage-
ment, more than thousands of dialogues are re-
quired to reach convergence (Casanueva et al.,

2017). However, requiring thousands of human
dialogues during training is quite impractical for
most academic or real-life scenarios. Users might
lose patience and exhibit different behaviour dur-
ing training. Therefore, in most prior work, the
agents are trained via simulated users instead of
real ones (Liu et al., 2018; Gao et al., 2018).

Model-based reinforcement learning (MBRL) is
commonly applied to make dialogue policy opti-
misation sample-efficient. MBRL approaches for
dialogue management build a user model to predict
users’ behaviour (Wu et al., 2020b,a; Peng et al.,
2018; Su et al., 2018; Wu et al., 2019; Zhang et al.,
2019). Using the user model, DDQ (Peng et al.,
2018) generates pseudo-data. The accuracy of the
user model strongly affects the quality of generated
pseudo-data. If the behaviour of pseudo-data is
far from real users’ behaviour, dialogue policies
learnt from these data might not be optimal (Su
et al., 2018). Manipulating when to use how much
data in experience buffers becomes critical in these
approaches.

Trainable-action-mask (TAM) (Wu et al., 2020b)
blocks useless actions by learning action-masks
from data to explore the action space more effi-
ciently. Instead of predicting the users’ behaviour
directly, TAM predicts only the termination and
similarity of future dialogue states to ease the train-
ing difficulties. However, the wrong predictions
of the user model block the wrong actions, which
makes the policy performance unstable. Moreover,
the wrong output of policy does not learn from the
predictions of the user model since it is blocked.
Wrong values in policy networks make the perfor-
mance unstable.

In this work, we propose loop-clipping pol-
icy optimisation (LCPO), which clips off use-
less actions in trajectories, computes advantages
of actions in/out of the loop separately and opti-
mises policy based on proximal policy optimisation
(PPO) (Schulman et al., 2017). First, LCPO is a



3421

Figure 1: Illustration of LCPO. (a) Loop clipping. Clip off loops in trajectories to make them succinct. (b)
Advantage clipping. Set a threshold such that the advantages of loops are always less than other useful actions. (c)
Policy optimisation. We adopt proximal policy optimisation (PPO) in this paper.

model-free and parameter-free algorithm. There
is no additional effort of tuning hyperparameters
of the user model. Also, it takes almost no extra
running time during testing. Second, instead of
brutally blocking actions like TAM does, LCPO
directly reduces the probabilities of useless actions
which makes optimisation smoother and easier. In
our experiment on the Cambridge Restaurant Dia-
logue System, LCPO uses only 260 dialogues in the
training phase to reach an 80% success rate, while
the PPO baseline requires 2160. In the human-
in-the-loop experiment, LCPO that trained with
only 100 dialogue receives 3.7/5 scores and high
remarks of conciseness and fluency. Overall, our
main contributions are two-fold:

• We propose LCPO, a parameter-free, sample
efficient algorithm to optimise dialogue poli-
cies. This algorithm is easy to implement and
has barely any overhead.

• We demonstrate that training dialogue sys-
tems with real users is feasible within 100
dialogues on Cambridge Restaurant Dialogue
System.

2 Preliminaries

This section goes through the notations in this pa-
per. We start with formulating dialogue manage-
ment as an RL problem in section 2.1. In sec-
tion 2.2, we explain how to optimise the policy
through proximal policy optimisation (PPO). In
section 2.4, we explain what is episodic memory.

2.1 Reinforcement learning for dialogue
systems

When applying reinforcement learning for dialogue
management (Levin et al., 1997; Young et al., 2013;
Williams, 2008), a state s, or a belief state, is the
belief distribution over users’ requests. An action
a is the summarised action taken by a system. A
reward r and a termination t are given by simulated
users or real users. An episode E is a dialogue.
The goal of reinforcement learning is to learn a
policy π(ai|si) that maximises the cumulative re-
ward R =

∑L
i=0 γ

iri, where L is the length of the
dialogue.

2.2 Proximal Policy Optimisation (PPO)
Policy gradient is a fundamental optimisation algo-
rithm with the loss function:

LPG(θ) = Êi[log πθ(ai|si)Âi], (1)

where Âi is the estimated advantage at timestep
i.

