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Abstract

Sentiment analysis is often a crowdsourcing
task prone to subjective labels given by many
annotators. It is not yet fully understood how
the annotation bias of each annotator can be
modeled correctly with state-of-the-art meth-
ods. However, resolving annotator bias pre-
cisely and reliably is the key to understand
annotators’ labeling behavior and to success-
fully resolve corresponding individual miscon-
ceptions and wrongdoings regarding the anno-
tation task. Our contribution is an explana-
tion and improvement for precise neural end-
to-end bias modeling and ground truth esti-
mation, which reduces an undesired mismatch
in that regard of the existing state-of-the-art.
Classification experiments show that it has po-
tential to improve accuracy in cases where
each sample is annotated only by one single
annotator. We provide the whole source code
publicly1 and release an own domain-specific
sentiment dataset containing 10,000 sentences
discussing organic food products2. These are
crawled from social media and are singly la-
beled by 10 non-expert annotators.

1 Introduction

Modeling annotator bias in conditions where each
data point is annotated by multiple annotators, be-
low referred to as multi-labeled crowdsourcing, has
been investigated thoroughly. However, bias mod-
eling when every data point is annotated by only
one person, hereafter called singly labeled crowd-
sourcing, poses a rather specific and difficult chal-
lenge. It is in particular relevant for sentiment anal-
ysis, where singly labeled crowdsourced datasets
are prevalent. This is due to data from the social
web which is annotated by the data creators them-
selves, e.g., rating reviewers or categorizing image

1https://github.com/theonlyandreas/
end-to-end-crowdsourcing

2https://github.com/ghagerer/organic-dataset

uploaders. This might further include multi-media
contents such as audio, video, images, and other
forms of texts. While the outlook for such forms of
data is promising, end-to-end approaches have not
yet been fully explored on these types of crowd-
sourcing applications.

With these benefits in mind, we propose a neural
network model tailored for such data with singly
labeled crowdsourced annotations. It computes a
latent truth for each sample and the correct bias
of every annotator while also considering input
feature distribution during training. We modify
the loss function such that the annotator bias con-
verges towards the actual confusion matrix of the
regarding annotator and thus models the annotator
biases correctly. This is novel, as previous meth-
ods either require a multi-labeled crowdsourcing
setting (Dawid and Skene, 1979; Hovy et al., 2013)
or do not produce a correct annotator bias during
training which would equal the confusion matrix,
see Zeng et al. (2018, figure 5) and Rodrigues and
Pereira (2018, figure 3). A correct annotator- or
annotator-group bias, however, is necessary to de-
rive correct conclusions about the respective an-
notator behavior. This is especially important for
highly unreliable annotators who label a high num-
ber of samples randomly – a setting, in which our
proposed approach maintains its correctness, too.

Our contributions are as follows. We describe
the corresponding state-of-the-art for crowdsourc-
ing algorithms and tasks in section 2. Our neural
network model method for end-to-end crowdsourc-
ing modeling is explained in section 3, which in-
cludes a mathematical explanation that our linear
bias modeling approach yields the actual confusion
matrices. The experiments in section 4 underline
our proof, show that the model handles annotator
bias correctly as opposed to previous models, and
demonstrate how the approach impacts classifica-
tion.

https://github.com/theonlyandreas/end-to-end-crowdsourcing
https://github.com/theonlyandreas/end-to-end-crowdsourcing
https://github.com/ghagerer/organic-dataset


