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Abstract

Back-translation (BT) has become one of the
de facto components in unsupervised neural
machine translation (UNMT), and it explicitly
makes UNMT have translation ability. How-
ever, all the pseudo bi-texts generated by BT
are treated equally as clean data during op-
timization without considering the quality di-
versity, leading to slow convergence and lim-
ited translation performance. To address this
problem, we propose a curriculum learning
method to gradually utilize pseudo bi-texts
based on their quality from multiple granu-
larities. Specifically, we first apply cross-
lingual word embedding to calculate the po-
tential translation difficulty (quality) for the
monolingual sentences. Then, the sentences
are fed into UNMT from easy to hard batch
by batch. Furthermore, considering the qual-
ity of sentences/tokens in a particular batch
are also diverse, we further adopt the model it-
self to calculate the fine-grained quality scores,
which are served as learning factors to balance
the contributions of different parts when com-
puting loss and encourage the UNMT model to
focus on pseudo data with higher quality. Ex-
perimental results on WMT 14 En↔Fr, WMT
16 En↔De, WMT 16 En↔Ro, and LDC
En↔Zh translation tasks demonstrate that the
proposed method achieves consistent improve-
ments with faster convergence speed.1

1 Introduction

Unsupervised neural machine translation (UNMT)
(Artetxe et al., 2018b; Lample et al., 2018a) has
made significant progress (Conneau and Lample,
2019; Song et al., 2019; Liu et al., 2020b; Tran
et al., 2020) in recent years. It consists of three
main components: the initialization of the cross-
lingual pre-trained language model (PLM), denois-
ing auto-encoder (AE) (Vincent et al., 2008), and
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1Our code is available in https://github.com/

JinliangLu96/CL_UNMT

I think sentence A is easier because 
I know the translations of most 

words in it.  

ID Pseudo Bi-text and Corresponding Difficulty Scores

A
Sentence 我们 尊重 所有 的 信仰 。

Token Difficulty 0.31 0.22 0.28 0.16 0.29 0.16
UNMT Translation We respect all the beliefs .

B
Sentence ( 小 标题 ) 武装 何去何从

Token Difficulty 0.30 0.25 0.48 0.30 0.36 1.0
UNMT Translation ( small text ) armed forces 何去何从

Figure 1: Difficulty scores in A are lower than B. And
its translation is credible, making pseudo bi-text A bet-
ter (red words in B are mis-translated or untranslated).

back-translation (BT) (Sennrich et al., 2016). BT
generates pseudo bi-texts for training and explicitly
enables its translation ability. However, pseudo
bi-texts are quite diverse in quality, and the low-
quality bi-texts are difficult to learn. Equally treat-
ing pseudo bi-texts as clean data would negatively
influence the convergence process and harm the
translation performance (Fadaee and Monz, 2018).

Recently, curriculum learning (CL) (Bengio
et al., 2009), which aims to help the model learn
from easy samples to the hard ones, has shown
its effectiveness in speeding up the convergence
and improving performance. Just as the name im-
plies, the critical point of CL is difficulty criteria.
Zhang et al. (2018) classify criteria in supervised
machine translation into linguistic-inspired criteria
(Kocmi and Bojar, 2017) and model-based criteria
(Zhang et al., 2017, 2019; Zhou et al., 2020; Xu
et al., 2020). Most of them are designed from the
perspective of the source side in the pure parallel
corpus. However, pseudo bi-texts produced by BT
with monolingual sentences in UNMT contain dif-
ferent levels of noise, and low-quality samples with
much noise would be difficult for the model to learn
appropriately (Guo et al., 2018; Zhang et al., 2020).
In this paper, we propose a CL method to gradu-
ally utilize pseudo bi-texts for UNMT from easy to
hard, helping the model concentrating on the data
with high quality from multiple granularities.

Intuitively, pseudo bi-text with high quality is

https://github.com/JinliangLu96/CL_UNMT
https://github.com/JinliangLu96/CL_UNMT
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more accessible and suitable for UNMT optimiza-
tion. Accordingly, we will measure the sample
difficulty with bi-text quality. First, we apply the
unsupervised cross-lingual word embedding (Lam-
ple et al., 2018b) to calculate the quality of bi-texts,
which is in turn used to measure the sample quality.
Then, samples will be fed into UNMT from easy to
hard batch by batch based on their difficulty. Fig-
ure 1 illustrates that it is reasonable to bridge the
bi-text quality and the sample difficulty.

