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Abstract
Words are defined based on their mean-
ings in various ways in different resources.
Aligning word senses across monolin-
gual lexicographic resources increases do-
main coverage and enables integration
and incorporation of data. In this pa-
per, we explore the application of classi-
fication methods using manually-extracted
features along with representation learning
techniques in the task of word sense align-
ment and semantic relationship detection.
We demonstrate that the performance of
classification methods dramatically varies
based on the type of semantic relationships
due to the nature of the task but outper-
forms the previous experiments.

1 Introduction

Dictionaries are valuable resources which docu-
ment the life of words in a language from var-
ious points of view. Creating and maintaining
such resources for a constantly changing phe-
nomenon like human language requires much time
and effort. With the expansion of collaboratively-
curated resources such as Wiktionary, processing
lexicographical resources automatically and effi-
ciently is of high importance recently in computa-
tional lexicography, computational linguistics and
natural language processing (NLP).

Senses, or definitions, are important compo-
nents of dictionaries where dictionary entries,
i.e. lemmata, are described in plain language.
Therefore, unlike other properties such as refer-
ences, comparisons (cf.), synonyms and antonyms,
senses are unique in the sense that they are
more descriptive but also highly contextualized.
Moreover, unlike lemmata which remain identi-
cal through resources in the same language, except
in spelling variations, senses can undergo tremen-
dous changes based on the choice of the editor,

lexicographer and publication period, to mention
but a few factors. Therefore, the task of word
sense alignment (WSA) will facilitate the integra-
tion of various resources and the creation of inter-
linked language resources.

Considering the literature, various components
of the WSA task has been matters of research pre-
viously. However, a few of previous papers ad-
dress WSA as a specific task on its own. In this
paper, our focus is on providing explainable ob-
servations for the task of WSA using manually-
extracted features and analyze the performance of
traditional machine learning algorithms for word
sense alignment as a classification problem. De-
spite the increasing popularity of deep learning
methods in providing state-of-the-art results in
various NLP fields, we believe that evaluating the
performance of feature-engineered approaches is
an initial and essential step to reflect the difficul-
ties of the task and also, the expectations from the
future approaches.

2 Related Work

The alignment of lexical resources has been previ-
ously of interest both to create resources and pro-
pose alignment approaches. In this section, we
only focus on WSA techniques in the related lit-
erature.

Graph-based approaches have been widely used
for the WSA task. Matuschek and Gurevych
(2013) propose a graph-based approach, called
Dijkstra-WSA, for aligning lexical-semantic re-
sources, namely wordnet, OmegaWiki, Wik-
tionary and Wikipedia. In this approach, senses
are represented as the nodes of a graph where
the edges represent the semantic relation between
them. Assuming that monosemous lemmata have
a more specific meaning and therefore less am-
biguous to match, a semantic relation is created
among the senses of such lemmata when they ap-
pear in a sense of a polysemous lemma. Using



Dijkstra’s shortest path algorithm along with se-
mantic similarity scores and without requiring any
external data or corpora, a set of possible sense
matches are retrieved. In the same vein, Ahmadi et
al. (Ahmadi et al., 2019) model the alignment task
as a bipartite-graph where an optimal alignment
solution is selected among the combination of pos-
sible sense matches in two resources. Although
this algorithm performs competitively with the
Dijkstra-WSA technique on the same datasets, no
viable solution is provided regarding the tuning of
the matching algorithm. Similarly, other authors
(Nancy and Véronis, 1990; Pantel and Pennac-
chiotti, 2008; Meyer and Gurevych, 2010; Pile-
hvar and Navigli, 2014) focus on linking senses
without considering semantic relationships.

Beyond aligning lexical resources, there has
been much effort in inducing semantic relation-
ships, particularly within more generic fields such
as taxonomy extraction (Bordea et al., 2015),
hypernym discovery (Camacho-Collados et al.,
2018) and semantic textual similarity (Agirre et
al., 2016). Although in these tasks the focus
is on the relationship within words, there are a
few works exploring how to induce semantic re-
lationships between definitions. Heidenreich and
Williams (2019) introduce an algorithm using a di-
rected acyclic graph to construct a wordnet based
on the Wiktionary data and enriched with syn-
onym and antonym relationships. Using the se-
mantic relationship annotations provided in Wik-
tionary, the method induces a semantic hierarchy
by identifying a subset within each sense that can
relate two lemmas together. In addition to graph-
based methods, there are various other closely-
related fields, such as word sense disambiguation
(Maru et al., 2019) and sense embeddings (Ia-
cobacci et al., 2015), which can potentially con-
tribute to the task of WSA. However, we could
not find any previous work exploring those ap-
proaches.

One major limitation regarding previous work
is with respect to the nature of the data used for
the WSA task. Expert-made resources, such as
the Oxford English Dictionary, require much ef-
fort to create and therefore, are not as widely
available as collaboratively-curated ones like Wik-
tionary1 due to copyright restrictions. On the other
hand, the latter resources lack domain coverage
and descriptive senses. To address this, Ahmadi

1www.wiktionary.org

et al. (2020) present a set of 17 datasets con-
taining monolingual dictionaries in 15 languages,
annotated by language experts with five semantic
relationships according to the simple knowledge
organization system reference (SKOS) (Miles and
Bechhofer, 2009), namely, broader, narrower, re-
lated, exact and none. Our objective within this
project is to explore the alignment of these open-
source datasets using classification methods.

3 Problem Definition

Ignoring the differences in dictionary structures
and formats such as XML, LMF (Francopoulo
et al., 2006) and Ontolex-Lemon (McCrae et al.,
2017), there are different lexicographic and log-
ical ways for describing senses in a dictionary
(Solomonick, 1996). As an example, Table 3 pro-
vides the senses available for ENTIRE (adjective)
in various lexical resources where the predomi-
nant sense of “whole” or “complete” is provided
in all resources. However, all resources do not
equally cover specific domains such as botany and
mathematics. Therefore, there are differences in
the number of provided senses, e.g. one sense is
provided in MACMILLAN while the Oxford Dic-
tionary provides five.

We define our task of WSA and semantic induc-
tion as the detection of the semantic relationship
between a pair of senses in two monolingual re-
sources, as follows:

rel = sem(p, si, sj) (1)

where p is the part-of-speech of the lemma, si
and sj are senses belonging to the same lexemes in
two monolingual resources and rel is a semantic
relation, namely exact, broader, narrower, related
and none. Our goal is to predict a semantic rela-
tion, i.e. rel given a pair of senses. Therefore, we
define three classification problems based on the
relation:

• Binary classification which predicts if two
senses can possibly be aligned together. Oth-
erwise, none is selected as the target class.

• SKOS classification which predicts a label
among exact, broader, narrower and
related semantic relationships.

• SKOS+none classification which predicts a
label given all data instances. This is simi-
lar to the previous classifier, with none as a
target class.

www.wiktionary.org
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Figure 1: Our approach where features are extracted from word senses and external semantic resources

4 Approach

Assuming that the textual representation of senses
as in definitions can be useful to align them, we
define a few features which use the lengths of
senses along with their textual and semantic sim-
ilarities. In addition, we incorporate word-level
semantic relationships to determine the type of
relation that two senses may possibly have. To
this end, we use CONCEPTNET (Speer et al.,
2016), an openly-available and multilingual se-
mantic network with relational knowledge from
various other resources, such as Wiktionary and
WordNet (Miller, 1995). A similar approach has
been previously proposed for aligning bilingual
with monolingual dictionaries (Saurı́ et al., 2019).

4.1 Feature Extraction
In this step, we extract sense instances from the
MWSA datasets (Ahmadi et al., 2020), as t =
(p, si, sj , rij ). This instance is interpreted as sense
si has relation rij with sense sj . Therefore, the
order of appearance is important to correctly de-
termine the relationship. It should also be noted
that both senses belong to the same lemma with
the part-of-speech p. Table 2 provides the basic
statistics of the senses and their semantic relation-
ships in various languages. # Entries and # SKOS
refer to the number of entries and senses with a
relationship within SKOS. In addition, the senses
within the two resources which belong to the
same lemma but are not annotated with a SKOS
relationship, are included with a none relation-
ship.

Given the class imbalance where senses with
a none relationship are more frequent than the
others, we carry out a data augmentation tech-
nique based on the symmetric property of the se-
mantic relationships. By changing the order of
the senses, also known as relation direction, in
each data instance, a new instance can be cre-

ated by semantically reversing the relationship. In
other words, for each t = (p, si, sj , rij) there is a
t′ = (p, sj , si, r

′
ij) where r′ji is the inverse of rij .

Thus, exact and related as symmetric prop-
erties remain the same, however, the asymmetric
property of the broader and narrower rela-
tionships yields narrower and broader, re-
spectively.

