
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 871–880
November 7–11, 2021. ©2021 Association for Computational Linguistics

871

What Does Your Smile Mean? Jointly Detecting Multi-Modal Sarcasm and
Sentiment Using Quantum Probability

Yaochen Liu1, Yazhou Zhang2,3∗, Qiuchi Li4, Benyou Wang5, Dawei Song1†

1Beijing Institute of Technology
2Zhengzhou University of Light Industry

3 State Key Lab. for Novel Software Technology, Nanjing University
4University of Copenhagen, 5University of Padua

{yaochen,dwsong}@bit.edu.cn, yzzhang@zzuli.edu.cn,
qiuchi.li@di.ku.dk, wang@dei.unipd.it

Abstract

Sarcasm and sentiment embody intrinsic un-
certainty of human cognition, making joint de-
tection of multi-modal sarcasm and sentiment
a challenging task. In view of the advantages
of quantum probability (QP) in modeling such
uncertainty, this paper explores the potential
of QP as a mathematical framework and pro-
poses a QP driven multi-task (QPM) learning
framework. The QPM framework involves a
complex-valued multi-modal representation en-
coder, a quantum-like fusion network and a
quantum measurement mechanism. Each multi-
modal (e.g., textual, visual) utterance is first
encoded as a quantum superposition of a set
of basis terms using a complex-valued repre-
sentation. Then, the quantum-like fusion net-
work leverages quantum state composition and
quantum interference to model the contextual
interaction between adjacent utterances and the
correlations across modalities respectively. Fi-
nally, quantum incompatible measurements are
performed on the multi-modal representation
of each utterance to yield the probabilistic out-
comes of sarcasm and sentiment recognition.
Experimental results show the state-of-the-art
performance of our model.

1 Introduction

Multi-modal sarcasm and sentiment analysis, as a
challenging problem, has attracted an increasing at-
tention in the recent literature (Cai et al., 2019; