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Abstract

While there has been significant progress to-
wards developing NLU resources for Indic
languages, syntactic evaluation has been rel-
atively less explored. Unlike English, Indic
languages have rich morphosyntax, grammati-
cal genders, free linear word-order, and highly
inflectional morphology. In this paper, we in-
troduce Vyākarana: a benchmark of Colorless
Green sentences in Indic languages for syntac-
tic evaluation of multilingual language models.
The benchmark comprises four syntax-related
tasks: PoS Tagging, Syntax Tree-depth Predic-
tion, Grammatical Case Marking, and Subject-
Verb Agreement. We use the datasets from the
evaluation tasks to probe five multilingual lan-
guage models of varying architectures for syn-
tax in Indic languages. Due to its prevalence,
we also include a code-switching setting in our
experiments. Our results show that the token-
level and sentence-level representations from
the Indic language models (IndicBERT and
MuRIL) do not capture the syntax in Indic lan-
guages as efficiently as the other highly multi-
lingual language models. Further, our layer-
wise probing experiments reveal that while
mBERT, DistilmBERT, and XLM-R localize
the syntax in middle layers, the Indic language
models do not show such syntactic localiza-
tion.

1 Introduction

The Indian subcontinent is home to more than 450
languages spanning seven language families. Mul-
tilingualism and code-switching are common phe-
nomenon across these languages. Traditionally, the
region has been at the center of many linguistic
studies due to its rich linguistic diversity (Eme-
neau, 1956). The Indo-Aryan and the Dravidian
language families are the most prominent ones in
the subcontinent, with more than a billion speakers

combined. Recent work in computational linguis-
tics has focused on clubbing together the major
languages from these two language families into
a single group called as Indic Languages.1 Even
with such a huge potential user base, the progress
in building language technologies for the Indic lan-
guages has been limited. Most of the Indic lan-
guages fall under the category of low-resourced
and mid-resourced languages. Some recent open-
sourced efforts have tried to address this by devel-
oping various toolkits (Arora, 2020), frameworks
(Kunchukuttan, 2020), language models, bench-
marks, and datasets (Kakwani et al., 2020).

To perform well on natural language understand-
ing tasks, a language model should have a good
understanding of the various general aspects of the
structure of language, like its grammar and syntax.
The structure of Indic languages is quite rich in its
morphosyntax, which is partially shared across the
languages. Thus, performing language modeling
and downstream tasks on a multilingual dataset of
Indic languages helps capture typologically gener-
alized stimuli across the languages and implicitly
addresses the issue of data-scarcity. While there
have been some efforts to analyze the role of mul-
tilingual training for Indic languages, it has been
limited to downstream NLU tasks and large mul-
tilingual models which are not exclusively trained
for Indic languages (Jain et al., 2020). In this work,
we introduce a syntactic evaluation benchmark of
Colorless Green2 sentences in Indic languages:
Vyākarana3, which provides a challenging envi-

1From a linguistic perspective, the term Indic is used for
the Indo-Aryan language family. However, in this work, we
use the term to represent all the languages used in the subcon-
tinent (following the recent work in “Indic NLP").

2Colorless green sentences are grammatically correct, but
semantically nonsensical.

3Vyākarana is the Sanskrit term for grammar
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ronment to evaluate multilingual language models
for their syntactic abilities specifically. We use
the dataset to conduct layer-wise probing of five
multilingual language models to inspect their un-
derstanding of the syntax in Indic languages. We
include the IndicBERT (Kakwani et al., 2020) and
MuRIL (Khanuja et al., 2021)4 models in our ex-
periments, which are trained on Indic languages
and English exclusively. We probe the models for
four syntax-related tasks: PoS Tagging (POS), Syn-
tax Tree-depth Prediction (STDP), Grammatical
Case Marking (GCM), and Subject-Verb Agree-
ment (SVA). In an attempt to capture the linguistic
diversity in the Indian subcontinent, we include one
language each from the Indo-Aryan (Hindi) and
Dravidian (Tamil) language families in the dataset.
In order to incorporate the prevalent phenomena of
code-switching in these languages, we also include
English-based script-mixed versions of these lan-
guages in our experiments. Our layer-wise probing
experiments show that the Indic language models
do not show syntactic localization and do not cap-
ture the syntax in Indic languages as efficiently as
the other “highly multilingual language models".5

2 Background

Language models are usually evaluated with infor-
mation theory-based perplexity measures. While
these perplexity measures might show good agree-
ment with a language model’s natural language
understanding (NLU) capabilities, they do not cap-
ture language models’ syntactic abilities efficiently
(Tran et al., 2018). Evaluating language models’
syntactic abilities is quite important in furthering
the research towards developing human-like robust
language models (Linzen, 2020). Recent work has
focused on the targeted syntactic evaluation of lan-
guage models (Linzen et al., 2016; Lau et al., 2017;
Gulordava et al., 2018; Marvin and Linzen, 2018;
McCoy et al., 2019; Futrell et al., 2019), which
takes inspiration from various psycholinguistic gen-
eralizations found in humans and assesses the role
of syntax in the models’ ability to perform vari-
ous NLU tasks. While there has been significant
progress towards building NLU evaluation bench-
marks (Wang et al., 2018, 2019), the work in de-
veloping syntactic evaluation benchmarks has been
quite recent and limited (Gauthier et al., 2020; Hu
et al., 2020a; Mueller et al., 2020).