However, the batch-based standard learning
procedure is coarse-grained, and the qualities of
pseudo bi-texts at sentence/word-level in a partic-
ular batch are also different, which should be ad-
dressed. To perform such fine-grained learning
from easy to difficult, we borrow the idea from self-
paced learning (Kumar et al., 2010), which is an
adapted CL algorithm. Specifically, we first adopt
the model to estimate the quality scores of pseudo
bi-texts. Then, the scores are served as learning
factors to balance the contributions of different
parts when computing the training loss, encourag-
ing the UNMT model to concentrate on the parts
with higher quality.

In general, the contributions of this paper can be
summarized as follows:

• We propose a multi-granularity CL method
to improve UNMT. To the best of our knowl-
edge, this is the first attempt to study the CL
framework for UNMT.

• Through utilizing the quality of pseudo bi-text
from multi-granularities, our method helps
UNMT concentrate on the easy-to-learn part
of data and optimize in the proper direction.

• Extensive experiments on WMT14 En↔Fr,
WMT16 En↔De, WMT16 En↔Ro, and LDC
En↔Zh translation tasks demonstrate that our
method consistently outperforms the strong
baselines with faster convergence speed.

2 Background of UNMT

The architecture of the current state-of-the-art
UNMT is the same as supervised NMT model,
except that the UNMT model simultaneously pro-
cesses both translation directions. The training
procedure comprises three main components: the
initialization of cross-lingual PLM, denoising auto-
encoder and back-translation.

Cross-lingual PLM is the auto-encoder that
aims to encode the source sentences and target

sentences into a shared embedding space. The
parameters are used to initialize the encoder and
decoder in UNMT model before training.

Denoising Auto-Encoder is one of the crucial
components for UNMT. It can improve the model
learning ability through reconstructing the original
sentences from the sentences with artificial noise,
such as random deletion, swapping, or blanking. It
is optimized by minimizing the following objective
function:

Lauto = Ex∼φl1 [− logPl1→l1(x|C(x))]

+ Ey∼φl2 [− logPl2→l2(y|C(y))]
(1)

where x and y indicate sentences sampled from
monolingual dataset φl1 and φl2 . l1 and l2 are the
two languages. C(·) is the artificial noise function.

Back Translation is another essential compo-
nent of UNMT, which explicitly ensure the model
to have translation ability. First, each batch of
monolingual sentences is translated into the other
language by UNMT model M . Then, M applies
the pseudo parallel sentences (Ml1→l2(x), x) and
(Ml2→l1(y), y) into training. The process is called
on-the-fly back translation. The objective function
is:

Lbt = Ex∼φl1 [− logPl2→l1(x|Ml1→l2(x))]

+ Ey∼φl2 [− logPl1→l2(y|Ml2→l1(y))]
(2)

In conclusion, the final loss during UNMT train-
ing can be written as follow:

L = Lauto + Lbt (3)

Even though strong UNMT models have been
proposed in recent years, such as XLM (Conneau
and Lample, 2019) and MASS (Song et al., 2019).
The uneven quality of pseudo bi-text is still harmful.
First, pseudo bi-texts are produced at each round.
The translation performance in the early stages is
pretty low and will affect the final results. Second,
equally treating pseudo bi-texts with uneven qual-
ity can bring deviation to the optimization, slowing
down the convergence speed and restricting trans-
lation performance.

3 Approach

In this section, we introduce the proposed CL
method for UNMT. As shown in Figure 2, our
method consists of two sub-modules that work at
different levels:
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Round n……

UNMT MODEL

Monolingual 
DATASET

Loss

The Quality of 
Bi-Text

Round 2Round 1

Finished？

Optimize
Weight

Batches from easy to hard

Back-Translation Steps

Batch Level
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Figure 2: Illustration of our method. Batch level CL is
shown below the black dash line, which controls the
dataloader to prepare batches based on sample diffi-
culty. Sentence/token level CL is illustrated above the
black dash line, applying UNMT model to estimate the
quality of pseudo bi-text and weight the training loss.