2 Related Work

2.1 Crowdsourcing Algorithms
Problem definition. The need for data in the grow-
ing research areas of machine learning has given
rise to the generalized use of crowdsourcing. This
method of data collection increases the amount of
data, saves time and money but comes at the poten-
tial cost of data quality. One of the key metrics of
data quality is annotator reliability, which can be
affected by various factors. For instance, the lack
of rater accountability can entail spamming. Spam-
mers are annotators that assign labels randomly and
significantly reduce the quality of the data. Raykar
and Yu (2012) and Hovy et al. (2013) addressed
this issue by detecting spammers based on rater
trustworthiness and the SpEM algorithm. How-
ever, spammers are not the only source of label
inconsistencies. The varied personal backgrounds
of crowd workers often lead to annotator biases
that affect the overall accuracy of the models. Sev-
eral works have previously ranked crowd workers
(Hovy et al., 2013; Whitehill et al., 2009; Yan et al.,
2010), clustered annotators (Peldszus and Stede,
2013), captured sources of bias (Wauthier and Jor-
dan, 2011) or modeled the varying difficulty of the
annotation tasks (Carpenter, 2008; Whitehill et al.,
2009; Welinder et al., 2010) allowing for the elimi-
nation of unreliable labels and the improvement of
the model predictions.

Ground truth estimation. One common chal-
lenge in crowdsourced datasets is the ground truth
estimation. When an instance has been annotated
multiple times, a simple yet effective technique
is to implement majority voting or an extension
thereof (TIAN and Zhu, 2015; Yan et al., 2010).
More sophisticated methods focus on modeling la-
bel uncertainty (Spiegelhalter and Stovin, 1983) or
implementing bias correction (Snow et al., 2008;
Camilleri and Williams, 2020). These techniques
are commonly used for NLP applications or com-
puter vision tasks (Smyth et al., 1995; Camilleri
and Williams, 2020). Most of these methods for
inferring the ground truth labels use variations of
the EM algorithm by Dawid and Skene (1979),
which estimates annotator biases and latent labels
in turns. We use its recent extension called the Fast
Dawid-Skene algorithm (Sinha et al., 2018).

End-to-end approaches. The Dawid-Skene al-
gorithm models the raters’ abilities as respective
bias matrices. Similar examples include GLAD
(Whitehill et al., 2009) or MACE (Hovy et al.,

2013), which infer true labels as well as labeler
expertise and sample difficulty. These approaches
infer the ground truth only from the labels and do
not consider the input features. End-to-end ap-
proaches learn a latent truth, annotator information,
and feature distribution jointly during actual model
training (Zeng et al., 2018; Khetan et al., 2017;
Rodrigues and Pereira, 2018). Some works use
the EM algorithm (Raykar et al., 2009), e.g., to
learn sample difficulties, annotator representations
and ground truth estimates (Platanios et al., 2020).
However, the EM algorithm has drawbacks, namely
that it can be unstable and more expensive to train
(Chu et al., 2020). LTNet models imperfect anno-
tations derived from various image datasets using
a single latent truth neural network and dataset-
specific bias matrices (Zeng et al., 2018). A similar
approach is used for crowdsourcing, representing
annotator bias by confusion matrix estimates (Ro-
drigues and Pereira, 2018). Both approaches show
a mismatch between the bias and how it is modeled,
see Zeng et al. (2018, figure 5) and Rodrigues and
Pereira (2018, figure 3). We adapt the LTNet archi-
tecture (see section 3), as it can be used to model
crowd annotators on singly labeled sentiment anal-
ysis, which, to our knowledge, is not done yet in the
context of annotator bias modeling. Recent works
about noisy labeling in sentiment analysis do not
consider annotator bias (Wang et al., 2019).

2.2 Crowdsourced Sentiment Datasets

Sentiment and Emotion. Many works use the terms
sentiment and emotion interchangeably (Demszky
et al., 2020; Kossaifi et al., 2021), whereas senti-
ment is directed towards an entity (Munezero et al.,
2014) but emotion not necessarily. Both can be
mapped to valence, which is the affective quality
of goodness (high) or badness (low). Since emo-
tion recognition often lacks annotated data, crowd-
sourced sentiment annotations can be beneficial
(Snow et al., 2008).

Multi-Labeled Crowdsourced Datasets. Crowd-
sourced datasets, such as, Google GoEmotion
(Demszky et al., 2020) and the SEWA database
(Kossaifi et al., 2021), usually contain multiple la-
bels per sample and require their aggregation using
ground truth estimation. Multi-labeled datasets are
preferable to singly labeled ones on limited data.
Snow et al. (2008) proved that many non-expert
annotators give a better performance than a few
expert annotators and are cheaper in comparison.