4Collectively called as “Indic language models" here on
5mBERT, DistilmBERT, and XLM-R

Probing is an alternative paradigm that can be
used for syntactic evaluation of language models.
Probing deals with quantifying the amount of lin-
guistic information encoded in the pre-trained rep-
resentations of language models (Adi et al., 2017;
Conneau et al., 2018). While this does not provide
a very detailed analysis of models’ syntactic be-
havior, it can be used to compare the amount of
syntactic information captured by the models, as
well as the inner dynamics of how and where this
information is encoded in the models (Hewitt and
Manning, 2019; Jawahar et al., 2019; Lin et al.,
2019; Liu et al., 2019; Tenney et al., 2019b; Rogers
et al., 2020). Probing methods are also relatively
compute-efficient, as they do not involve training
or fine-tuning the language models.

With the recent development in multilingual lan-
guage modeling, numerous evaluation studies have
been performed to test the models’ multilingual
and cross-lingual abilities (Libovický et al., 2019;
Rönnqvist et al., 2019; Pires et al., 2019; Wu and
Dredze, 2019; Artetxe et al., 2020). Similar to
monolingual language modeling paradigms, there
has been significant work towards building multi-
lingual evaluation benchmarks (Hu et al., 2020b;
Kakwani et al., 2020; Liang et al., 2020). However,
these benchmarks do not cover syntactic evalua-
tion efficiently, with POS tagging being the sole
syntax-related task. Some recent studies have tried
to address this by building multilingual and cross-
lingual syntactic evaluation suites with subject-verb
agreement tasks (Gulordava et al., 2018; Mueller
et al., 2020).

Alongside the developments in multilingual NLP,
there has been some recent progress towards ad-
vancing Indic NLP (Arora, 2020; Jain et al., 2020;
Kakwani et al., 2020; Kunchukuttan, 2020). While
there are numerous datasets available to bench-
mark and compare multilingual language models
on NLU tasks in Indic languages, there is no such
resource available for syntactic evaluation in Indic
languages.6 Most recent works (Jain et al., 2020;
Kakwani et al., 2020; Khanuja et al., 2021) rely
on POS tagging with Universal Dependencies tree-
banks as the sole task to compare the syntactic
abilities of Indic language models.

6To the best of our knowledge
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Neha eats mangoes and Tom eats apples.

नेहा  आम  खाती   ह�  और  टॉम  सेब  खाता   ह�।

a.

b.

[ NNP ]   [ NNS ] [ VB ]  ह� और  [ NNP ] [ NNS ] [ VB ]  ह�।c.

�रया  पतंग  पीती   ह�  और  जॉन  प�र ख�चता  ह�।d.

Riya drinks kites and John draws stones.e.

( English Translation of the Original Sentence )

( Original Sentence )

( Template Sentence without the Content Words )

( Colorless Green Variant of the Original Sentence )

( English Translation of the Colorless Green Sentence )

Feminine Singular

Masculine Plural

Masculine Singular

 [ NNP ]

 [ NNS ]

 [ VB ]

Proper Noun Singular

Noun Plural

Verb (base form)

Figure 1: (a,b) - Comparing the linear word-order in
English and Hindi; (b,c,d,e) - Constructing Colorless
Green sentences in Hindi.

3 Vyākarana: A Colorless Green
Benchmark7

Syntax in Indic languages has specific characteris-
tics which make it more challenging to model. Un-
like English, most of the Indic languages follow a
free linear word-order, with the default order being
SOV (subject-object-verb). Hence, the linear dis-
tance (in terms of the number of intervening words)
between the verb and its subject is usually larger in
Indic languages as compared to English (Figure 1a;
Figure 1b). Indic languages like Hindi and Tamil
also have grammatical genders and grammatical
number, where the words are morphologically in-
flected in agreement with the gender and count of
their corresponding head nouns (Figure 1b).