In order to ensure new policy is not changing far
from the old one, trust region policy optimisation
(TRPO) is set to surrogate the KL-divergence be-
tween the old and the current policies. In a similar
but much simpler way, proximal policy optimisa-
tion (PPO) (Schulman et al., 2017) clips proba-
bility ratios ri to mitigate the excessive updates in
TRPO.

ri =
πθ(ai|si)
πθold(ai|si)

. (2)

LPPO(θ) = Ê[min(ri(θ)Âi, r
clip
i Âi)], (3)



3422

where

rclipi = clip(ri(θ), 1− ε, 1 + ε) (4)

Advantage Âi and state-value V̂i are estimated
by generalised advantage estimation (GAE) as fol-
low:

Âi = δi + γλÂi+1, (5)

V̂i = Âi + Vi, (6)

where γ decays future state-value, which represents
our confidence in state-value estimation. λ decays
the future TD-error, which represents a trade-off
between bias and variance of advantage estimation.
Vi is the predicted state-value of si, and δi is the
TD-error:

δi = ri + γVi+1 − Vi. (7)

2.3 Trainable-action-mask (TAM)

Trainable-action-mask (TAM) (Wu et al., 2020b) is
a model-based baseline that blocks useless actions
directly. TAM learns a user model during dialogue
interaction. The user model predicts the termina-
tion, reward, and the similarity between the current
and the next dialogue state, and the action mask is
constructed based on these features.

Though TAM is simple and effective, it is not
stable enough. The first reason is a common pitfall
of model-based approaches: the user model is hard
to train and usually leads to inaccurate predictions
that harm the dialogue policy. Second, the policy
and state-value approximator (i.e. the policy net-
work and value network in PPO) do not learn from
the predictions of the user model. The wrong val-
ues estimated by these networks can not be updated
efficiently since these actions are blocked.

2.4 Episodic memory

In most policy gradient algorithms, the history of
interactions is recorded in a memory buffer M ,
which contains several episodes E. An episode E
consists of N transitions {T0, T1, ..TN}. A tran-
sition Ti ≡ {si, ai, si+1, ri, ti}, where si is the
current state. ai is the action taken on si, which
leads to the next state si+1 with a reward ri. If
the episode terminates after taking action ai, ti is
True or otherwise False.

Figure 2: Illustration of two kinds of loops. In this
paper, loop means transitions consist of useless or un-
wanted actions. (a) N-hop loop LN , where N = 5 in
this example. (b) Termination loop LT .

3 Loop-clipping Policy Optimisation
(LCPO)

In this paper, we propose loop-clipping policy opti-
misation (LCPO) to improve sample efficiency. As
illustrated in Figure 1, LCPO consists of three com-
ponents: loop clipping, advantage clipping, and
policy optimisation. We adopt proximal policy op-
timisation (PPO) (Schulman et al., 2017) for the
policy optimisation part in this work.

Firstly, we give definitions to loops in section 3.1,
and illustrate how to get clean trajectories via loop
clipping in section 3.2. In section 3.3, we demon-
strate how to estimate and clip advantages and state-
values of loops for policy optimisation. Note that
in the following subsections, we utilise two domain
knowledge in dialogue systems.

• Prior 1: Information gain is non-negative
since by asking more questions, we know bet-
ter about user needs.

• Prior 2: The last action of a failed dialogue
and actions that loop over the same state are
unwanted.

3.1 Definition of loop
In this paper, loop means transitions that consist
of useless or unwanted actions. As illustrated in
Figure 2, we define two kinds of the loop: N -hop
loop and termination loop corresponding to our
prior 2.

Definition 1. AN -hop loopLNi is a sequence ofN
transitions {Ti, Ti+1, ..Ti+N−1} where si = si+N .

Since in a loop that the starting state si becomes
the same as final state sN , {ai, ai+1, .., ai+N−1} is
a useless action sequence on state si. In dialogue
systems, N -hop loop might result from repetitively
asking the same questions or giving the same infor-
mation. Compared with the definition of useless



3423

Figure 3: Loop clipping. The shaded circles are states and the arrows are actions taken between states. (a) The
original trajectory. (b) The clean trajectory after loop clipping. In this example, a 1-hop loop and a 2-hop loop are
detected. (c) In dialogue systems, the states in a loop are the same since there is no information gain.

actions in TAM (Wu et al., 2020b) which only con-
siders the similarity of the next state (i.e 1-hop
loop), N -hop loop is a more general definition and
is able to detect more useless actions.

Definition 2. A termination loop LTi is a transition
Ti state si where ti = True and ri ≤ 0.