Singly Labeled Crowdsourced Datasets. Singly
labeled datasets are an option given a fixed budget
and unlimited data. Khetan et al. (2017) showed
that it is possible to model worker quality with
single labels even when the annotations are made
by non-experts. Thus, multiple annotations can
not only be redundant but come at the expense of
fewer labeled samples. For singly labeled data, it
can be distinguished between reviewer annotators
and external annotators. Reviewer annotators rate
samples they created themselves. It is common in
forums for product and opinion reviews where a
review is accompanied by a rating. As an example
of this, we utilized the TripAdvisor dataset (Thel-
wall, 2018). Further candidates are the Amazon
review dataset (Ni et al., 2019), the Large Movie
Review Dataset (Maas et al., 2011), and many more
comprising sentiment. External annotators anno-
tate samples they have not created. Experts are
needed for complex annotation tasks requiring do-
main knowledge. These are not crowdsourced,
since the number of annotators is small and fixed.
More common are external non-experts. Snow et al.
(2008) showed that multi-labeled datasets anno-
tated by non-expert improve performance. Khetan
et al. (2017) showed that it also performs well
in the singly labeled case. Thus, datasets made
of singly labeled non-expert annotations can be
cheaper, faster, and obtain performances compara-
ble to those comprised of different types of annota-
tions. Our organic dataset is annotated accordingly,
see section 4.3.

3 Methodology

3.1 Basic Modeling Architecture

The model choice is determined by the fact that
some of our datasets are small. Thus, the model
should have only few trainable parameters to avoid
overfitting. We utilize a simple attention mecha-
nism, as it is comon for NLP applications. The in-
put wordswj are mapped to their word embeddings
ewj ∈ RD with j = 1, ..., S, and S being the input
sequence length and D the dimensionality of the
input word vectors. These are GloVe embeddings
of 50 dimensions pre-trained on 6B English tokens
of the ”Wikipedia 2014 + Gigaword 5” dataset
(Pennington et al., 2014). Then, it computes the at-
tention ai of each word using the trainable attention
vector e ∈ RD via aj = e · ewj . It takes the accord-
ingly weighted average zn =

∑S
i=1 ai · ewi of the

word vectors with n denoting the n-th sample or

input text.
Finally, the classification head is the sigmoid of

a simple linear layer pn = softmax(W · zn + b),
with W ∈ RL×D and b ∈ R as the weights of the
model. We refer to this last layer and to pn as latent
truth layer or latent truth.

3.2 End-to-End Crowdsourcing Model
On top of the basic modeling architecture, the bi-
ases of the annotators are modeled as seen in figure
1. The theory is explained by Zeng et al. (2018) as
follows:

“The labeling preference bias of different anno-
tators cause inconsistent annotations. Each an-
notator has a coder-specific bias in assigning
the samples to some categories. Mathematically
speaking, let X = {x1, . . . , xN} denote the data,
yc = [yc1, . . . , y

c
N ] the regarding annotations by

coder c. Inconsistent annotations assume that
P (ycn|xn) 6= P (yĉn|xn), ∀xn ∈ X , c 6= ĉ, where
P (yin|xn) denotes the probability distribution that
coder c annotates sample xn.

LTNet assumes that each sample xn has a latent
truth yn. Without the loss of generality, let us
suppose that LTNet classifies xn into the cate-
gory i with probability P (yn = i|xn; Θ), where
Θ denotes the network parameters. If xn has a
ground truth of i, coder c has an opportunity of
τ cij = P (ycn = j|yn = i) to annotate xn as j,
where ycn is the annotation of sample xn by coder
c. Then, the sample xn is annotated as label j by
coder c with a probability of P (ycn = j|xn; Θ) =∑L

i=1 P (ycn = j|yn = i)P (yn = i|xn; Θ), where
L is the number of categories and∑L

j=1 P (ycn = j|yn = i) =
∑L

j=1 τ
c
ij = 1.