Usually, the syntactic evaluation of language
models is conducted with syntax-related probing
tasks (Jawahar et al., 2019), or with targeted syntac-
tic evaluation through controlled psycholinguistic
experiments (Gauthier et al., 2020). Performing
such syntactic evaluations under a colorless green
setting ensures that the models do not leverage any
semantic or lexical cues and biases from the text

7Example sentences from the benchmark dataset can be
found in Appendix A

to process its syntactic structure (Gulordava et al.,
2018; Goldberg, 2019). Most of the evaluation
tasks from both of these categories can be designed
with a syntactic dependencies treebank. Hence,
we construct a colorless green treebank for Indic
languages, which can be used to perform various
syntactic evaluation tasks under a colorless green
setting.

3.1 CG-HDTB: A Colorless Green Treebank
for Hindi8

We use the Hindi Universal Dependency Treebank
(HDTB) (Bhat et al., 2008; Palmer et al., 2009)
to construct a new Colorless Green treebank for
Hindi: CG-HDTB.9 We follow the method pro-
posed by Gulordava et al. (2018) to generate col-
orless green sentences. Given a sentence from the
original HDTB treebank, we first convert it to a
template colorless green sentence (Figure 1c) by
removing all the content words (while retaining all
the function words) from it. Each of the resulting
gaps created by the removal of content words in the
template sentence is then populated with a content
word from another sentence in the treebank, where
the grammatical information of the original and re-
placing content word is the same (Figure 1d). The
resulting colorless green sentence still retains the
same grammatical information and syntactic struc-
ture as the original sentence, whereas the random
substitution of the content words ensures that it is
rendered nonsensical (Figure 1a; Figure 1e).

PoS Tag Gen Num Case Per

Noun
Verb

Adjective
Adverb

Table 1: The grammatical information taken into ac-
count for various PoS categories of content words
(Vikram, 2013).

The grammatical information taken into con-
sideration while substituting the content words
includes the Grammatical Gender (Gen) (mas-
culine/feminine), Grammatical Number (Num)
(singular/plural), Grammatical Case (Case) (Sec-

8In this section we use Hindi as a demonstrative language,
where a similar approach is used for Tamil language.

9Similarly, we use the Tamil Universal Dependency Tree-
bank (TTB) (Ramasamy and Žabokrtský, 2012) to construct a
new Colorless Green treebank for Tamil: CG-TTB.
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Data Split HDTB CG-HDTB

Sentences Masculine Feminine Sentences Masculine Feminine

Train 13304 104389 (70.37%) 43951 (29.63%) 6736 39178 (51.72%) 36578 (48.28%)
Dev 1659 13116 (70.47%) 5496 (29.53%) 6628 38638 (51.90%) 35810 (48.10%)
Test 1684 13253 (69.98%) 5686 (30.02%) 53124 308034 (51.91%) 285322 (48.09%)

Table 2: The number of sentences and the statistics for token-level grammatical gender feature in the HDTB and
CG-HDTB treebank (the statistics are same for CG-HDTB and csCG-HDTB treebanks).

tion 3.2), and Person (Per) (first/second/third).
This makes sure that the replacing content word
is consistent with syntax and the morphological
inflections of the original content word, keeping
the morphosyntax of the sentence intact. The gram-
matical information required for every PoS cate-
gory is different, as shown in Table 1. The HDTB
treebank has an imbalanced count of Grammatical
Gender features. Following an uncontrolled and
random substitution of content words can result
in a gender-imbalanced dataset of colorless green
sentences. We eliminate this imbalance by con-
trolling the grammatical gender information in the
colorless green sentences. For every sentence in
the HDTB treebank, we generate four colorless
green sentences, where the gender encoding of the
sentences is:

1. Exactly same as that of the original sentence.
2. Exactly opposite as that of the original sen-

tence.
3. Entirely masculine.
4. Entirely feminine.
Apart from the PoS categories of content words

mentioned in Table 1, we also adjust the gender-
inflected Adposition tokens in the colorless green
sentences in order to maintain the morphosyntax
of the sentence. The statistics for the Grammatical
Gender feature in the gender-imbalanced HDTB
treebank and the gender-balanced CG-HDTB tree-
bank are shown in Table 2. Further, we swap the
train and test set of the HDTB treebank while gen-
erating colorless green sentences (Table 2). This
allows the test set of CG-HDTB to be significantly
bigger than the training set, providing a challenging
test setting for the models’ syntactic generalization
capabilities.

Unlike Hindi, there is no publicly available tree-
bank for Hindi-English code-switched setting with
all the features that are required to obtain the color-
less green sentences. Hence, we artificially create a
code-switched treebank for Hindi-English: csCG-
HDTB. The csCG-HDTB treebank is a parallel

code-switched version of the CG-HDTB treebank.
Following Khanuja et al. (2021)’s approach, we use
the Indic-Trans library10 to transliterate the tokens
(Hindi-Devanagari script → English-Latin script)
from each sentence in the CG-HDTB treebank.11

While this only helps in incorporating the script-
mixing aspect of code-switching, the approach can
be scaled easily across different datasets and lan-
guages, eliminating the need of explicit annotations
of morphosyntactic features on code-switched data.