In dialogue systems, ai is a useless action on
state si since the dialogue is terminated and failed.
For example, termination loops might result from
saying goodbye before completing tasks or making
users out of patience. Note that the definition of
loops utilises domain knowledge and might not be
suitable for other applications.

3.2 Loop clipping

As illustrated in Figure 3, the original trajectory
might contain several identical states. We search
for the identical states pair-wisely and detect loops
by definitions in section 3.1. 1 The detected loops
are clipped off from the original trajectory. After
clipping, the trajectory becomes succinct so that
reward signals can be assigned to useful actions
effectively (Figure 3b).

In dialogue systems, the information for each
state in a loop is the same since there is no infor-
mation gain after taking useless actions. Therefore,
a N -hop loop can be viewed as multiple one-hop
loops as illustrated in Figure 3c.

3.3 Loop advantage estimation (LAE)

After loop clipping, the original trajectory is split
into a clean trajectory and several loops. Then We
estimate the advantages of the clean trajectory and
loops separately. For the clean trajectory, standard

1When the loop structure is complex. The solution of
N-hop loop clipping is not unique.

generalised advantage estimation (GAE) (Schul-
man et al., 2015) is applied as shown in Eq. 5, 6.
If we only update the policy based on clean tra-
jectories, the clipped useless actions will not be
treated as training data. Therefore, these useless
actions will not be penalised, resulting in unwanted
lengthy dialogue. We first illustrate how to estimate
state-values and advantage for loops, noted as loop
advantage estimation (LAE) to distinguish from
GAE. Second, we propose an advantage clipping
trick, which makes the policy optimisation much
more sample-efficient.

State-value estimation According to prior 1, in
dialogue systems, information gain Vi+1 − Vi ≥ 0.

In a loop LNi with length N , since the

V̂i ≤ V̂i+1 ≤ .. ≤ V̂i+N (8)

and the same states share the same value i.e.

V̂i = V̂i+N , (9)

all the state-values in LNi are the same:

V̂i = V̂i+1 = .. = V̂i+N . (10)

Advantage estimation The loop advantage for
action ai is:

ÂLAEi = δi + γλÂGAE , (11)

where δi = ri + γVi+1 − Vi. Note that ÂGAE is
the next advantage Âi+N after the loop Lni . No
matter how long the loop is, the loop advantage is
computed from the transition after loop.

When state-values converge, Vi+1 ' Vi in loop



3424

Li by eq. 10. We can see that

Vi+1 ' Vi =⇒ δi ' ri + (γ − 1)Vi
.
= Ri

=⇒ ÂLAEi ' Ri + γλÂGAE

=⇒ ÂLAEi ' ÂLAEi+1 ,

(12)

where Ri = ri+(γ− 1)Vi. It is straightforward
that when values converge, the advantage of loop
is the advantage of best actions AGAEi with a one-
turn penalty for all useless actions on state si (since
the agent wastes one more turn on the same state).
When ÂGAE converges to zero, ÂLAE converges
to Ri.

Advantage clipping However, we found that the
advantage estimation is still not very accurate in the
early stage of training process. The advantages of
looping actions sometimes are higher than others
and these actions are not penalised.

To properly penalise the looping actions, we clip
the advantages in both LAE and GAE. The clip-
ping threshold Ri = r + (γ − 1)Vi since ÂLAE

converges to this value.

ÂClipGAEi = max(Ri, Â
GAE
i ), (13)

ÂClipLAEi = min(Ri, Â
LAE
i ), (14)

where Ri = ri + (γ − 1)Vi, so that

ÂClipGAEi ≥ Ri ≥ ÂClipLAEi . (15)

This trick distinguishes bad responses from good
ones explicitly and makes policy converge faster.

The instruction of LCPO implementation is in
Algorithm 1.

4 Experiments

Experiments are conducted on the Cambridge
restaurant dialogue system using the PyDial
toolkit (Ultes et al., 2017). We evaluate the agents
on both a simulated user and real users. From sec-
tion 4.1 to 4.5, we illustrate the experiments with a
simulated user. For human-in-the-loop experiment,
see section 4.6.