T c = [τ cij ]L×L denotes the transition matrix (also
referred to as annotator bias) with rows summed
to 1 while [pn]i = P (yn = i|xn; Θ) is modeled by
the base network (Zeng et al., 2018). We define
[pcn]j = P (ycn = j|xn; Θ). Given the annotations
from C different coders on the data, LTNet aims to
maximize the log-likelihood of the observed annota-
tions. Therefore, parameters in LTNet are learned
by minimizing the cross entropy loss of the pre-
dicted and observed annotations for each coder
c.”

We represent the annotations and predictions
as vectors of dimensionality L such that ycn is
one-hot encoded and pcn contains the probabili-
ties for all class predictions of sample n. The
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Figure 1: Architecture of the end-to-end trainable LTNet (Zeng et al., 2018). The base model is a simple attention
model with a single trainable attention vector e and linear layer with parameters W and b. The transition matrices
T c are the bias matrices from the annotators c. “Each row of the transition matrix T is constrained to be summed
to 1” (Zeng et al., 2018). The base model is inspired by ABAE (He et al., 2017).

cross entropy loss function is then defined as
−
∑C

n=1

∑N
n=1 log(pcn

ᵀ · ycn).

3.3 The Effect of Logarithm Removal on
Cross Entropy

The logarithm in the cross entropy formula leads to
an exponential increase in the loss for false nega-
tive predictions, i.e., when the predicted probability
[pcn]i for a ground truth class i is close to 0 and [ycn]i
is 1. This increase can be helpful in conditions with
numerical underflow, but at the same time this in-
troduces a disproportionate high loss of the other
class due to constantly misclassified items. This
happens in crowdsourcing, for example, when one
annotator is a spammer assigning a high degree of
random annotations, which in turn leads to a dispro-
portionally higher loss caused by that annotator’s
many indistinguishable false negative annotations.
Consequentially, the bias matrix of that annotator
would be biased towards the false classes. More-
over, this annotator would cause overall more loss
than other annotators, which can harm the model
training for layers which are shared among all anno-
tators, e.g., the latent truth layer when it is actually
trained.

By omitting the log function, these effects are re-
moved and all annotators and datapoints contribute
with the same weight to the overall gradient and to
the trainable annotator bias matrices, independent
of the annotator and his respective annotation be-
havior. As a consequence, the annotator matrices
are capable of modeling the real annotator bias,
which is the mismatch between an annotation ycn
of coder c and the latent truth prediction pn. If pn
is one-hot encoded, this results to the according

classification ratios of samples and is equal to the
confusion matrix, without an algorithmically en-
coded bias towards a certain group of items. This
is shown mathematically in the following, where it
is assumed that the base network is fixed, i.e., back-
propagation is performed through the bias matrices
and stops at the latent truth layer.

We define N =
∑L

k=1Nk as the number of all
samples and Nk of class k = 1, ..., L. L is the
number of classes, T c = [τ cij ]L×L the bias matrix
of coder c, pn the latent truth vector of sample
n = 1, ..., N , and pcn the annotator prediction. pkm
is the latent truth of them-th sample of class k with
m = 1, ..., Nk, same for xkm and yckm. The loss
without logarithm is

O = −
N∑

n=1

pcn
ᵀ · ycn

= −
L∑

k=1

Nk∑
m=1

pᵀkm · T
c · yckm

= −
L∑

k=1

Nk∑
m=1

pᵀkm ·

τ
c
1k
...
τ cLk


=

L∑
k=1

Nk∑
m=1

L∑
h=1

− [pkm]h · τ
c
hk

Apparently, the derivation step between the sec-
ond and third line would not work if there would be
the logarithm from the standard cross entropy. Now,
let the learning rate be α, the number of epochs E
and the starting values of the initialized bias matrix
(τ clh)0. The bias parameters τ clh of the bias matrix
T c are updated according to
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Figure 2: Male and female bias (top) and confusion (bottom) matrices which are trained using cross entropy loss
with and without logarithm in two different settings. The left side has only the original annotations, whereas the
right side has 80% random male labels.