1) At batch level, we aim to optimize the dat-
aloader so as to load the samples for training
from easy to difficult batch by batch (§ 3.1);

2) At sentence/token level, we attempt to im-
prove the parameter optimization procedure
by using an adapted CL algorithm self-pace
learning (Kumar et al., 2010), which calcu-
lates fine-grained difficulty scores and encour-
ages the optimizer to pay more attention on
easy-to-learn sentences/tokens (§ 3.2).

3.1 Batch Level CL

In this section, we introduce the CL method which
controls the dataloader to load samples from easy to
hard at the batch level. First, we describe the cross-
lingual difficulty definition for the measurement
of training samples. Then, we explain the sample
loading schedule for UNMT.

3.1.1 Difficulty Criterion Definition
As mentioned above, difficulty criterion is essen-
tial for CL. Traditional criteria, such as sentence
length or word rarity, cannot reflect the practical
complexity of pseudo bi-text.

We first use cross-lingual similarity to calculate
the word-level bi-text quality, which is in turn used
to define the word-level difficulty. Then, we weight
the word-level difficulties by importance to get the
sentence-level difficulty.

Specifically, pre-trained monolingual word em-
bedding of language X and Y are first mapped

into the same latent space through MUSE (Lample
et al., 2018b) toolkit and cross-lingual embedding
matrices ZX ,ZY are obtained. Next, sentence
xi =

〈
xi1, x

i
2, · · · , xin

〉
is mapped into a sequence

of vectors xi =
[
xi1,x

i
2, · · · ,xin

]
through ZX .

Then, the difficulty of word xij can be calculated,
which is represented by the shortest distance from
it to the target language space ZY :

d(xij) = 1− max
zk∈ZY

cos(xij , zk) (4)

where zk indicates an arbitrary word embedding
in ZY . Considering the contribution of different
words, sentence-level difficulty calculation incorpo-
rates importance weighting (indicated by tfidf
score). Sentence length is further applied as the
penalty. To sum up, the formula can be written as:

d(xi) =

∑n
j=1 tfidf(xij) · d(xij)∑n

j=1 tfidf(xij)
· log(n) (5)

Finally, the difficulties are normalized to [0, 1]
by minmax normalization, employed during the
batch preparation.

3.1.2 Sample Loading Schedule
The second question in CL is how to design the
sample loading schedule, which determines how
complex samples the UNMT can accept at specific
steps. We follow the competence definition de-
signed by Platanios et al. (2019), which indicates
the capacity of the model:

c(t) = min(1, p

√
t

T
(1− cp0) + cp0) (6)

where c0 is the initial competence, p (set as 2 in
our experiments) is the coefficient to control the
curriculum schedule. At step t, sentences with
d(xi) ≤ c(t) become accessible to the model. And
T determines the step when all the sentences be-
come available for the model.

We compute UNMT competence at specific
steps for efficiency. At the beginning of the training
process, all the available samples (d(xi) ≤ c0) are
grouped into batches. Then, the batches are shuf-
fled and successively transported into the model.
When all of them are used up, the next phase will
start with the update of ct, sentence selection, and
the batch preparation. Through the learning sched-
ule, UNMT gradually receives the samples from
easy to hard batch by batch.
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3.2 Sentence/Token Level CL
While batch level CL controls dataloader to help
UNMT learn from easy samples to the hard ones
gradually, the qualities and difficulties of sentences
and words in a particular batch are also different.
However, such fine-grained operations are not suit-
able for the dataloader. To address this problem, we
apply the UNMT to estimate the quality of pseudo
bi-text at sentence/word level. Then, the quality
scores are employed to regulate training loss, help-
ing UNMT automatically focus on the words and
sentences with high quality.