3.2 Evaluation Tasks

The benchmark comprises four syntactic evaluation
tasks. We borrow certain design principles for the
benchmark from the XTREME benchmark Hu et al.
(2020b):

1. Task Difficulty: The colorless-green setting,
and a sufficiently large test-set ensure a cer-
tain level of difficulty across all the tasks. Fur-
ther, some tasks require capturing long-range
relationships and morphological inflections,
which make them more challenging.

2. Task Diversity: We include both the token-
level and the sentence-level evaluation tasks
in the benchmark. This ensures that the bench-
mark evaluates representations from both the
granularities.

3. Data and Training Efficiency: Under the
colorless-green setting, each task has a large
test-train ratio in terms of data samples (Ta-
ble 3). Hence, the datasets for the evaluation
tasks are quite challenging in terms of data
and training efficiency.

We use the HDTB, CG-HDTB, and csCG-
HDTB treebanks to construct datasets for all the
evaluation tasks.12 The statistics for the con-

10https://github.com/libindic/
indic-trans

11Similarly, we create a code-switched treebank for Tamil-
English: csCG-TTB.

12Similarly, we use the CG-TTB and csCG-TTB treebanks
to conduct the experiments with the Tamil language (Ap-
pendix B).

https://github.com/libindic/indic-trans
https://github.com/libindic/indic-trans
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Data Split HDTB CG-HDTB

POS STDP GCM SVA POS STDP GCM SVA

Train 281057 13304 151275 17034 141720 6736 76836 8536
Dev 35430 1659 19209 2127 140844 6628 76108 8508
Test 35217 1684 19027 2134 1123964 53124 605068 68136

Table 3: The number of tokens (for POS and GCM tasks) and the number of sentences (for STDP and SVA tasks)
in the HDTB and CG-HDTB treebank (the statistics are same for CG-HDTB and csCG-HDTB treebanks).

structed datasets are given in Table 3.

PoS Tagging (POS): While PoS tagging is a
very weak construct for a syntactic evaluation task,
it is a preliminary step in syntactic processing. It
is also the only existing syntax-related evaluation
task used to compare currently available Indic lan-
guage models. Hence, we include PoS tagging as
the first evaluation task in the benchmark. The task
is designed under a token-level multi-class single-
label classification setting. We use the UPOS tags
from the treebanks as the ground-truth labels for
this task.

Syntax Tree-depth Prediction (STDP): Fol-
lowing the work done by Conneau et al. (2018) and
Jawahar et al. (2019), we use the dependency trees
from the treebanks to perform syntax tree-depth
prediction task. Successful prediction of the depth
of a dependency tree depicts the model’s ability to
get a surface-level estimate of a given sentence’s
syntactic structure. The task is designed under a
sentence-level multi-class single-label classifica-
tion setting.

Grammatical Case Marking (GCM): Given
the nature of morphosyntax in Indic languages,
case marking is an essential syntactic evaluation
task. Unlike languages like English, a fixed lin-
ear word-order cannot be used to perform case
marking in Indic languages. Instead, one must
rely on morphological inflections and Adposi-
tion tokens in the sentence to assign appropri-
ate grammatical cases. Moreover, a single token
can be marked with a combination of multiple
cases. In the HDTB treebank, the grammatical
case feature has the following seven unique val-
ues: accusative, nominative, accusative-inessive,
dative-accusative, ergative-accusative, genitive-
accusative, and instrumental-accusative. Hence,
this task is designed under a token-level multi-class
single-label classification setting.

Subject-Verb Agreement (SVA): We include
subject-verb agreement as an evaluation task to
study the long-range syntactic dependencies in In-
dic languages. Unlike English, the subject-verb
agreement in Indic languages is dependent on the
grammatical number as well as the grammatical
gender of the tokens. Following the work done
by Linzen et al. (2016), we include all the tokens
preceding (and excluding) the target verb in the
sentence. Given such a sentence, the task is to
predict the target verb’s grammatical count and
grammatical gender in agreement with its subject
(head noun). Given that most of the Indic languages
follow a free linear word-order and the default or-
der is SOV (subject-object-verb), the number of
intervening nouns is significantly higher than in
English. Moreover, there is a high probability of
the object acting as an attractor noun (Figure 1).
Hence, the SVA task is significantly more challeng-
ing in Indic languages. The task is designed under
a sentence-level multi-class single-label classifica-
tion setting, given the four possible ground truth
labels: masculine-singular, masculine-plural,
feminine-singular, and feminine-plural.