4.1 Settings
User simulator We use a goal-driven simulated
user on the semantic level (Schatzmann et al., 2007;
Schatzmann and Young, 2009). The maximum
dialogue length is set to 25 turns and γ = 0.99. The
reward is defined as 20 for a successful dialogue

Algorithm 1: LCPO Algorithm

1 Collect N transitions into Memory M
2 for Episode E in M do

// Loop clipping

3 for Ti in E do
4 if i<ptr then
5 continue

6 for Ti in E do
7 if si == sj then
8 ptr = j

9 if i<ptr then
10 Ti ∈ L

// Advantage estimation in

reversed order

11 for Transition Ti in reversed(E) do
12 if Ti ∈ L then
13 Estimate Â, V̂ via clipped LAE

(Eq. 14, 10)
14 else
15 Estimate Â, V̂ via clipped GAE

(Eq. 13, 6)

16 Optimise the policy π via PPO (Eq. 3), with
K epochs and mini-batch size B

minus the number of turns in the dialogue. 15%
semantic error rate (SER) is included in the user
simulator to accommodate for automatic speech
recognition (ASR) error.

Policy optimisation Proximal policy optimisa-
tion (PPO) is applied. The state and action di-
mension of policy and value networks are 268 and
16. Dimensions of two hidden layers are 130 and
50. The agent collects a N = 100 transitions to
update the policy π with K = 10 epochs and mini-
batch size B = 16. After an update, the memory
is flushed and becomes empty again. Optimiser is
ADAM (Kingma and Ba, 2014) with a learning rate
0.001. Entropy coefficient is 0.01 and standardised
advantages is applied. During testing, actions are
sampled from the output distributions of the policy
network.

Loops Detection In theory, the starting state and
the ending state are identical in a loop. Yet, due
to numerical uncertainty, we use cosine similarity
with threshold η = 0.99 to justify whether two
states are the same. Under this strict setting, two
states are considered different if they have any dif-



3425

Figure 4: Learning curves of different algorithms. Left: Success rate. Right: Average number of turns. The results
are evaluated by 10 runs. The lines are averages and the shades represent standard deviations.

Low resource experiment@200D Final performance@2000D
Algorithm Suc. Turns #Loops #Dialog Suc. Turns #Loops Time

PPO 37.8± 17.2% 7.4± 2.3 3.5 2160 95.16± 1.1% 7.8± 0.4 2.3 58 min

TAM 36.2± 6.8% 8.6± 0.9 4.1 1140 93.58± 1.5% 7.4± 0.5 2.5 125 min

LCPO 76.0± 2.9% 11.5± 0.8 4.7 260 95.7± 1.1% 6.3± 0.3 0.9 68 min

Table 1: Baseline comparison. The highest performance in each column is highlighted. The success rate, number
of turns, and number of loops are reported for 200 and 2000 training dialogues. The number of training dialogue
required to reach 80% success rate and the training time usage are also listed in the table. #Dialogue means the
average required number of dialogues to reach 80% success rate. Time means the average training time for 2000
training dialogues.

ferent slot-values. In practice the optimal threshold
depends on the noise level of state observation.

Evaluation In the experiment with the simulated
user, we evaluate each agent with 500 dialogues af-
ter every 100 training dialogues. The mean and
standard deviation of performance is computed
over 10 runs with different neural networks initiali-
sation. The mean ± standard deviation is depicted
as the shaded area.

The x-axes of figures are in log-scale to empha-
sise both the early stage and the final performance
of the training process.

4.2 Baseline Comparisons

In figure 4, we compare the performance of
PPO (Schulman et al., 2017), TAM (Wu et al.,
2020b), and LCPO. The left part of the figure shows
the learning curves of the success rate. We can
see that LCPO is considerably stable and sample-
efficient. Worth to note that LCPO has the best
final performance. TAM learns slower, and PPO
requires a large number of training dialogues.

The right part of the figure shows the average
turns taken by the agent. The lower, the better. We

can see that LCPO takes more turns in the begin-
ning but becomes more concise than the baselines
later.

In table 1, we can see the detail of performance
at 200 and 2000 training dialogues respectively. In
low resource scenario, where the dialogue policy
is trained by 200 dialogues, LCPO outperforms
other baselines with small variance. Yet the average
number of loops in each dialogue is higher. That is
because LCPO takes more turn than other agents.
Other agents often give poor responses so that the
users leave the dialogue out of patience with fewer
turns.

Regarding final performance at 2000 dialogues,
all of the agents perform similarly. We can note
that LCPO takes the least number of turns since
its algorithm prevents from doing useless actions.
LCPO requires only 260 dialogues to reach 80%
success rate while PPO takes 2160. In addition,
LCPO is light-packed and does not consume a lot
of additional training time like TAM.



3426

Figure 5: Left: Ablation study of termination loop. Right: Robustness to hyper-parameters.