3.2.1 Cross-lingual PLM based Pseudo
Bi-text Quality Estimation (CP)

Cross-lingual PLMs are proven to be effective on
reference-free evaluation in machine translation
(Qi, 2019; Yankovskaya et al., 2019; Kim et al.,
2019; Zhao et al., 2020; Takahashi et al., 2020). Ac-
tually, the encoder of UNMT, which is initialized
by the cross-lingual PLM, should also be able to
judge the quality of pseudo bi-texts. Furthermore,
since sentences/token level CL works on optimiza-
tion, we apply the model to calculate dynamic qual-
ity estimation related to the current learning state
instead of utilizing static scores.

Specifically, sentence xi =
〈
xi1, x

i
2, · · · , xin

〉
is sampled from the monolingual dataset, its
on-the-fly translation is ŷi =

〈
ŷi1, ŷ

i
2, · · · , ŷim

〉
.

We apply the encoder to obtain the hidden
states Hxi = [hxi1

,hxi2
, · · · ,hxin ] and Hŷi =

[hŷi1
,hŷi2

, · · · ,hŷim ]. Then, the hidden states are
employed to estimate the quality of pseudo bi-text.
Token-Level Translation Quality (TTQ): For to-
ken xij , we use the greedy matching strategy to
match it to the most similar token in ŷi. The corre-
sponding quality of xij is represented by the cosine
similarity, which can be formulated as:

w = max
v∈1,2,··· ,m

cos(hxij
,hyiv) (7)

α̂ij = wk (8)

where k is hyper-parameter for the quality gap
scaling. To stabilize the training process and main-
tain the same loss scale as the conventional model,
we normalize the quality scores by softmax:

αij =
exp(α̂ij)∑n
t=1 exp(α̂it)

(9)

Sentence-Level Translation Quality (STQ): We
take the average of the token hidden states as the

sentence-level features, written ashxi andhŷi . The
sentence-level quality can be calculated as:

u = cos(hxi ,hŷi) (10)

β̂i = uk (11)

Similarly, sentence-level quality scores are also
normalized by softmax:

βi =
exp(β̂i)∑M
t=1 exp(β̂t)

(12)

where M represents the batch size.

3.2.2 JS-Divergence based Confidence
Estimation (JS)

An alternative of CP is Two-Pass JS-divergence,
which can reflect the difference between token dis-
tributions. It can be formulated as

JS(p||q) =
1

2
KL(p||r) +

1

2
KL(q||r) (13)

where p and q represent the distributions of tokens
at each force-decoding step with different dropout,
and r = (p+ q)/2.

Token-Level JS Score αij is the JS score of j-th
token in sentence i during force-decoding.

Sentence-Level JS Score βi is represented by
the mean of token-level JS confidence in the i-th
sentence.

Both of αij and βi are multiplied by k power and
normalized by softmax.

3.2.3 Training Strategy
Higher score indicates better quality. So the cor-
responding tokens or sentences should contribute
more when computing loss, helping UNMT op-
timize in the reasonable direction. Therefore, we
apply the quality scores to regulate the training loss.
The loss of i-th sentence can be calculate as:

Li = −
∑n

j=1
αij logP (xij |ŷi, xi<j ;θ) (14)

And the total loss of mini-batch is:

L =
∑M

i=1
βiLi (15)

During the training, CP can be only employed
in BT steps, while JS can be employed not only in
BT steps but also AE steps because it actually mea-
sures the model confidence. In our experiments,
JS and CP are respectively applied in AE steps
and BT steps. Further analyses also compare the
performance of different estimation methods.
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4 Datasets and Experiment Settings

4.1 Datasets

Pre-training: For En-Fr, En-De, En-Ro, we down-
load pre-trained language models from XLM2 and
MASS3 toolkits. For En-Zh, we train a standard
XLM model from scratch. The monolingual data
consists of WMT 2008-2019 News Crawl dataset
(5M Chinese sentences in total and 5M English
sentences uniformly selected for equality).
UNMT: For En-Fr, En-De, En-Ro, we respectively
keep 2M (1M English, 1M the other language) sen-
tences for training from WMT News Crawl. For
En-Zh, we extract Chinese sentences from the first
half of the 2M parallel sentences in LDC, and En-
glish sentences from the other half. WMT newstest
2013/2014, newstest 2013/2016, newsdev/newstest
2016 and NIST03/NIST06 as validation/test sets
for En-Fr, En-De, En-Ro, and En-Zh, respectively.

