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Abstract

Text-based games can be used to develop task-
oriented text agents for accomplishing tasks
with high-level language instructions, which
has potential applications in domains such as
human-robot interaction. Given a text instruc-
tion, reinforcement learning is commonly used
to train agents to complete the intended task
owing to its convenience of learning policies
automatically. However, because of the large
space of combinatorial text actions, learning a
policy network that generates an action word
by word with reinforcement learning is chal-
lenging. Recent research works show that
imitation learning provides an effective way
of training a generation-based policy network.
However, trained agents with imitation learn-
ing are hard to master a wide spectrum of task
types or skills, and it is also difficult for them
to generalize to new environments. In this pa-
per, we propose a meta-reinforcement learn-
ing based method to train text agents through
learning-to-explore. In particular, the text
agent first explores the environment to gather
task-specific information and then adapts the
execution policy for solving the task with this
information. On the publicly available testbed
ALFWorld, we conducted a comparison study
with imitation learning and show the superior-
ity of our method.

1 Introduction

A text-based game, such as Zork (Infocom, 1980),
is a text-based simulation environment that a player
uses text commands to interact with. For example,
given the current text description of a game envi-
ronment, users need to change the environmental
state by inputting a text action, and the environment
returns a text description of the next environmental
state. Users have to take text actions to change the
environmental state iteratively until an expected
final state is achieved (Côté et al., 2018). Solving

text-based games requires non-trivial natural lan-
guage understanding/generalization and sequential
decision making. Developing agents that can play
text-based games automatically is promising for en-
abling task-oriented, language-based human-robot
interaction (HRI) experience (Scheutz et al., 2011).
Supposing that a text agent can reason a given com-
mand and generate a sequence of text actions for
accomplishing the task, we can then use text as a
proxy and connect text inputs and outputs of the
agent with multi-modal signals, such as vision and
physical actions, to allow a physical robot operate
in the physical space (Shridhar et al., 2021).

Given a text instruction or goal, reinforcement
learning (RL) (Sutton and Barto, 2018) is com-
monly used to train agents to finish the intended
task automatically. In general, there are two ap-
proaches to train a policy network to obtain the
corresponding text action: generation-based meth-
ods that generate a text action word by word and
choice-based methods that select the optimal ac-
tion from a list of candidates (Côté et al., 2018).
The list of action candidates in a choice-based
method may be limited by pre-defined rules and
hard to generalize to a new environment. In con-
trast, generation-based methods can generate more
possibilities and potentially have a better general-
ization ability. Therefore, to allow a text agent to
fully explore in an environment and obtain best
performance, a generation-based method is needed
(Yao et al., 2020). However, the combinatorial ac-
tion space precludes reinforcement learning from
working well on a generation-based policy network.
Recent research shows that imitation learning (Ross
et al., 2011) provides an effective way to train
a generation-based policy network using demon-
strations or dense reinforcement signals (Shridhar
et al., 2021). However, it is still difficult for the
trained policy to master multiple task types or skills
and generalize across environments (Shridhar et al.,
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2021). For example, an agent trained on the task
type of slicing an apple cannot work on a task of
pouring water. Such lack of the ability to gener-
alize precludes the agent from working on a real
interaction scenario. To achieve real-world HRI ex-
perience with text agents, two requirements should
be fulfilled: 1) a trained agent should master multi-
ple skills simultaneously and work on any task type
that it has seen during training; 2) a trained agent
should also generalize to unseen environments.

Meta-reinforcement learning (meta-RL) is a
commonly used technique to train an agent that
generalizes across multiple tasks through summa-
rizing experience over those tasks. The underlying
idea of meta-RL is to incorporate meta-learning
into reinforcement learning training, such that the
trained agent, e.g., text-based agents, could master
multiple skills and generalize across different envi-
ronments (Finn et al., 2017; Liu et al., 2020). In
this paper, we propose a meta-RL based method
to train text agents through learning-to-explore. In
particular, a text agent first explores an environment
to gather task-specific information. It then updates
the agent’s policy towards solving the task with
this task-specific information for better generaliza-
tion performance. On a publicly available testbed,
ALFWorld (Shridhar et al., 2021), we conducted ex-
periments on all its six task types (i.e., pick & place,
examine in light, clean & place, heat & place, cool
& place, and pick two & place), where for each
task type, there is a set of unique environments
sampled from the distribution defined by their task
type (see Section 5.1 for statistics). Results suggest
that our method generally masters multiple skills
and enables better generalization performance on
new environments compared to ALFWorld (Shrid-
har et al., 2021). We provide further analysis and
discussion to show the importance of task diversity
for meta-RL. The contributions of this paper are:

• From the perspective of human-robot interac-
tion, we identify the generalization problem of
training an agent to master multiple skills and
generalize on new environments. We propose
to use meta-RL methods to achieve it.