Once the senses extracted, we create data in-
stances using the features in Table 1. Features 2
and 3 concern the length of senses and how they
are different. Intuitively speaking, this regards the
wordings used to describe two concepts and their
semantic relationship. In features 4 to 11, we cal-
culate this with and without function words, words
with little lexical meaning. One additional step is
to query CONCEPTNET to retrieve semantic rela-
tions between the content words in each sense pair.
For instance, the two words “gelded” and “cas-
trated” which appear in two different senses are
synonyms and therefore, the whole senses can be
possibly synonyms. In order to measure the relia-
bility of the relationships, we sum up the weights,
also known as assertions, of each relationship ac-
cording to CONCEPTNET. Finally, features 12 and
13 provide the semantic similarity of each sense
pair using word embeddings. For this purpose,
we used GloVe (Pennington et al., 2014) and fast-
Text2. The data instances are all standardized by
scaling each feature to the range of [0-1].

4.2 Feature Learning

Restricted Boltzmann machine (RBM) is a gen-
erative model representing a probability distribu-
tion given a set of observations (Fischer and Igel,
2012). An RBM is composed of two layers, a
visible one where the data instances according to
the manually-created features are provided, and
a latent one where a distribution is created by

2https://fasttext.cc/

https://fasttext.cc/


# feature definition possible values
1 POS tag part of speech of the headword a one-hot vector of {N, V, ADJ,

ADV, OTHER}
2 s len no func 1/2 number of space-separated tokens

in s1 and s2

N

3 s len 1/2 number of space-separated tokens
in s1 and s2 without function words

N

4 hypernymy hypernymy score between tokens sum of weights in CONCEPTNET

5 hyponymy hyponymy score between tokens sum of weights in CONCEPTNET

6 relatedness relatedness score between tokens sum of weights in CONCEPTNET

7 synonymy synonymy score between tokens sum of weights in CONCEPTNET

8 antonymy antonymy score between tokens sum of weights in CONCEPTNET

9 meronymy meronymy score between tokens sum of weights in CONCEPTNET

10 similarity similarity score between tokens sum of weights in CONCEPTNET

11 sem sim semantic similarity score between
senses using word embeddings

averaging word vectors and cosine
similarity [0-1]

12 sem sim no func semantic similarity score between
senses without function words

averaging word vectors and cosine
similarity excluding function words
[0-1]

13 sem bin rel target class 1 for alignable, otherwise 0
14 sem rel with none target class {exact, narrower,

broader, related, none}
15 sem rel target class {exact, narrower,

broader, related}

Table 1: Manually extracted features for semantic classification of sense relationships

the model by retrieving dependencies within vari-
ables. In other words, the relation of the features
in how the target classes are predicted is learned
in the training phase. We follow the description
of (Hinton, 2012) in implementing and using an
RBM for learning further features from our data
instances. Regarding the classification problem,
instead of training our models using the data in-
stances described in the previous section, we train
the models using the latent features of an RBM
model. These new features have binary values and
can be configured and tuned depending on the per-
formance of the models.

4.3 Classification Method

For this supervised classification problem, we use
support vector machines (SVMs) using various
hyper-parameters, as implemented in Scikit3 (Pe-
dregosa et al., 2011). After a preprocessing step,
where the datasets are shuffled, normalized and
scaled, we split them into train, test and validation
sets with 80%, 10% and 10% proportions, respec-
tively.

3https://scikit-learn.org

5 Experiments

Table 2 presents the best performance of the mod-
els trained for each language. In addition to an
SVM, we also evaluated the usage of an RBM
to learn features and classify them similarly us-
ing an SVM. Our baseline is based on the eval-
uation of Kernerman et al (2020) on the same
datasets. The baseline provides accuracy for clas-
sifying sense pairs with a semantic relationship
or none, i.e. SKOS+none, and precision, recall
and F1-measure for predicting whether two senses
should be matched, i.e. binary classification. In
the same vein, our evaluation is carried out using
accuracy, precision, recall and as defined in (Pow-
ers, 2011), but for all classification setups.

Despite the high accuracy of the baseline sys-
tems for most languages, they do not perform
equally efficiently for all languages in terms of
precision and recall. Although our classifiers out-
perform the baselines for all the relation predic-
tion tasks and perform competitively when trained
for the binary classification and also given all data
instances, there is a significant low performance
when it comes to the classification of SKOS re-
lationships. This can be explained by the lower
number of instances available for these relations.

https://scikit-learn.org


Language # Entries # SKOS # SKOS+none # All Metric Baseline Binary All SKOS RBM-Binary RBM-all RBM-SKOS

Basque 256 813 3661 4382

Accuracy 78.90 78.79 58.47 49.77 70.37 54.17 28.85
Precision 21.10 71.40 59.21 43.65 62.14 59.08 20.73
Recall 5.00 72.78 58.45 46.01 74.93 52.55 50.87
F-measure 8.10 72.08 58.83 44.80 67.94 55.62 29.46

Bulgarian 1000 1976 3708 5656

Accuracy 72.80 70.60 65.91 34.05 73.51 63.38 36.47
Precision 25.00 68.75 64.79 31.75 77.46 34.46 36.85
Recall 1.10 69.32 65.44 31.83 72.91 49.87 24.86
F-measure 2.00 69.03 65.11 31.79 75.11 40.76 29.69

Danish 587 1644 16520 18164

Accuracy 81.70 66.47 34.82 27.87 73.85 50.08 29.67
Precision 3.00 74.54 23.70 36.49 60.59 60.96 30.47
Recall 2.30 75.51 62.90 22.87 55.66 66.92 73.04
F-measure 4.30 75.02 34.43 28.12 58.02 63.80 43.00

Dutch 161 622 20144 20766

Accuracy 93.60 82.55 59.99 24.75 83.90 51.47 36.34
Precision 0.00 86.97 78.59 31.38 59.78 77.82 30.66
Recall 0.00 88.24 79.22 33.10 67.33 39.65 66.03
F-measure 0.00 87.60 78.90 32.22 63.33 52.54 41.88

English 684 1682 9269 10951

Accuracy 75.20 89.00 81.00 49.00 80.16 65.03 48.57
Precision 0.00 82.35 73.03 39.31 64.36 63.67 55.53
Recall 0.00 82.87 76.41 46.63 82.13 79.35 34.51
F-measure 0.00 82.61 74.68 42.66 72.17 70.65 42.57

Estonian 684 1142 2316 3426

Accuracy 48.20 78.98 58.92 46.11 75.96 62.75 47.82
Precision 54.50 76.06 68.83 40.81 63.53 60.67 36.63
Recall 9.30 20.76 57.82 44.02 28.18 49.35 22.44
F-measure 15.90 32.62 62.85 42.35 39.05 54.43 27.83

German 537 1211 4975 6185

Accuracy 77.77 73.14 61.99 49.58 77.97 43.23 44.21
Precision 0.00 77.72 64.74 41.89 80.44 66.34 40.99
Recall 0.00 54.41 59.95 43.73 22.88 27.92 48.99
F-measure 0.00 64.01 62.25 42.79 35.63 39.30 44.63

Hungarian 143 949 15774 16716

Accuracy 94.00 79.65 58.40 22.95 81.46 36.27 15.20
Precision 5.30 49.96 30.14 23.41 68.50 59.80 26.58
Recall 1.20 54.47 37.95 68.08 56.72 73.85 29.23
F-measure 2.00 52.12 33.60 34.85 62.05 66.09 27.84

Irish 680 975 2816 3763

Accuracy 58.30 75.00 55.75 26.27 79.61 60.84 24.75
Precision 68.00 84.42 46.58 31.84 79.03 42.52 30.25
Recall 18.50 84.46 39.85 46.15 52.47 54.65 25.40
F-measure 29.10 84.44 42.95 37.68 63.06 47.83 27.61

Italian 207 592 2173 2758

Accuracy 69.30 59.08 55.43 44.48 77.23 46.26 43.01
Precision 0.00 52.55 42.98 28.80 75.69 46.31 40.56
Recall 0.00 66.47 52.64 42.16 45.05 68.67 31.27
F-measure 0.00 58.69 47.32 34.22 56.49 55.32 35.32

Serbian 301 736 5808 6542

Accuracy 59.90 80.05 32.53 27.55 82.35 41.43 32.96
Precision 19.00 76.78 48.57 43.06 73.51 37.70 21.49
Recall 46.40 65.73 69.40 27.10 77.46 48.45 55.53
F-measure 26.90 70.83 57.15 33.26 75.43 42.40 30.99