4.2 Settings

CL Settings: For difficulty computation, MUSE4

is applied to map the monolingual word embed-
dings5 into the common space. c0 = 0.01 for
En-De, En-Ro and En-Zh, c0 = 0.1 for En-Fr. T is
approximately estimated by the step when UNMT
baseline reaches 90% BLEU (Papineni et al., 2002)
on the valid set.
UNMT Settings: During training, mini-batches
are limits to 2000 tokens and maximum sequence
length is 100 tokens. Adam with β1 = 0.9, β2 =
0.998, lr = 0.0001 is employed for optimization.
When decoding, we use beam size as 4 and length
penalty as 1.0 for each language pair. 4-gram
BLEU score computed by multi-bleu.perl6 script is
reported for comparison.

5 Experimental Results

5.1 Translation Quality

Table 1 shows the UNMT results on different trans-
lation tasks. XLM and MASS are the baseline
results 7. Our proposed method consistently out-

2https://github.com/facebookresearch/
XLM

3https://github.com/microsoft/MASS
4https://github.com/facebookresearch/

MUSE
5we download fasttext embeddings pretrained on wiki,

https://fasttext.cc/
6https://github.com/moses-smt/

mosesdecoder
7With the limitation of resources, the size of our training

datasets is less than 2% of the ones used in (Conneau and

performs the strong baselines, demonstrating the
effectiveness of our method. Furthermore, remov-
ing either batch-level CL or sentence/word-level
CL decreases the translation improvements on most
language pairs, indicating the two parts are com-
plementary.

Another interesting finding is that sentence/word
level CL is more effective on similar languages,
such as En-Fr, En-De, while single batch-level CL
is suitable for the distant language pair like En-Zh.
We assume that cross-lingual PLM on similar lan-
guages could provide hidden states with accurate
semantic information, precisely estimating the qual-
ity of pseudo bi-text. In contrast, distant languages
cannot fully take the advantage, while heuristic
difficulty criteria help more.

5.2 Convergence Speed

Most curriculum learning methods aim to accel-
erate convergence speed while improving perfor-
mance. We visualize the average loss of training
samples and the learning curve to compare the con-
vergence speed on WMT Ro→En newstest2016
in Figure 3. Both of the curves indicate that our
method achieves convergence at a higher speed.

The left part of Figure 3 shows the loss curves.
At the beginning of the training process, the av-
erage losses of different methods decrease with
different speeds. However, the loss curves of the
batch level CL and the baseline almost coincide at
the end. When adding sentence/word level CL, the
model achieves a lower loss than baseline, demon-
strating the rationality of our weighted learning
objective.

On the other hand, the learning curves, which
are represented by the BLEU on valid set, clearly
describe the efficiency of our method. As shown in
the right part of Figure 3, XLM baseline reaches
convergence at step 31k, while our approach
achieves the same performance at step 10k, indicat-
ing that our methods are 3.1 times faster.

The acceleration ratios for different languages
are recorded in Table 2. Our methods significantly
accelerate the training process. Considering the
time exhausted in the computation of quality es-
timation, we also calculate the time acceleration.
The records indicate that our methods can achieve
equivalent performance with less training time.

Lample, 2019). Therefore, the baseline results are a bit lower.

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
https://github.com/microsoft/MASS
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
https://fasttext.cc/
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
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Model En-Fr En-De En-Ro En-Zh
En→Fr Fr→En En→De De→En En→Ro Ro→En En→Zh Zh→En

XLM 35.89 33.58 26.21 32.51 33.48 30.97 12.97 26.42
+ Both Level 36.31 33.97 27.22 33.26 35.05 32.00 13.70 28.18

w/o s/t level 35.70 33.77 26.27 32.69 34.04 31.78 13.70 27.33
w/o batch level 35.91 33.90 27.01 33.21 34.72 31.58 13.30 27.04

MASS 34.97 32.98 26.93 32.20 34.32 31.58 - -
+ Both Level 35.36 33.40 27.53 32.62 34.86 32.27 - -

Table 1: BLEU scores of different UNMT methods for translations to and from English. Experiments on XLM
are listed above the double lines and experiments on MASS are listed below it. "s/t" means "sentence/token".
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Figure 3: Average loss on the training process (left) and learning curves on valid data set (right) of WMT En-Ro .
Our method achieves lower loss and higher BLEU score with faster convergence speed.