• We design an efficient learning-to-explore
approach which enables a generation-based
agent to master multiple skills and generalize
across a wide spectrum of environments.

2 Related Work

2.1 Language-based Human-Robot
Interaction

Enabling a robot to accomplish tasks with language
goals is a long-term study of human-robot interac-
tion (Scheutz et al., 2011), where the core problem
is to ground language goals with multi-modal sig-
nals and generate an action sequence for the robot
to accomplish the task. Because of the character-
istic of sequential decision making, reinforcement
learning (Sutton and Barto, 2018) is commonly
used. Previous research works using reinforcement
learning have studied the problem on simplified
block worlds (Janner et al., 2018; Bisk et al., 2018),
which could be far from being realistic. The re-
cent interests on embodied artificial intelligence
(embodied AI) have contributed to several realistic
simulation environments, such as Gibson (Xia et al.,
2018), Habitat (Savva et al., 2019), RoboTHOR
(Deitke et al., 2020), and ALFRED (Shridhar et al.,
2020). However, because of physical constraints in
a real environment, gap between a simulation envi-
ronment and a real world still exists (Deitke et al.,
2020; Shridhar et al., 2021). Researchers have also
explored the idea of finding a mapping between
vision signals of a real robot and language signals
directly (Blukis et al., 2020), but this mapping re-
quires detailed annotated data and it is usually ex-
pensive to obtain physical interaction data. An
alternative method of deploying an agent on a real
robot is to train the agent on abstract text space,
such as TextWorld (Côté et al., 2018), and then
connect text with multi-modal signals of the robot
(Shridhar et al., 2021). For example, by connect-
ing text with the simulated environment ALFRED
(Shridhar et al., 2020), researchers have shown that
the trained text agent has better generalization abil-
ity than training an embodied agent end-to-end
directly (Shridhar et al., 2021). However, how to
make a text agent generalize across different tasks
so that one robot can work on tasks of different
types and in unseen environments is still a chal-
lenging problem, which is the focus of this paper.

2.2 Text-based Games
The success of deep reinforcement learning (RL)
on Atari games (Mnih et al., 2015) inspires the
use of RL on text-based games. There are a va-
riety of ways to use deep reinforcement learn-
ing on text-based games. For example, using the
deep Q-learning (DQN) framework, Narasimhan
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et al. (2015) leverage the Long Short-Term Mem-
ory (LSTM) as the policy network to predict action
for each state. In (He et al., 2016), researchers
propose the deep reinforcement relevance network
(DRRN), which encodes states and actions sepa-
rately and then calculates Q-values by integrating
the information of the two channels. However, the
compositional and combinatorial properties of nat-
ural language lead to large state and action spaces,
which makes solving text-based games with deep
reinforcement learning very challenging. To deal
with this problem, in fiction-style text games, Ad-
hikari et al. (2020) use a graph-aided transformer
(GATA) to capture game dynamics so that it can
plan well and select text actions more effectively.
Ammanabrolu and Riedl (2019) learn a knowledge
graph during the exploration of an agent, and use
it to prune the action space. Furthermore, Muruge-
san et al. (2021) show that incorporating common
sense knowledge also helps reduce the action space
and allows an agent to choose an action more effec-
tively. Recently, Yao et al. (2020) show that given
a text state, a fine-tuned language model GPT can
generate a corresponding text action set, which
significantly reduces the action space and also im-
proves the performance. Previous research works
mainly focus on learning an agent to solve one text
game effectively. However, in reality, we usually
hope an agent can learn a wide spectrum of tasks
and generalize well to unseen environments. In
(Adolphs and Hofmann, 2020), in terms of environ-
ments and task descriptions, researchers show that
an actor-critic framework with action space pruning
can learn an agent to generalize to unseen games
that belongs to the same family when training. In
this paper, with meta-reinforcement learning, we
investigate if an agent can master multiple task
types and generalize to unseen environments.