4 Experiments13

4.1 Experimental Setup

We use the datasets constructed for the evaluation
tasks to perform layer-wise probing14 of token-
level and sentence-level representations from the
five transformer-based multilingual language mod-
els: mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), DistilmBERT (Sanh et al., 2019),
IndicBERT (Kakwani et al., 2020), and MuRIL
(Khanuja et al., 2021). We use a single linear-layer
(initialized with the same weights across all the ex-

13In this section we discuss the experiments with the Hindi
language data. Corresponding details about the experiments
with the Tamil language data can be found in Appendix B.

14We do not fine-tune the models due to computational
limitations. Instead, we report the probing metrics of the last
layer and the best-performing layer of every model (Table 4).
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Treebank Task Last Layer Best Layer

mBERT XLM-R DistilmBERT IndicBERT MuRIL mBERT XLM-R DistilmBERT IndicBERT MuRIL

HDTB

POS 0.9332 0.9567 0.8860 0.7827 0.7290 0.9409 (8) 0.9615 (8) 0.8955 (5) 0.8105 (2) 0.7728 (1)
STDP 0.3886 0.1848 0.3815 0.3825 0.2588 0.4138 (3) 0.3657 (1) 0.4247 (3) 0.3995 (3) 0.3969 (8)
GCM 0.7501 0.7733 0.7345 0.6509 0.6350 0.7775 (8) 0.8006 (8) 0.7495 (4) 0.6847 (3) 0.6522 (1)
SVA 0.7083 0.6208 0.7015 0.5122 0.5178 0.7083 (12) 0.6208 (12) 0.7015 (6) 0.5125 (3) 0.5718 (12)

Average 0.6951 0.6339 0.6759 0.5821 0.5352 0.7101 0.6872 0.6928 0.6018 0.5984

CG-HDTB

POS 0.8894 0.9143 0.8448 0.7418 0.6807 0.8932 (11) 0.9232 (8) 0.8543 (5) 0.7642 (6) 0.7030 (2)
STDP 0.3455 0.2138 0.3254 0.3566 0.2318 0.3730 (6) 0.3232 (3) 0.3881 (5) 0.3756 (4) 0.3570 (10)
GCM 0.6886 0.6967 0.6733 0.6216 0.5463 0.7050 (7) 0.7234 (8) 0.6968 (4) 0.6479 (2) 0.5878 (3)
SVA 0.6003 0.5935 0.6040 0.3990 0.5568 0.6140 (8) 0.5935 (12) 0.6040 (6) 0.4451 (2) 0.5568 (12)

Average 0.6310 0.6046 0.6119 0.5298 0.5039 0.6463 0.6408 0.6358 0.5582 0.5511

csCG-HDTB

POS 0.7543 0.7881 0.7422 0.7303 0.6752 0.7744 (7) 0.8079 (10) 0.7596 (5) 0.7608 (2) 0.7011 (1)
STDP 0.3104 0.3429 0.3531 0.3805 0.2457 0.3879 (7) 0.3584 (3) 0.3843 (5) 0.3909 (3) 0.3676 (7)
GCM 0.6415 0.6456 0.6533 0.6306 0.5653 0.6604 (8) 0.6683 (8) 0.6549 (5) 0.6535 (8) 0.5859 (3)
SVA 0.5334 0.5629 0.5255 0.5389 0.5262 0.5650 (1) 0.5629 (12) 0.5752 (3) 0.5389 (12) 0.5647 (11)

Average 0.5599 0.5849 0.5685 0.5701 0.5031 0.5969 0.5994 0.5935 0.5860 0.5548

Table 4: The weighted-F1 scores for the last layer and the best layer (layer-number mentioned in parenthesis) for
the layer-wise probing experiments with the Hindi language data. (Corresponding results for the Tamil language
data can be found in Appendix B.1)

periments) as the probing classifier for all the tasks
and models. Since POS and GCM are token-level
tasks, we use the first-subword token-embeddings
as the input to the probing classifier. Whereas we
use the special sentence-token embeddings for the
sentence-level STDP and SVA tasks. We use Hug-
ging Face’s transformers library (Wolf et al., 2020)
to access the pre-trained instances of these lan-
guage models. The probing classifier is trained
using the PyTorch library (Paszke et al., 2019).
Given that all the evaluation tasks are designed
under a multi-class single-label classification set-
ting, we monitor the weighted-F1 scores to evaluate
the models (Table 4).