(τ chk)E = (τ chk)0 +
E∑
i=1

α

(
∂O

∂τ chk

)
i

= (τ chk)0 +

E∑
i=1

α

[
Nk∑
m=1

− [pkm]h

]
i

= (τ chk)0 − αE
Nk∑
m=1

[pkm]h︸ ︷︷ ︸
=:Zhk

For sufficiently largeE the starting values (τ chk)0
become infinitesimally small in comparison to the
second additive term and thus negligible. As we
are normalizing the rows of (T c)E after training
so that the bias fulfills our probability constraint
defined in section 3.2, the linear factor −αE is
canceled out, too. Thus, the bias matrix T c results
in the row normalized version of [Zhk]L×L. Zhk

is the sum of the latent truth probabilities for class
h on all samples of a ground truth class k. If we
assume that the latent truth is one hot encoded,
[Zhk]L×L equals to the confusion matrix, of which
the k-th column sums up to the number of samples
in class k:

∑L
h=1 Zhk =

∑L
h=1

∑Nk
m=1 [pkm]h =∑Nk

m=1 1 = Nk.

4 Experiments

4.1 Bias Convergence
The following experiment compares how training
with and without the logarithm in the cross entropy
loss affects the LTNet bias matrices empirically.
The mathematical explanations in section 3.3 sug-
gest that the logarithm removal from cross entropy
leads to an annotator bias matrix identical to the
confusion matrix, which would not be the case for

the normal cross entropy.

Experiment Description. For the data, we use
the TripAdvisor dataset from Thelwall et al. con-
sisting of 11, 900 English consumer reviews about
hotels from male and female reviewers plus their
self-assigned sentiment ratings (Thelwall, 2018).
We use the gender information to split the data
into two annotator groups, male and female, from
which we model each one with a corresponding
bias matrix. We exclude neutral ratings and bina-
rize the rest to be either positive or negative. As the
dataset is by default completely balanced regarding
gender and sentiment at each rating level, it is a
natural candidate for correct bias approximation.
Throughout our experiments, we use 70% of the
obtained data as training, 20% as validation and
the 10% remaining as test sets.

Similar to the explanation in 3.3, the base model
with its latent truth predictions is pre-trained on all
samples and then frozen when the bias matrices are
trained. The stochastic gradient descent method
is used to optimize the parameters, as other wide-
spread optimizers, such as Adam and AdaGrad (the
latter introduced that feature first), introduce an –
in our case undesired – bias towards certain direc-
tions in the gradient space, namely by using the
previous learning steps to increase or decrease the
weights along dimensions with larger or smaller
gradients (Kingma and Ba, 2014). For all four
sub-experiments, we train the base models with
varying hyperparameters and pick the best based
on accuracy. We train the transition matrices 50
times with different learning rates from the interval
[1e−6, 1e−3]. The batch size is 64. In addition to
a normal training setting, we add random annota-
tions to 80% of the instances annotated by male



subjects, such that 40% from them are wrongly
annotated. This results in four models: with and
without logarithm in the cross entropy, with and
without random male annotations, each time re-
spectively with two annotator group matrices, male
and female – see figure 2.

Results. The bias matrices of the models with
the best accuracy are picked and presented in figure
2 in the top row. The corresponding confusion ma-
trices depict the mismatch between latent truth pre-
dictions and annotator-group labels in the bottom
row. The bias matrices trained without logarithm in
the cross entropy are almost identical to the confu-
sion matrices in all cases, which never holds for the
normal cross entropy. This confirms our mathemat-
ically justified hypothesis given in section 3.3 that
the logarithm removal from cross entropy leads to
a correctly end-to-end-trained bias. In this context,
it is relevant that the related work shows the same
mismatch between bias and confusion matrix when
applying cross entropy loss without explaining nor
tackling this difference, see Zeng et al. (2018, fig-
ure 5) and Rodrigues and Pereira (2018, figure 3).