2.3 Meta-reinforcement Learning

Meta-learning is a machine learning paradigm that
tries to leverage common knowledge among tasks
to generalize to new data (Thrun and Pratt, 1998;
Vilalta and Drissi, 2002). Meta-reinforcement
learning, in particular, augments Markov decision
processes with particular task labels, and tries to
use shared experience of interacting with differ-
ent tasks to adapt to a new task efficiently (Liu
et al., 2020). In general, there are three ways of
conducting meta-reinforcement learning: memory-
based methods, optimization-based methods, and

learning-to-explore. For memory-based methods,
researchers have proposed RL2 (Duan et al., 2016),
which uses a recurrent neural network (RNN) to
encode a “fast” RL algorithm, and the RNN mod-
ule is trained with another “slow” RL algorithm.
Memory-based methods are usually hard to opti-
mize and suffer from the sample efficiency problem
(Duan et al., 2016). For optimization-based meth-
ods, in (Finn et al., 2017), researchers propose a
model-agnostic meta-reinforcement learning algo-
rithm that uses a nested optimization procedure to
obtain maximal rewards with limited number of
sample trajectories. Optimization-based methods
usually require on-policy reinforcement learning
algorithms and are hard to use value-based meth-
ods (Finn et al., 2017), which also leads to the
sample efficiency problem. Learning-to-explore
is a newly proposed meta-reinforcement learning
approach that can potentially leverage any rein-
forcement learning method with good optimiza-
tion properties by decoupling an episode into two
stages: exploration and execution (Rakelly et al.,
2019; Liu et al., 2020). The exploration stage is
used to recognize task-specific information, which
could be useful for the execution stage for fast and
efficient adaptation.

For embodied AI, using meta-reinforcement
learning, researchers have explored to improve
generalization ability of an agent to unseen envi-
ronments (Wortsman et al., 2019). However, as
aforementioned, deploying such an agent on a real
robot is still a challenging problem owing to the
domain gap between a simulation environment and
a physical environment. In this paper, we instead
try to use the learning-to-explore method of meta-
reinforcement learning to increase the generaliza-
tion ability of a text agent so that it can master mul-
tiple skills and work on new environments, which
can potentially facilitate real-world human-robot
interaction applications.

3 Problem Formulation

3.1 Text-based Game Preliminary

Given a language goal g, playing a text-based game
can be modeled as a partially observable Markov
decision process (POMDP) (S, P,A,Ω, O,R, γ)
(Côté et al., 2018), where S is the set of environ-
mental states, P is the set of transition probabilities,
A is the set of actions, Ω is the set of observations,
O is the set of observation probabilities, R is the
reward function, and γ is the discount factor. If
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we input an action at to the environment, it will
transition from the current state st to a new state
st+1 with probability P (st+1|st, at), output an ob-
servation ot+1 based on the new state with proba-
bility O(ot+1|st+1), and get a reward R(g, at, st)
depending on the goal g, the current action at,
and the current state st. Given the initial environ-
ment state s0 and a goal g, we want to learn a pol-
icy π(a|o, g) that can generate an action sequence
(a0, a1, . . . , aT ) to accomplish the task and obtain
maximal discounted reward

∑T
t=0 γ

tR(g, at, st).
In text-based games, o and a refer to text sentences.

3.2 Learning-to-Explore in Text-based
Games

In meta-reinforcement learning, we consider a fam-
ily of POMDPs {(Sµ, Aµ,Ωµ, γ, Oµ, R, Pµ)} in-
dexed by µ, where µ ∈ M denotes a task and
M denotes the family of POMDPs or tasks. Here,
we consider that the reward function is indepen-
dent of tasks and can be applied for all POMDPs.
The tasks in the family have task-dependent set of
states Sµ, actions Aµ, observations Ωµ, observa-
tion probabilities Oµ, and dynamics Pµ. Following
the setting in (Liu et al., 2020), given a goal g, a
task-based meta-reinforcement learning problem
consists of sampling a task µ ∼ p(µ) and running a
trial, where a trial contains an exploration episode,
followed by several execution episodes. We also
call a goal as a task type or a skill because it usu-
ally constrains how an agent solves a task µ. We
call a POMDP without the reward function as an
environment, contextualized with the task speci-
fier µ, since it defines a game environment that an
agent can interact with. A task denoted by µ then
contains a task type, an environment, and a reward
function. Given a set of training tasksMtrain, we
want to train a policy π(a|o, g) that can generalize
well across a set of testing tasksMtest. For training,
we first fit a task-specific feature vector z′µ using
the exploration episode, and then use it to adapt to
the task quickly during execution. The task-specific
adaptation helps the policy π to recognize which
task type it works on and generalize well on a new
unseen environment.