4.2 Probing Results

Overall, due to the lack of semantic and lexical
cues, and a larger test-set, all the models find the
CG-HDTB data more challenging than the HDTB
data (Table 4). The performance across all the
models and tasks further deteriorates with the code-
switched csCG-HDTB data. Given the consider-
ably larger scale (model and pre-training data) of
the XLM-R model, for the token-level tasks (POS
and GCM), it significantly outperforms the other
models for all the three treebanks. Whereas, for the
sentence-level tasks (STDP and SVA), mBERT and
DistilmBERT perform better than the rest of the
models for HDTB and CG-HDTB data. This might
be explained by the sentence-level pre-training
tasks (Next Sentence Prediction) used by mBERT
and DistilmBERT. Overall, for Hindi data, mBERT
shows the best average weighted-F1 scores across
the four tasks, and the Indic models perform the

worst. On the other hand, XLM-R significantly
outperforms the rest of the models under a code-
switched Hindi-English setting (Table 4).

Even though the IndicBERT and MuRIL models
outperform mBERT and XLM-R on many down-
stream NLU tasks (Kakwani et al., 2020; Khanuja
et al., 2021), they consistently fail to catch-up in
syntactic evaluation. Even DistilmBERT, a rela-
tively smaller model, outperforms IndicBERT and
MuRIL across all the tasks. There might be mul-
tiple plausible reasons behind this finding. Both
IndicBERT, and MuRIL perform masked word/to-
ken language modeling and do not have a sentence-
level pre-training task. Hence, while they are out-
performed by mBERT and DistilmBERT, they out-
perform XLM-R on most of the sentence-level
tasks with Hindi data. Moreover, they are signif-
icantly smaller in architecture size (IndicBERT)
and dataset size as compared to the other mod-
els. mBERT, XLM-R, and DistilmBERT are highly
multilingual language models, pre-trained on more
than 100 languages. This might provide them with
the linguistic and typological generalization re-
quired for modeling morphosyntax more efficiently
than Indic models, which are only trained on a
handful of Indic languages and English. Even
though the MuRIL model is pre-trained with ar-
tificially generated parallel translated and transliter-
ated sentences in Indic languages and their English
counterparts, it is outperformed by XLM-R on the
csCG-HDTB Hindi-English code-switched data.
The XLM-R model has a small amount of natu-
ral code-switched data in its pre-training corpus,
which might be the reason behind its dominance



159

under the code-switching setting.

4.3 Localization of Syntactic Knowledge

It has been previously shown that linguistic knowl-
edge is localized in the monolingual BERT (Rogers
et al., 2020). While surface-level linguistic informa-
tion like linear-word order and sentence-length is
captured in the lower layers of the model (Jawahar
et al., 2019; Lin et al., 2019), the syntactic knowl-
edge is found in the middle-layers of the model
(Hewitt and Manning, 2019; Jawahar et al., 2019).
While basic syntactic operations are encoded in rel-
atively lower-layers (Jawahar et al., 2019; Tenney
et al., 2019a), more complex tasks with long-range
syntactic dependencies are performed best by rela-
tively higher layers (Goldberg, 2019). Rogers et al.
(2020) explain this localization of syntactic knowl-
edge using Liu et al. (2019)’s finding that the mid-
dle layers of BERT are most generalizing across
tasks and the deeper layers are more task-specific.
We investigate the localization of syntactic knowl-
edge in multilingual language models by plotting
the layer-wise performance across the various eval-
uation tasks with CG-HDTB data (Figure 2).

For token-level tasks (POS and GCM) (Fig-
ure 2a 2c), we find a pattern similar to that of
monolingual BERT in mBERT, DistilmBERT, and
XLM-R, where the weighted-F1 scores peak at
the middle layers. The same, however, is not true
for IndicBERT and MuRIL, which show declining
weighted-F1 scores with increasing depth in the
model. This suggests that with increasing depth,
the layers become more task-specific. This is an
unusual behavior for the Indic models, where inves-
tigating the cause for this should be an interesting
research direction. The XLM-R model consistently
outperforms the rest of the models across all the
layers. Whereas the Indic language models con-
sistently fall behind the other highly multilingual
models. Between the Indic models, IndicBERT sig-
nificantly outperforms MuRIL across all the layers.

For sentence-level tasks (STDP and SVA) (Fig-
ure 2b 2d), XLM-R, IndicBERT and MuRIL show
no clear localization pattern15. mBERT and Dis-
tilmBERT show a consistent performance across
all the layers, outperforming the rest of the models
for both tasks. Similar to Jawahar et al. (2019)’s
findings of the STDP task with monolingual BERT,
they peak at the middle layers. However, the differ-
ence between the layers’ performance is not very

15(with the exception of IndicBERT on task STDP)

significant (Figure 2b). IndicBERT performs par-
ticularly well on the STDP task, showing com-
parable metrics with mBERT and DistilmBERT.
While MuRIL starts lowest for STDP task, it even-
tually manages to outperform XLM-R, but still
consistently lags behind IndicBERT (Figure 2b).
Whereas, for SVA task, MuRIL performs better
than IndicBERT for most of the layers (Figure 2d).
XLM-R model shows a dip in performance in the
middle layers for both the tasks, which is exactly
opposite to that of the token-level tasks and previ-
ous findings with monolingual BERT.