Slovenian 152 244 1100 1343

Accuracy 44.20 84.29 36.13 26.13 78.93 39.57 31.63
Precision 17.30 73.08 23.19 46.98 78.62 38.59 20.97
Recall 58.70 83.22 45.07 28.61 41.64 28.09 33.02
F-measure 26.80 77.82 30.62 35.56 54.45 32.51 25.65

Spanish 351 1071 4898 5919

Accuracy - 73.79 54.67 30.28 80.71 54.38 58.48
Precision - 79.78 55.07 33.21 79.40 42.54 39.57
Recall - 80.37 53.15 40.04 60.18 20.68 38.59
F-measure - 80.07 54.10 36.31 68.47 27.83 39.07

Portuguese 147 275 2062 2337

Accuracy 92.10 71.31 66.62 51.71 73.14 55.69 42.87
Precision 8.30 49.29 58.23 53.52 77.72 69.41 40.45
Recall 2.40 37.47 70.41 53.47 54.41 22.32 38.15
F-measure 3.70 42.57 63.74 53.49 64.01 33.78 39.26

Russian 213 483 3376 3845

Accuracy 75.40 60.88 58.90 37.75 75.80 59.76 33.10
Precision 43.80 72.92 63.83 27.28 73.38 73.77 32.71
Recall 17.90 82.21 44.43 36.74 68.23 70.39 47.75
F-measure 25.50 77.29 52.39 31.31 70.71 72.04 38.82

Table 2: Basic statistics of the datasets and the best classification results with and without an RBM. #
refers to the number

Moreover, distinguishing certain types of relation-
ships, such as related versus exact, is a chal-
lenging task even for an expert annotator. For in-
stance, the relationship between two senses of EN-
TIRE in Table 3, “constituting the undiminished
entirety” and “complete in all parts; undivided;
undiminished; whole” is annotated as narrower
and exact by two different annotators 4.

Regarding the performance of RBM, we do not
observe a similar improvement in the results of

4According to the datasets available at https://
github.com/elexis-eu/MWSA

all classifiers. The precision of the models which
learn features with an RBM is higher in the ma-
jority of cases. Our optimal models where trained
with 50 iterations, a learning rate within [0.05-0.2]
and a hidden unit number within the range of 400
and 600.

6 Conclusion and Future Work

This paper presents a preliminary study on the
task of word sense alignment using monolingual
lexicographic datasets from 15 languages. The
task is modeled as a classification task where data

https://github.com/elexis-eu/MWSA
https://github.com/elexis-eu/MWSA


instances are extracted using various manually-
defined features. The classification task aims
at classifying sense matches across dictionaries
and also, prediction of the semantic relation-
ship between two given senses, namely narrower,
broader, exact and related. The results indicate a
better performance of the proposed approach with
respect to the baselines reported previously.

One major limitation of the current approach is
the usage of crafted features. We believe that as
a future work further techniques can be used, par-
ticularly thanks to the current advances in word
representations and neural networks. In addition,
incorporating knowledge bases and external lan-
guage resources such as corpora can be beneficial
in improving to address sense ambiguity for poly-
semous entries.
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Appendix

ENTIRE (adjective)

WORDNET5

- (of leaves or petals) having a smooth edge; not broken up into teeth or lobes
- constituting the full quantity or extent; complete
- constituting the undiminished entirety; lacking nothing essential especially not damaged
- (used of domestic animals) sexually competent

WEBSTER6

- complete in all parts; undivided; undiminished; whole; full and perfect; not deficient
- without mixture or alloy of anything; unqualified; morally whole; pure; faithful
- not gelded; – said of a horse
- internal; interior.

WIKTIONARY7

- (sometimes postpositive) Whole; complete.
- (botany) Having a smooth margin without any indentation.
- (botany) Consisting of a single piece, as a corolla.
- (complex analysis, of a complex function) Complex-differentiable on all of C.
- (of a male animal) Not gelded.
- morally whole; pure; sheer

MACMILLAN8 - used for emphasizing that you mean all or every part of something
LONGMAN9 - used when you want to emphasize that you mean all of a group, period of time, amount etc

Oxford10

[attributive] - with no part left out; whole.
- Without qualification or reservations; absolute.
- Not broken, damaged, or decayed.
- (of a male horse) not castrated.
- Botany (of a leaf) without indentations or division into leaflets.

Cambridge11 - whole or complete, with nothing lacking, or continuous, without interruption

Table 3: Senses of ENTIRE (adjective) in various monolingual English dictionaries
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