4 Method

We use neural networks to map observations
to actions. Given the general setting of meta-
reinforcement learning through learning-to-explore,
our method contains three modules: an execution
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Figure 1: Overview of our method, where g is the lan-
guage goal, µ denotes a task index, zµ and z′µ are hid-
den feature vectors of a task, and at is the generated
text action. The dotted line box is only used during
training. For simplicity, we did not draw the inputs of
roll-out trajectories.

policy neural network πψ, a task identifier neural
network qθ, and an exploration policy neural net-
work pφ, where ψ, θ, and φ denote parameters of
the three neural networks, respectively. As shown
in Figure 1, an exploration policy pφ is trained to
generate a task-specific feature vector z′µ, which is
then input to an execution policy πψ for generating
actions. During training, a task identifier is used
to generate supervised signals zµ of z′µ, and is not
used during testing. Because of z′µ, πψ can adapt
quickly and generalize well in a new task.

The πψ, qθ and pφ are all encoder-decoder
architectures. For πψ, it takes a goal
g and a K-step roll-out trajectory τt =
(o0, at−K , ot−K+1, . . . , at−1, ot) from time t−K+
1 to time t as inputs, and outputs the current ac-
tion at, where o0 is obtained by executing the
“look” action at the beginning. o0 is used be-
cause it is the only observation that lists the dif-
ferent areas of the room. qθ takes a task in-
dex µ as an input and outputs the task-specific
feature zµ, which is only used during training.
pφ takes a goal and a K-step roll-out trajectory
τt = (o0, at−K , ot−K+1, . . . , at−1, ot) as inputs
and outputs an estimated task-specific feature z′µ.

Our goal is to make an execution policy
π(at|g, τt) generalizable across tasks. If we train
π using imitation learning, it is critical to have
enough training samples of {(g, τt, at)} following
some distributions to have good generalization per-
formance. But because of the combinatorial com-
plexity of τt, it is hard to obtain enough data of at.
Learning from conditional variational auto-encoder
(CVAE) (Sohn et al., 2015), we factorize π with a
task-specific hidden variable z and use z to facili-
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tate the generation of at, namely,

π(at|g, τt) =

∫
z∈Z

p(z|g, τt)π(at|z, g, τt)dz,

(1)
where Z ∼ N (zµ, σ

2I) is assumed to follow a
Gaussian distribution, the aforementioned task-
specific feature vector zµ is the mean vector and σ2

is the variance. During testing, we can then gener-
ate actions by first generating a task-specific hidden
variable z with p(z|g, τt) and then generating the
action with π(at|z, g, τt). Because z encodes task-
specific features, it helps π generate more proper
actions for the current task µ.

Optimizing (1) amounts to maximise evidence
lower bound (ELBO) (Sohn et al., 2015):

ELBO(at, g, τt) = Eq(z|at,g,τt)[log π(at|z, g, τt)]
− KL(q(z|at, g, τt))||p(z|g, τt)),

(2)
where q(z|at, g, τt)) is the approximate posterior
probability of z and p(z|g, τt) is the prior proba-
bility of z. To implement (2), we use the execu-
tion policy network πψ(at|zµ, τt), the task identi-
fier qθ(zµ|µ), and the exploration policy network
pφ(z′µ|g, τt) to approximate the execution policy,
the posterior, and the prior, respectively, and as-
sume that both qθ(zµ|µ) and pφ(z′µ|g, τt) are Gaus-
sian. It is easy to show that the new objective is:

Eqθ(zµ|at,g,τt)[log πψ(at|zµ, g, τt)]−
||zµ − z′µ||22

2σ2
,

(3)
where we assume σ2 is the same for both the poste-
rior and prior. In the following, we introduce the
details of the execution policy network, the task
identifier, and the exploration policy network.