5 Conclusion

This work presents a gender-balanced benchmark
evaluation of Colorless Green sentences in Indic
languages for syntactic testing of multilingual lan-
guage models. By doing so, we aim to address
the existing research gap in syntactic testing in
Indic NLP. We introduce four new treebanks: CG-
HDTB, csCG-HDTB, CG-TTB, and csCG-TTB
for this purpose. We use the datasets from the tree-
banks to perform four syntax-related benchmarking
evaluation tasks. In our experiments, we perform
layer-wise probing of token-level and sentence-
level representations from five different multilin-
gual language models. Our experiments reveal that
performing syntactic evaluation under a colorless
green setting ensures that the semantic and lexical
cues do not add evaluation artifacts in the form of
higher-than-actual performance metrics. Further,
the experiments also reveal that the multilingual
language models suffer significantly under a code-
switched setting, which is an important aspect in
Indic languages. Overall, our experiments show
that the currently available Indic language models
do not capture syntax as efficiently as the other
highly multilingual language models. Indic models
seem to outperform other multilingual language
models on various NLU tasks in Indic languages
even with a certain lack of syntactic knowledge.
This might suggest that the Indic language models
do not rely significantly on syntax while making
inferences on such NLU tasks. We also observe
that training on large artificial corpora of translit-
erated texts do not help Indic language models in
capturing syntax under a code-switched setting.

Further, we find that unlike the other highly mul-
tilingual language models, the currently available
Indic language models do not show any syntactic
localization in the middle layers. This is a unique
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(a) PoS Tagging (POS)
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(b) Syntax Tree-depth prediction (STDP)
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(c) Grammatical Case Marking (GCM)
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(d) Subject-Verb Agreement (SVA)

Figure 2: Weighted F1 scores for the layer-wise probing experiments with the CG-HDTB test set for the mBERT,
DistilmBERT, XLM-R, IndicBERT, and MuRIL models.

behavior to the multilingual Indic language models,
the cause and effects for which can be investigated
in another independent study. While the current
work only covers the Hindi and Tamil languages, it
lays down the framework for performing syntactic
evaluation in other Indic languages.

6 Development and Accessibility

As a continuation of the current work, we aim
to cover more Indic languages and their code-
switched counterparts in the benchmark. We aim
to cover typologically different languages from
both the Indo-Aryan, and the Dravidian language
families, with a special focus on low-resourced
Indic languages. This can be an extremely chal-
lenging task. Developing datasets for syntactic
evaluation requires a certain level of linguistic ex-
pertise, which is usually found in the trained and
native speakers of that particular language. While
the methods used in this work relax these require-
ments upto some extent, they are dependent on
existing syntactic dependency annotations. Such
fine-grained annotations are not readily available
for a majority of the Indic languages. Hence, we
plan to open-source the benchmark datasets. We

aim to continue developing the benchmark with
open-source contributions from the trained and na-
tive speakers of various Indic languages.

The treebank datasets used for this benchmark
are publicly available for benchmarking and devel-
opment purposes on GitHub and the Hugging Face
Datasets platform (Lhoest et al., 2021).16
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A Dataset Examples

भैरव का �थान उ�राखंड म� �े�पाल अथवा भूिमदेव के �प म�
मह�पूण� है ।Original:

ज�ू के �ाहक कांड म� अफगािन�ान अथवा नोएडा के �प म�
मह�पूण� है ।CGI-A:

भारती की �ूटी पुिलस म� अंजिल अथवा �दश�नी के �प म� मह�पूण�
है ।CGI-B:

बदरीनाथ के ��या अ�ूबर म� �ान अथवा सीआरपीसी के �प म�
मह�पूण� है ।CGI-C:

�ांित की क़दर पाव�ती म� सोसाइटी अथवा अं�ेजी के �प म� मह�पूण�
है ।CGI-D:

Transliteration:

jammu ke graahak cond main afghanistan athwa noida ke
rup main mahatvapurn he .

bharti kii duty police main anjali athwa pradarshnee ke rup
main mahatvapurn he .

badrinath ke drushtya aktubar main plan athwa siarpisi ke
rup main mahatvapurn he .

kranti kii qadar parvati main socity athwa angreji ke rup
main mahatvapurn he .

Figure 3: Example sentences from the CG-HDTB (left)
and csCG-HDTB (right) treebank corresponding to an
original sentence from the HDTB (top-left) treebank.

�காரி��ந்� ஏராளமான இைளஞரக்ள் ேவைல
ேத� ெவளி மாநிலங்க�க்� ��ெபயரந்்�

வ��ன்றனர.்
Original:

�காரி��ந்� ஏராளமான ஆ�ேயார ்காலம்
ேத� ெவளி �யற்�க�க்� ��ெபயரந்்�

வ��ன்றனர ்.