4.3 Ablation study: termination loop

In the left part of figure 5, the red and brown lines
are LCPO with and without clipping termination
loop LT respectively. We can see that without
clipping LT , the learning curves become less stable
and inhibit the cold-start problem at the beginning
of training.

In a failed dialogue, some actions are good and
should not be penalised for the failure of conversa-
tion. Therefore, we should clip off the last transi-
tion in failed dialogue, so that the rest transitions
in the clean trajectories (not in loops) are not pe-
nalised for the failure. For example, if we clip
off the last the action "bye" in a failed dialogue,
only ’bye’ is strongly penalised while other normal
interactions are not.

4.4 Ablation study: advantage clipping

We propose 4 agents for comparisons: 1) clip both
GAE and LAE, 2) clip LAE, 3) clip GAE, 4) no
advantage clipping. The success rates after train-
ing with 100, 200, 2000 dialogues are reported in
Table 2.

In the low-resource scenario (less than 200 dia-
logues), clipping both GAE and LAE outperforms
other methods considerably. And LCPO with no
advantage clipping is the worst. Without clipping,
inaccurate advantage estimation in the early stage
of the training process cannot reduce the probabili-
ties of useless actions efficiently.

Regarding the final performance after training
agents with 2000 dialogues, all of the methods
perform similarly. Yet, if we only clip the GAE,
the final performance is slightly worse than oth-
ers. That is because not all the actions in clean
trajectories are useful. The ’clean’ trajectories still
contain several useless actions though not detected.

Success Rate
Methods @100 @200 @2000

Clip GAE+LAE 55.4 76.0 93.7

Clip LAE 50.7 73.5 93.9

Clip GAE 51.1 72.6 91.0

No adv clip 45.7 61.8 93.5

Table 2: Comparison of different advantage clipping
methods. Success rates are reported after training
agents with 100, 200, 2000 dialogues. The highest suc-
cess rate in each column is highlighted.

Assigning larger advantages to all actions in clean
trajectories makes performance unstable.

4.5 Robustness to hyperparameters

In the right part of figure 5, policy update interval
is set to 50 and 100 for PPO and LCPO. The red
and brown lines are LCPO and the green and blue
lines are PPO with different update intervals. We
can see that the performance of PPO is strongly
affected by the update interval. In contrast, LCPO
still shows high stability and sample efficiency. Its
robustness to hyperparameters makes tuning LCPO
effortless.

4.6 Human-in-the-loop Evaluation

General Settings The dialogue system uses a
rule-based belief tracker, and an NLG model (Wen
et al., 2015). In each dialogue, one of the agents is
randomly picked to talk with a user. The users have
to interact with the agent according to a given in-
struction on the user goal sampled from the corpus.
The users can decide to leave the dialogue session
if they are out of patience.



3427

Training Settings We experiment on two train-
ing algorithms: PPO and LCPO. The hyper-
parameters of PPO and LCPO are the same as the
simulated user experiment. A human user interacts
with each agent for 100 dialogues. At the end of
each dialogue, the user gives 20 scores to the agent
for a successful dialogue and gives 0 scores for a
failed one. A penalty of −1 is also applied in each
turn.

A successful dialogue means the restaurant given
by the agent must fulfil all the constraints and the re-
quested information like phone number or address
must be provided. In other words, the agents only
receive feedback on the aspect of task completion.

Evaluation Settings Each human user interacts
with each agent for 5 dialogue and gives his/her
feedback on four aspects:

• Task completion: The agent finds a restau-
rant that meets the constrains. The requested
information is also given.

• Conciseness: The agent is to the point and
does not ask/provide the same information
repetitively.

• Fluency: The agent does not interrupt the dia-
logue flow and answer the questions logically.

• Overall score: The overall score for chatting
with this agent.

Each agent is evaluated on 100 dialogues, the mean
and variance of each score are reported in Table 3.
The scores are range from 0 to 5. We also evaluate
the agents by a simulated user via 500 dialogues
for each agent.

Results In table 3, we can see that LCPO signif-
icantly outperform PPO in all aspects. The task
completion is close to the success rate evaluated
by the simulated user. Conciseness is the feature
of this work, and the improvement is also the most
considerable. Regarding fluency, the difference be-
tween PPO and LCPO is smaller. Sometimes a
fluent conversation takes more turns. Sometimes a
non-logical response can complete the task as well
(e.g. inform a restaurant name in the beginning).
However, LCPO is still better than PPO in terms
of fluency since a non-logical response usually ac-
companies with no information gain.