4.1 Execution Policy
The architecture of the execution policy network
is similar to the policy network in (Shridhar et al.,
2021). In particular, a QANet (Yu et al., 2018)
is used to first encode g, τt as a recurrent hidden
state ht and then decode ht to get at. Different
from (Shridhar et al., 2021), during encoding, we
concatenate the initial encoding hRNN and zµ as an
input to obtain ht, namely,

hRNN = Encode(g, τt),

ht = GRU(ReLU(W(hRNN ⊕ zµ) + b), ht−1),

where ⊕ denotes the concatenation operation,
W ∈ Rde×2de is a weight matrix, b ∈ Rde is a
bias vector, hRNN ∈ Rde , ht ∈ Rdh , de is the di-
mension of zµ, dh is the dimension of ht, GRU
denotes a gated recurrent unit, and ReLU denotes
a ReLU activation function. Compared to selecting
text actions from a set of valid actions, generat-
ing text actions word by word is more likely to
explore multiple possibilities for performing ac-
tions to achieve higher rewards (Yao et al., 2020).
However, Shridhar et al. (2021) show that when
trained from a sparse reinforcement learning sig-
nal in ALFWorld, generation-based methods are
hard to get good performance. Because it is rela-
tively easy to get demonstrations from a text-based
game, similar to (Shridhar et al., 2021), the imita-
tion learning method DAgger (Ross et al., 2011) is
used to train a generation-based execution policy
πψ. In this case, optimizing the execution policy
network is to optimize the first term of (3).

4.2 Task Identifier

We use a task identifier qθ(zµ|µ) to approximate
the approximate posterior q(z|at, g, τt). The task
identifier is used to generate task-specific features
during training. We implement it as a simple two-
layer fully connected network as:

zµ = ReLU(W2ReLU(W1e(µ) + b1) + b2),

where e(µ) is the one-hot encoding of the task
index µ, W2 ∈ Rde×de , W1 ∈ Rde×N , b1,b2 ∈
Rde , de is the dimension of the task embedding zµ,
N is the number of training game environments.

4.3 Exploration Policy

We use an exploration policy network pφ(z′µ|g, τt)
to approximate the prior p(z|g, τt). The explo-
ration policy needs to explore the environment to
gather task-specific trajectory within T exp. Be-
cause we train the model end-to-end, it will opti-
mize the agent to explore the environment in this
fixed number of steps, which also saves time. The
architecture is similar to the execution policy net-
work. An encoder takes g, τt as inputs and gener-
ates a hidden state ht, and the hidden state is then
used to obtain z′µ via a fully connected layer:

z′µ = ReLU(Wht + b),

where W ∈ Rde×dh , b ∈ Rde .
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Algorithm 1: The training procedure
Input: training tasksMtrain

Output: execution policies πψ , exploration policy pφ

initialize hyper-parameters Mstep, B, T
exp, T exec

initialize πψ , pφ, and qφ

i← 0
while True do

if i > Mstep then
break

end

randomly sample B gamesMB fromMtrain

// Evaluate the task identifier
calculate zµ with qφ

// Exploration
execute “look” and get o0
for t=1:T exp do

at ← pφ(at|g, τt)
compose τt by adding at and ot
evaluateMB with at and get ot+1

z′µ ← pφ(z
′
µ|g, τt)

calculate (4) and update
end

// Execution
execute “look” and get o0
for t=1:T exec do

at ← πψ(at|zµ, g, τt)
compose τt by adding at and ot
get demonstrations fromMB

calculate likelihood of at using
demonstrations and update

if done then
break

end
end

i← i+B
end

For the exploration policy, in addition to obtain
z′µ, we also decode ht to get an exploration ac-
tion at: pφ(at|g, τt). In other words, we adopt
a multi-task learning method to train the explo-
ration network. In this way, the exploration policy
also learns how to solve the problem, which could
help the learning of z′µ. We optimize the following
multi-task objective:

L = Lµ + Ldqn, (4)

where Lµ is the task embedding loss and Ldqn is
the DQN loss. In particular, Lµ is the second term
in (3), except that we do not consider the coefficient
1/2σ2. For the DQN loss Ldqn, we use the deep
Q-learning (DQN) method to train the exploration
policy. Unlike the execution policy network, we do
not use demonstrations here because we want the
policy network to explore the environment more.