CGI-A:

�காரி��ந்� ஏராளமான ேபா�ஸார ்வழக்�
ேத� ெவளி �யற்�க�க்� ��ெபயரந்்�

வ��ன்றனர ்.

CGI-B:

�காரி��ந்� ஏராளமான மைன�யர்
ெவளி�ற�த்�ைற ேத� ெவளி ஆண்�க�க்�ப்

��ெபயரந்்� வ��ன்றனர ்.

CGI-C:

�காரி��ந்� ஏராளமான உ�ப்�னரக்ள் ரத்�
ேத� ெவளி �யற்�க�க்� ��ெபயரந்்�

வ��ன்றனர ்.

CGI-D:

Transliteration:

bigarilrundhu bihar ilrundhu erauman akhiyor kalam theti
weli mushcigaluku gudipeyarndhu varukinsener .

bigarilrundhu bihar ilrundhu erauman polisar vanku theti
weli mushcigaluku gudipeyarndhu varukinsener .

bigarilrundhu bihar ilrundhu erauman manavier
veleuuddurai theti weli andugalukqup gudipeyarndhu

varukinsener .

bigarilrundhu bihar ilrundhu erauman ushupinars rattu theti
weli mushcigaluku gudipeyarndhu varukinsener .

Figure 4: Example sentences from the CG-TTB (left)
and csCG-TTB (right) treebank corresponding to an
original sentence from the TTB (top-left) treebank.
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Treebank Task Last Layer Best Layer

mBERT XLM-R DistilmBERT IndicBERT MuRIL mBERT XLM-R DistilmBERT IndicBERT MuRIL

CG-TTB

POS 0.7444 0.7336 0.6431 0.5874 0.4539 0.7719 (9) 0.7946 (7) 0.6809 (4) 0.6327 (6) 0.4741 (5)
STDP 0.0947 0.0716 0.2315 0.0716 0.0898 0.2209 (10) 0.0898 (6) 0.2819 (3) 0.0716 (1) 0.2051 (11)
GCM 0.7319 0.6800 0.6336 0.5864 0.5878 0.7966 (7) 0.8187 (6) 0.6765 (4) 0.5864 (12) 0.6040 (1)

Average 0.5237 0.4951 0.5027 0.4151 0.3772 0.5965 0.5677 0.5464 0.4302 0.4277

csCG-TTB

POS 0.5740 0.5416 0.5531 0.5024 0.4526 0.6012 (6) 0.5947 (6) 0.5759 (5) 0.5516 (8) 0.4817 (4)
STDP 0.1029 0.1184 0.1476 0.0716 0.0716 0.2431 (11) 0.1085 (1) 0.2556 (4) 0.0716 (12) 0.1467 (7)
GCM 0.5931 0.5832 0.5627 0.5605 0.5717 0.6300 (11) 0.6065 (8) 0.5811 (2) 0.5852 (4) 0.5875 (7)

Average 0.4233 0.4144 0.4211 0.3782 0.3653 0.4914 0.4366 0.4709 0.4028 0.4053

Table 5: The weighted-F1 scores for the last layer and the best layer (layer-number mentioned in parenthesis) for
the layer-wise probing experiments with the Tamil language data.

B Experiments with Tamil Language

Due to limitations from the original TTB Tamil Uni-
versal Dependencies treebank, we do not cover cer-
tain grammatical-gender-based methods and exper-
iments with Tamil language in the current work.17

Here, we report all the other results for the CG-
TTB and csCG-TTB treebank datasets.

B.1 Probing Results
While comparing the performance between the
models, all the observations and inferences dis-
cussed in Section 4.2 also hold true for the Tamil
language data as seen in Table 5. Overall, we ob-
serve a relatively lower performance in the CG-
TTB and csCG-TTB datasets (Table 5) as com-
pared to CG-HDTB and csCG-HDTB datasets re-
spectively (Table 4).

B.2 Localization of Syntactic Knowledge
All the observations and inferences discussed in
Section 4.3 also hold true for the Tamil language
data as seen in Figure 5, Figure 6, and Figure 7.
Due to a relatively lower performance on Tamil
language data, all the figures are shifted downwards
with almost similar trends and structures.

17This includes the controlled generation of colorless green
sentences with gender-balancing, and the Subject-Verb Agree-
ment (SVA) task.
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Figure 5: Weighted F1 scores for the layer-wise prob-
ing experiments with the CG-TTB test set for the POS
task.
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Figure 6: Weighted F1 scores for the layer-wise prob-
ing experiments with the CG-TTB test set for the STDP
task.
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Figure 7: Weighted F1 scores for the layer-wise prob-
ing experiments with the CG-TTB test set for the GCM
task.