PPO LCPO

Task Completion 2.0± 1.7 3.2± 1.5
Conciseness 1.8± 0.8 3.9± 1.1
Fluency 2.6± 0.5 3.6± 0.9
Overall score 2.1± 0.4 3.7± 0.9

Success rate (SimUser) 41.7% 66.8%

Table 3: Human-in-the-loop experiment. Human users
evaluate each agent in four aspects. Each agent is
trained by interacting with a human for 100 dialogues.
The highest success rate in each row is highlighted. The
last row is the success rates over 500 dialogues evalu-
ated by a simulated user.

5 Conclusion

Our contributions are:

• We propose LCPO to improve sample ef-
ficiency for dialogue policy optimisation.
LCPO has two critical components: loop clip-
ping and advantage clipping. Both of them are
strongly effective in low resource scenario and
easy to implement. LCPO also demonstrates
strong robustness to hyperparameters.

• We train and evaluate dialogue agents with
real users on the Cambridge Restaurant do-
main. We also demonstrate that human-in-the-
loop training is feasible within 100 dialogues.
The evaluation has four aspects to clarify what
has been learnt by each agent. LCPO outper-
forms PPO in all aspects.

In this paper, LCPO integrates with PPO. In the
future, we will generalise loop clipping method to
other off-policy reinforcement learning approaches
with episodic memory since off-policy approaches
are considered more sample-efficient.

References
Iñigo Casanueva, Paweł Budzianowski, Pei-Hao Su,

Nikola Mrkšić, Tsung-Hsien Wen, Stefan Ultes,
Lina Rojas-Barahona, Steve Young, and Milica
Gašić. 2017. A benchmarking environment for re-
inforcement learning based task oriented dialogue
management. arXiv preprint arXiv:1711.11023.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational ai. In The
41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval,
pages 1371–1374.



3428

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Esther Levin, Roberto Pieraccini, and Wieland Eck-
ert. 1997. Learning dialogue strategies within the
markov decision process framework. In 1997 IEEE
Workshop on Automatic Speech Recognition and Un-
derstanding Proceedings, pages 72–79. IEEE.

Jiwei Li, Alexander H Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2016.
Dialogue learning with human-in-the-loop. arXiv
preprint arXiv:1611.09823.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. arXiv preprint
arXiv:1804.06512.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu,
and Kam-Fai Wong. 2018. Integrating planning
for task-completion dialogue policy learning. arXiv
preprint arXiv:1801.06176.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152. Associ-
ation for Computational Linguistics.

Jost Schatzmann and Steve Young. 2009. The hid-
den agenda user simulation model. IEEE transac-
tions on audio, speech, and language processing,
17(4):733–747.

John Schulman, Philipp Moritz, Sergey Levine,
Michael Jordan, and Pieter Abbeel. 2015. High-
dimensional continuous control using gener-
alized advantage estimation. arXiv preprint
arXiv:1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken di-
alogue systems. arXiv preprint arXiv:1605.07669.

Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu,
and Yun-Nung Chen. 2018. Discriminative deep
dyna-q: Robust planning for dialogue policy learn-
ing. arXiv preprint arXiv:1808.09442.

Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Inigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien

Wen, Milica Gasic, et al. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. Proceed-
ings of ACL 2017, System Demonstrations, pages
73–78.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically conditioned lstm-based natural language
generation for spoken dialogue systems. arXiv
preprint arXiv:1508.01745.

Jason D Williams. 2008. The best of both worlds:
Unifying conventional dialog systems and pomdps.
In Ninth Annual Conference of the International
Speech Communication Association.

Yen-chen Wu, Bo-Hsiang Tseng, and Milica Gasic.
2020a. Actor-double-critic: Incorporating model-
based critic for task-oriented dialogue systems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 854–863.

Yen-Chen Wu, Bo-Hsiang Tseng, and Carl Edward
Rasmussen. 2020b. Improving sample-efficiency
in reinforcement learning for dialogue systems by
using trainable-action-mask. In ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
8024–8028. IEEE.

Yuexin Wu, Xiujun Li, Jingjing Liu, Jianfeng Gao, and
Yiming Yang. 2019. Switch-based active deep dyna-
q: Efficient adaptive planning for task-completion
dialogue policy learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7289–7296.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

Zhirui Zhang, Xiujun Li, Jianfeng Gao, and En-
hong Chen. 2019. Budgeted policy learning for
task-oriented dialogue systems. arXiv preprint
arXiv:1906.00499.