DQN is an off-policy method that can leverage
replay buffer to deal with the sample efficiency
problem. Here, we use DQN for its simplicity, but
it is possible to use other more sophisticated off-
policy methods. Because it is generally difficult
to train a generation-based text agent with only
the sparse rewards provided by the environment,
we adopt the choice-based method to train the text
agent. We empirically turn the reward function to
be dense by adding the second term in Eq(3) to the
reward function: Rnew = 0.5×Rold+0.5×||zµ−
z′µ||22 to encourage per-step optimization, where
Rold is the reward provided by the environment.

The training procedure of the proposed method,
as presented in Algorithm 1, runs as follows: first,
we randomly samples a batch of tasksMB from
Mtrain; second, with task indices, we evaluates qθ
to obtain the task-specific features zµ; third, the
exploration agent exploresMB by taking actions
with pφ, and updates pφ according to Eq(4) through
a DQN learning. z′µ is also obtained by pφ during
exploring; fourth, the execution agent takes actions
with πψ and we update the likelihood (the first
term in Eq(3)) with demonstrations of the training
data. The end-to-end training runs iteratively up to
a maximal step Mstep. In Algorithm 1, B denotes
the sampling size of tasks, T exp is the step number
of exploration, and T exec is the step number of
execution.

5 Experiments

To demonstrate the generalization ability of our
meta-reinforcement learning algorithm across
tasks, we conducted a set of experiments with the
ALFWorld platform (Shridhar et al., 2021). Text
environments of ALFWorld are aligned with 3D
simulated environments from ALFRED (Shridhar
et al., 2020), which makes ALFWorld a good proxy
for our human-robot interaction scenario.

5.1 Dataset

The ALFWorld dataset (Shridhar et al., 2021) con-
tains six task types, including pick & place, ex-
amine in light, clean & place, heat & place, cool
& place, and pick two & place. While all the task
types require some basic common sub-tasks such as
finding an object, picking it up, and placing it to a
particular place; some task types require more com-
plex interactions with certain objects (e.g., heating
an object with a heat source). Each task type con-
tains a set of training environments, and two sets of
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test environments. The first test set (seen) contains
environments that are different, but sampled from
the same game distributions as the training set (e.g.,
same rooms but with different scene layouts). The
second test set (unseen) contains environments that
do not appear in the training set (i.e., unseen rooms
with different receptacles and scene layouts). The
statistics of the dataset is shown in Table 1. The
task types pick & place and pick two & place have
more training environments than others. Our gener-
alization goal is to train a text agent on the training
set of all tasks simultaneously, and during testing,
given any task type, the agent can have good perfor-
mance on both seen and unseen environments, i.e.,
the agent masters all the six task types and general-
izes well on both seen and unseen environments.

task type train seen unseen
pick & place 790 35 24

examine in light 308 13 18
clean & place 650 27 31
heat & place 459 16 23
cool & place 533 25 21

pick two & place 813 24 17
all tasks 3553 140 134

Table 1: The statistics of the ALFWorld dataset.

5.2 Baseline and Implementation Details

We compare our method (denoted as Ours) with the
state-of-the-art generation-based agent (denoted as
ALFWorld). Transfer learning is another way to
improve the generalization ability of an agent, but
it usually considers transferring knowledge from
a source task to a target task without the setting
of multiple tasks (Zhuang et al., 2021). We leave
it as a future direction to investigate. We adopt
the implementation of ALFWorld from the origi-
nal paper (Shridhar et al., 2021) and use their pre-
trained model for conducting all comparison ex-
periments. For the hyper-parameters in Algorithm
1, T exp is set as 10 empirically, Mstep = 500, 000
(50K), B = 10, T exec = 50 are kept as the default
values of ALFWorld. The trajectory lengthK is set
as 3 empirically. Following ALFWorld (Shridhar
et al., 2021), we use beam search with width 10 for
decoding. We ran all experiments on a server with
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz,
32G Memory, Nvidia GPU 2080Ti, Ubuntu 16.04.

5.3 Evaluation Metric

We use success rate as the evaluation metric for our
experiment. In particular, for |Mtest| text games

being evaluated, if an agent can finish S tasks, then
the success rate of the agent is sr = S

|Mtest| . Similar
to (Shridhar et al., 2021), we evaluate three times
on the testing data and report averaged scores.

ALFWorld Ours
task type seen unseen seen unseen

pick & place 46.7 34.7 51.4 50.0
examine in light 25.7 22.2 38.5 22.2
clean & place 44.4 39.8 48.1 54.8
heat & place 58.3 44.9 50.0 56.5
cool & place 38.7 47.6 44.0 76.2

pick two & place 23.6 27.4 12.5 23.5
all tasks 39.3 37.6 41.4 49.3

Table 2: Experiment results of the generalization ability
on each individual task type and the union of them.