It is worth mentioning for the 80% random male
annotations that these are correctly modeled with-
out cross entropy, too, as opposed to normal cross
entropy. If the goal is to model the annotator bias
correctly in an end-to-end manner, this might be
considered as particularly useful to analyze annota-
tor behavior, e.g., spammer detection, later on.

Finally, we report how much variation the bias
matrices show during training for cross entropy
with and without logarithm. As mentioned in the
experiment description, we trained each model 50
times. The elements of the resulting bias matri-
ces with standard cross entropy have on average
7.7% standard deviation compared to 2.8% with-
out logarithm. It can be concluded that the bias
produced by standard cross entropy is less stable
during training, which raises questions about the
overall reliability of its outcome.

In summary, the observations confirm our as-
sumptions that cross entropy without logarithm
captures annotator bias correctly in contrast to stan-
dard cross entropy. This carries the potential to
detect spammer annotators and leads to an overall
more stable training.

4.2 Ground Truth Estimation

In the following paragraphs, we demonstrate how
to estimate the ground truth based on the latent truth

from LTNet. This is then compared to two other
kinds of ground truth estimates. All of them can be
applied in a single label crowdsourcing setting.

The Dawid-Skene algorithm (Sinha et al., 2018)
is a common approach to calculate a ground truth
in crowdsourcing settings where there are multiple
annotations given on each sample. This method is,
for instance, comparable to majority voting, which
tends to give similar results for ground truth esti-
mation. However, in single label crowdsourcing
settings, these approaches are not feasible. Under
single label conditions, the Dawid-Skene ground
truth estimates equal to the single label annotations.

This is given by Sinha et al. (2018, formula 1)
in the expectation step, where the probability for
a class k ∈ 1, 2, ..., L given the annotations is de-
fined as

P (Yn = k|kn1 , kn2 , ..., knL) =(∏C
c=1 P (knc |Yn = k)

)
· P (Yn = k)∑L

k=1

(∏C
c=1 P (knc |Yn = k)

)
· P (Yn = k)

.

Here, n is the sample to be estimated,C the num-
ber of annotators for that sample, n1, n2, ..., nC
the set of annotators who labeled this sample,
kn1 , kn2 , ..., knC the set of annotation choices cho-
sen by these C participants for sample n, and Yn
the correct (or aggregated) label to be estimated for
the sample n (Sinha et al., 2018).

In the single label case C equals
to 1, which reduces the formula to
P (Yn = k|kn1 , kn2 , ..., knC ) = P (Yn = k|kn1).
This in turn equals to 1 if k is the assigned class
label to sample n by annotator n1, or 0 otherwise.
In other words, if there is only one annotation per
sample, this annotation defines the ground truth.
Since different annotators do not assign labels on
the same samples, there is also no way to model
mutual dependencies of each other.

LTNet, however, provides estimates for all vari-
ables from this formula. P (Yn = k) is the prior
and is approximated by the latent truth probability
for class k of sample n. P (knc |Yn = k) is the
probability that, assuming k would be the given
class, sample n is labeled as knc by annotator nc.
This equals to τ cknc ,k

, i.e., the entries of the LTNet
bias matrix T c of annotator c.

Eventually, the LTNet ground truth can be de-
rived by choosing k such that the probability
P (Yn = k|kn1 , ...) is maximized:



kground truth = arg max
k

P (Yn = k|kn1 , ...).

We will leverage this formula to derive and eval-
uate the ground truth generated by LTNet.