Language Direction Our method
Step Acc. Time Acc.

En→De 5.91x 4.86x
De→En 2.46x 1.95x
En→Ro 2.78x 2.15x
Ro→En 3.08x 2.41x

Table 2: Acceleration on steps and time upon WMT
En-De newstest2016 and WMT En-Ro newstest2016.
The acceleration is calculated by the ratio of the
steps(time) when the baseline model reaches conver-
gence to the steps(time) when our methods achieve
equivalent translation quality.

6 Analysis

6.1 Correlation Between the Difficulty and
Improvements

Even though our methods improve across all the
language pairs, it remains a question which part of
sentences contribute more to the performance. Fig-
ure 4 shows the BLEU improvements at different
difficulty intervals on WMT En→Ro newstest2016.
The difficulty is represented by the definition de-
scribed in section 3.1.1. We find that our approach
outperforms XLM baseline in different difficulty
intervals. The easiest sentences (<2%) have signif-
icant improvements, which owes to the emphasis
on the easy samples during training. In contrast,

hard sentences (>70%) have limited performance
gains.

<2%2%-10%
10%-25%

25%-45%

45%-70%

>70%

The Ratio of Samples Sorted by Difficulty

0
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2

3

4

5

Im
pr

ov
em

en
t o

n 
BL

EU

XLM + both level
XLM + batch level
XLM + s/t level

Figure 4: Improvements of BLEU at different difficulty
intervals on WMT En→Ro newstest2016.

Figure 5 shows the relationship between the im-
provement of sentence-level BERTScore (Zhang*
et al., 2020) and the difficulty distribution. The
larger points are sparsely distributed on the left
side, indicating that simple sentences achieve sig-
nificant improvements. And the minor points are
concentrated in the lower right corner, meaning
that complex sentences yield slight performance
improvement.

This finding is different from related works on
supervised NMT (Xu et al., 2020; Liu et al., 2020a),
which prove that curriculum learning is beneficial
for complex samples. We suspect the reason lies
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Method De→En ∆BLEU Ro→En ∆BLEU

XLM 32.51 - 30.97 -
+BTLength 32.21 -0.30 31.04 +0.07
+BTRarity 32.08 -0.43 30.95 -0.02
+BTOurs 32.69 +0.18 31.78 +0.81

Table 3: The comparison of different difficulty crite-
ria on WMT De→En newstest2016 and WMT En→Ro
newstest2016. ∆BLEU represents the performance in-
crease or decrease compared with XLM baseline.

in the particularity of our method, considering the
quality of bi-texts instead of the pure difficulty.
Therefore, we think our method helps the UNMT
model mainly strengthen its essential translation
ability.
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Figure 5: The relationship between difficulty distribu-
tion and improvements of BERTScore. The size of
points indicate corresponding improvements.

6.2 Comparison of Difficulty Criteria

To verify the effectiveness of our difficulty def-
inition, we compare it with traditional difficulty
criteria (such as length and rarity) on the single
batch level CL. As shown in Table 3, the proposed
definition achieves better performance than both
length and rarity. By contrast, traditional artificial
difficulties do not improve the UNMT translation
quality and may even cause damage.

We assume that traditional difficulty criteria are
not appropriate for UNMT because many noises
exist in pseudo bi-text during BT steps, which sig-
nificantly changes the distribution of sentence-level
difficulty. By comparison, our difficulty definition
considers word-level translation difficulties. Intu-
itively, words with lower difficulties can be trans-
lated at higher quality, producing pseudo bi-text
with fewer noises and easy to learn. Therefore, our
difficulty definition implicitly describes the influ-
ence of noise, making the learning schedule more
suitable for UNMT.