5.4 Results and Analysis
We show the performance of our model on both
seen and unseen test sets in Table 2, compared
with numbers computed using the code and model
checkpoint provided by ALFWorld (Shridhar et al.,
2021). We observe that in most experiment set-
tings, our method outperforms ALFWorld. This is
especially obvious in the unseen setting, where the
testing environments contain unseen rooms with
different receptacles and scene layouts, our method
outperforms ALFWorld by a significant margin.
This suggests that the task-specific features gener-
ated by our agent indeed enable the agent learning
from a wide spectrum of task types. The larger
performance gap between our method and ALF-
World on the unseen test set (e.g., 49.3 vs 37.6
when testing on the union of all task types) further
advocates that the task-specific features generated
by our method are useful when tackling with com-
pletely unfamiliar environments.

On the other hand, we observe that our method’s
performance on the pick two & place tasks are
lower than ALFWorld. As mentioned in (Shrid-
har et al., 2021), the pick two & place task type is
unique and is considerably more difficult compared
to other tasks, in the sense that it is the only task
type which requires an agent to grasp and operate
more than one object. Intuitively, this aligns with
the common sense that a person who has learned
to ride all kinds of bicycles can easily ride a new
bicycle, but does not necessarily know how to drive
a car. We suspect that the decrease in performance
may be caused by the agent being overfitting to
the majority of training data in which only single
object is picked up. Namely, the current developed
method could work better on scenarios where a
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text-based game has the same difficulty level. In
other words, the current developed method can
only work on scenarios where a text-based game
has the same difficulty level as the majority of train-
ing games, and it is still hard to generalize to tasks
with a higher difficulty level. As a future direc-
tion, we plan to investigate the explainability of
why an end-to-end trained agent works on certain
tasks through counterfactuals (Pearl and Macken-
zie, 2018), and improve our method to specifically
tackle such problems where a certain dimension of
task representations is significantly different from
and unbalanced in the majority of training data.

Finally, compared to a dedicated model trained
specifically on one task type (Table 2 left in (Shrid-
har et al., 2021)), the performance of our method
is generally 10% ∼ 20% behind, and there is still
a lot of room for improvement to achieve human-
level intelligence. However, our method shows
that learning task-specific features through meta-
reinforcement learning help an agent generalize
across a wide spectrum of task types, which is vi-
tal towards real-world applications of human-robot
interaction.

5.5 Discussion

To investigate whether different task types help im-
prove performance of each other, we experimented
with a setting where an agent is trained on the six
task types separately with our method. The results
are shown in Table 3. Compared to the setting
where the agent is trained on the union of all task
types (Table 2), the performance shows a signif-
icant drop in most of the task types. This trend
is especially clear in the pick two & place tasks.
When trained solely on this type of tasks, our agent
produces a zero success rate. This suggests that
for a meta-reinforcement learning based method
like ours, it is essential to have a diverse set of task
types as well as a large enough training dataset.

task type seen unseen
pick & place 57.1 25.0

examine in light 23.1 11.1
clean & place 51.9 58.1
heat & place 31.3 30.4
cool & place 12.0 9.5

pick two & place 0.0 0.0

Table 3: Testing results of training a separate agent on
each of the six task types.

6 Conclusion

We study the generalization issue of text-based
games, and develop a meta-reinforcement learn-
ing method with a learning-to-explore approach. In
particular, we first use an exploration policy net-
work to learn a task-specific feature vector, and
use this feature vector to help another execution
policy network adapt to a new task. To train the
exploration and execution policy network, we use a
task identifier to embed a task index, and maximize
the likelihood of the execution policy network end-
to-end. To demonstrate the generalization ability
of our method, we conducted a set of experiments
on the publicly available testbed ALFWorld. In
general, we find that our method has better gener-
alization performance on a wide spectrum of task
types and environments. We leave the investiga-
tion of explanability, the unbalance problem of task
types, and the training speed as the future research
directions.

Acknowledgments

The authors thank Mohit Shridhar for clarifying
the experiment section in ALFWorld, Xingdi (Eric)
Yuan and Marc-Alexandre Côté for their insightful
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