Experiment We calculate the LTNet ground
truth according to the previous formula on the
organic dataset, a singly labeled crowdsourcing
dataset, which is described in Section 4.3. To
demonstrate the feasibility and the soundness of
the approach, we compare it with two other ways
of deriving a ground truth. Firstly, we apply the
fast Dawid-Skene algorithm on the annotator-wise
class predictions from the LTNet model. Secondly,
we train a base network on all annotations while
ignoring which annotator annotated which samples.
Eventually, we compare the ground truth estimates
of all three methods by calculating Cohen’s kappa
coefficient (Cohen, 1960), which is a commonly
used standard to analyze correspondence of annota-
tions between two annotators or pseudo annotators.
The training procedures and the dataset are identi-
cal to the ones from the classification experiments
in Section 4.3.

Results As can be seen on Table 1, the three
ground truth estimators are all highly correlated
to each other, since the minimal Cohen’s kappa
score is 0.98. Apparently, there are only minor
differences in the ground truth estimates, if any at
all. Thus, it appears that the ground truths gener-
ated by the utilized methods are mostly identical.
Especially, the LTNet and Dawid-Skene ground
truths are highly correlated with a kappa of 99%.
The base model, which is completely unaware of
which annotator labeled which sample, is slightly
more distant with kappas between 98% – 99%. So
with respect to the ground truth itself, we do not
see a specific benefit of any method, since they are
almost identical.

However, it must be noted that LTNet addition-
ally produces correct bias matrices of every annota-
tor during model training, which is not the case for
the base model. Correct biases have the potential to
help improving model performance by analyzing
which annotators tend to be more problematic and
weighting them accordingly.

4.3 Classification
We conduct classification comparing LTNet in dif-
ferent configurations on three datasets with crowd-
sourced sentiment annotations to discuss the poten-

Dawid Basic
Ground truths Skene LTNet Model
Dawid Skene 1.0000 0.9905 0.9832
LTNet 0.9905 1.0000 0.9918
Base Model 0.9832 0.9918 1.0000

Table 1: Cohen’s kappa scores between three different
ground truth estimation methods applied on the singly
labeled crowdsourced organic dataset.

tial related benefits and drawbacks of our proposed
loss modification.

Emotion Dataset. The emotion dataset consists
of 100 headlines and their ratings for valence by
multiple paid Amazon Mechanical Turk annotators
(Snow et al., 2008). Each headline is annotated
by 10 annotators, and each annotated several but
not all headlines. We split the interval-based va-
lence annotations to positive, neutral, or negative.
Throughout our experiments, we used 70% of the
obtained data as training, 20% as validation and
10% as test sets.

Organic Food Dataset. With this paper, we
publish our dataset containing social media texts
discussing organic food related topics.
Source. The dataset was crawled in late 2017 from
Quora, a social question-and-answer website. To re-
trieve relevant articles from the platform, the search
terms ”organic”, ”organic food”, ”organic agricul-
ture”, and ”organic farming” are used. The texts
are deemed relevant by a domain expert if articles
and comments deal with organic food or agricul-
ture and discuss the characteristics, advantages, and
disadvantages of organic food production and con-
sumption. From the filtered data, 1,373 comments
are chosen and 10,439 sentences annotated.
Annotation Scheme. Each sentence has sentiment
(positive, negative, neutral) and entity, the senti-
ment target, annotated. We isolate sentiments ex-
pressed about organic against non-organic entities,
whereas for classification only singly labeled sam-
ples annotated as organic entity are considered.
Consumers discuss organic or non-organic prod-
ucts, farming practices, and companies.
Annotation Procedure. The data is annotated by
each of the 10 coders separately; it is divided into
10 batches of 1, 000 sentences for each annotator
and none of these batches shared any sentences
between each other. 4616 sentences contain or-
ganic entities with 39% neutral, 32% positive, and
29% negative sentiments. After annotation, the



Dataset Model F1 % Acc %

TripAdvisor
Base Model 88.92 88.91
LTNet w/o log 89.71 89.71
LTNet 89.39 89.39

Organic
Base Model 32.08 45.75
LTNet w/o log 44.71 50.54
LTNet 40.51 47.77

Emotion

Base Model 51.74 56.00
LTNet w/o log 58.15 63.00
LTNet 61.23 66.00
Base Model DS 44.17 54.00

Table 2: Macro F1 scores and accuracy measured in the
classification experiment.

data splits are 80% training, 10% validation, and
10% test set. The data distribution over sentiments,
entities, and attributes remains similar on all splits.