Method En→De En→Ro Speed
AENone + BTNone 26.21 33.48 3183 (1.00x)
AEJS + BTJS 26.28 33.72 2119 (0.67x)
AEVAR + BTVAR 26.51 33.38 1454 (0.46x)
AENone + BTCP 27.01 34.35 2961 (0.93x)
AEJS + BTCP 27.22 34.72 2475 (0.78x)

Table 4: The comparison of different estimation
methods on WMT En→De newstest2016 and WMT
Ro→En newstest2016. ST methods are listed below
the dash line. Average speed (tokens/s) is measured on
NVIDIA V100 and numbers in brackets is the fraction
compared with XLM baseline.

6.3 Comparison of Different Estimation
Methods

We also compare the effect of our quality estima-
tion approach with different confidence estimation
methods. This part of the experiments is conducted
without batch level CL for more evident results. Ta-
ble 4 shows that AEJS+BTCP yields the best results
among the methods, indicating the proposed esti-
mation method is more engaging for UNMT. On
the other hand, we find that single CP helps while
single JS almost does not affect. Uncertainty-based
model confidence AEVAR + BTVAR (VAR is the
abbreviation of variance)8, which is proven to be
helpful in supervised NMT (Wang et al., 2019; Wan
et al., 2020), achieves only limited performance im-
provements in UNMT. Besides, the computation of
VAR is time-consuming, slowing down the training
efficiency by 54% at each step.

BT step is of vital importance for the transla-
tion ability of UNMT, which can be described as a
rough imitation of NMT steps. Uncertainty-based
confidence estimation is practical when bi-texts are
pure. However, when the information provided by
the particular bi-text is not equal, great deviation
would be brought into the estimation of VAR or E.
By contrast, the quality of bi-text is much essential
under this circumstance. We think that is the reason
why CP yields higher translation performance.

6.4 STQ Versus TTQ

As we described in section 3.2.1, fine-grained qual-
ity scores are estimated on the sentence-level (STQ)
and the token-level (TTQ). We also compare their
influence on translation performance. As shown
in Table 5, both STQ and TTQ improve the trans-
lation quality on WMT newstest2016 En-De and

8Computing VAR for each token needs Q-Pass forward
computation with different dropout, Q is set as 5 in the experi-
ments.
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Method En-De En-Ro
en→de de→en en→ro ro→en

XLM 26.21 32.51 33.48 30.97
AEJS + BTCP 27.22 33.26 34.72 31.58

w/o BTSTQ 26.69 32.54 34.42 31.34
w/o BTTTQ 26.92 32.88 34.59 31.43

Table 5: Comparison of sentence-level (STQ) and
token-level (TTQ) quality estimation. STQ performs
better than TTQ.

WMT newstest2016 En-Ro. Interestingly, STQ out-
performs TTQ. We suspect that cross-lingual PLM
can estimate sentence-level quality more accurately
than the token-level. Intuitively, the combination
of STQ and TTQ achieves better results.

6.5 Effect of k

Fine-grained quality scores in the proposed method
are calculated by the k-th power of cosine similarity.
Therefore, we compare the translation performance
with different k. The results are shown in Figure
6. Histogram illustrates that UNMT yields the best
performance when k = 2. However, when k >
2, the translation quality slightly decreases. We
assume that appropriate k can help our approach
accurately reflect the translation quality, benefiting
the UNMT performance.

0.5 1.0 2.0 3.0 4.0 5.0
k

32.9

33.0

33.1

33.2

33.3

33.4

BL
EU

WMT14 De->En

0.5 1.0 2.0 3.0 4.0 5.0
k

26.8

27.0

27.2

27.4

BL
EU

WMT14 En->De

Figure 6: The effect of k on the performance upon
WMT En-De newstest2016.

7 Related Work

7.1 UNMT

Lample et al. (2018a) and Artetxe et al. (2018b) pro-
pose UNMT using monolingual corpus only, which
established on the progress of cross-lingual word
embedding projection (Artetxe et al., 2018a; Lam-
ple et al., 2018b). Recent years, UNMT rapidly
develops with the help of pre-trained language mod-
els. Conneau and Lample (2019) releases the first
cross-lingual PLM, named XLM, greatly improv-
ing the UNMT performance. Song et al. (2019),Liu
et al. (2020b), and Tran et al. (2020) designs differ-
ent seq2seq pre-training strategy, achieving state-
of-the-art UNMT performance.