Experiment Description. The experiment is
conducted on the TripAdvisor, organic, and emo-
tion datasets introduced in section 4.3. We com-
pare the classification of the base network with
three different LTNet configurations. Two of them
are trained using cross entropy with and without
logarithm. For the emotion dataset, we compute
the bias matrices and the ground truth for the base
model using the fast Dawid-Skene algorithm (Sinha
et al., 2018). This is possible for the emotion
dataset, since each sample is annotated by several
annotators.

We apply pre-training for each dataset by train-
ing several base models with different hyperparam-
eters and pick the best based on accuracy. Even-
tually, we train the LTNet model on the crowd-
sourcing annotation targets by fine-tuning the best
base model together with the bias matrices for the
respective annotators. The bias matrices are ini-
tialized as row normalized identity matrices plus
uniform noise around 0.1. The models are trained
50 times with varying learning rates sampled from
between [1e−6, 1e−3]. A batch size of 64 is used.

Results. The classification results of the mod-
els are presented in table 2 with their macro F1
score and accuracy as derived via predictions on
the test sets. LTNet generally shows a significant
classification advantage over the base model. On
all three databases, LTNet approaches performed
better on the test datasets. The LTNet improvement
has a big delta of 11% + / − 1% when there is
a low annotation reliability (organic and emotion
datasets) and a small delta < 1% with high reli-
ability (TripAdvisor) 3. Apparently, model each

3Unreliable means that the provided annotations have a low

annotator separately gives significant advantages.
Regarding the comparison between cross en-

tropy (CE) loss with and without logarithm on LT-
Net, the removed logarithm shows better classifica-
tion results on organic (+3%) and TripAdvisor data
(+0.3%) and worse on the emotion dataset (−3%).
This means that on both of the singly labeled crowd-
sourcing datasets, the removal of the logarithm
from the loss function leads to better predictions
than the standard CE loss. On the multi-labeled
emotion dataset, however, this does not appear to
be beneficial. As this data has only a very small
test set of 100 samples, it is not clear if this result
is an artifact or not. Concluding, the log removal
appears to be beneficial on large datasets, where the
bias is correctly represented in the training and test
data splits, such that it can be modeled correctly by
the denoted approach. It shall be noted, that it is
not clear if that observation would hold generally.
We advice to run the same experiments multiple
times on many more datasets to substantiate this
finding.

5 Conclusion

We showed the efficacy of LTNet for modeling
crowdsourced data and the inherent bias accurately
and robustly. The bias matrices produced by our
modified LTNet improve such that they are more
similar to the actual bias between the latent truth
and ground truth. Moreover, the produced bias
shows high robustness under very noisy condi-
tions making the approach potentially usable out-
side of lab conditions. The latent truth, which
is a hidden layer below all annotator biases, can
be used for ground truth estimation in our sin-
gle label crowdsourcing scenario, providing al-
most identical ground truth estimates as pseudo
labeling. Classification on three crowdsourced
datasets show that LTNet approaches outperfom
naive approaches not considering each annotator
separately. The proposed log removal from the loss
function showed better results on singly labeled
crowdsourced datasets, but this observation needs
further experiments to be substantiated. Further-
more, there might be many use cases to explore the
approach on other tasks than sentiment analysis.

Cohen’s kappa inter-rater reliability on the organic 51.09%
and emotion (27.47%) dataset. On the organic dataset we
prepared a separate data partition of 300 sentences annotated
by all annotators for that purpose. For the TripAdvisor dataset,
it is apparent that the correspondence of annotations between
the two annotator groups (male and female) is high as can be
seen in figure 2 for cross entropy without logarithm.
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