Even though various models are proposed, the
key of UNMT is still the cross-lingual ability. Sun
et al. (2019) uses an agreement method to train
UNMT with bilingual word embedding agreement.
Ren et al. (2019) ameliorates the cross-lingual abil-
ity of BERT (Devlin et al., 2019) through predicting
n-gram translation of masked tokens, benefiting the
UNMT performance. Chronopoulou et al. (2020)
modifies the predefined vocabulary of XLM for
UNMT with limited monolingual corpus.

However, most of previous work focuses the
cross-lingual ability of word embedding or PLM
but ignores the efficiency of the training process in
UNMT.

7.2 Curriculum Learning in NMT

Curriculum learning (Bengio et al., 2009) is mo-
tivated by the learning strategy of biological or-
ganisms which orders the training samples in an
easy-to-hard manner (Elman, 1993). It has re-
cently shown its effectiveness on machine transla-
tion tasks by changing the order of training samples.
Kocmi and Bojar (2017) examine the effects of par-
ticular orderings of sentence pairs on the NMT
training in one epoch. Platanios et al. (2019) pro-
pose competence-based curriculum learning frame-
work, selecting samples at each step based on
the difficulty and competence. Liu et al. (2020a)
use the norm of word embedding to modify the
competence-based curriculum learning, improv-
ing the performance of supervised NMT. Zhou
et al. (2020) apply uncertainty into the difficulty
and competence design. Wan et al. (2020) adopt
self-paced learning (Kumar et al., 2010) for NMT,
replacing curriculum learning and yielding better
performance. Xu et al. (2020) propose dynamic cur-
riculum learning strategy for low-resource NMT.
However, curriculum learning for UNMT is still
unexploited and our work is the first attempt.

8 Conclusion

In this paper, we propose a multi-granularity CL
method to improve UNMT. Specifically, a novel
cross-lingual difficulty definition is first proposed
to help UNMT learn from easy samples to the hard
ones at batch level. Then, the qualities of pseudo
bi-text at sentence/word-level are estimated by the
model itself to regulate the loss function, automat-
ically helping UNMT optimize in the appropriate
direction. Empirical results show that our method
outperforms the strong baselines on different lan-
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guage pairs with faster convergence speed. Further
analyses confirm that our CL methods at different
levels are helpful and complementary with each
other, indicating the suitability for UNMT. In the
future, we will explore its ability on multilingual
machine translation and other cross-lingual genera-
tion tasks.

Acknowledgements

The research work described in this paper has been
supported by the Natural Science Foundation of
China under Grant No. U1836221.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre.

2018a. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798, Melbourne,
Australia. Association for Computational Linguis-
tics.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018b. Unsupervised neural ma-
chine translation. In International Conference on
Learning Representations.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML ’09, page
41–48, New York, NY, USA. Association for Com-
puting Machinery.

Alexandra Chronopoulou, Dario Stojanovski, and
Alexander Fraser. 2020. Reusing a Pretrained Lan-
guage Model on Languages with Limited Corpora
for Unsupervised NMT. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2703–2711, On-
line. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jeffrey L Elman. 1993. Learning and development in
neural networks: The importance of starting small.
Cognition, 48(1):71–99.

Marzieh Fadaee and Christof Monz. 2018. Back-
translation sampling by targeting difficult words in
neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 436–446, Brussels, Bel-
gium. Association for Computational Linguistics.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan
Zhuang, Dengke Dong, Matthew R Scott, and Din-
glong Huang. 2018. Curriculumnet: Weakly super-
vised learning from large-scale web images. In Pro-
ceedings of the European Conference on Computer
Vision (ECCV), pages 135–150.

Hyun Kim, Joon-Ho Lim, Hyun-Ki Kim, and Seung-
Hoon Na. 2019. QE BERT: Bilingual BERT using
multi-task learning for neural quality estimation. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day 2),
pages 85–89, Florence, Italy. Association for Com-
putational Linguistics.
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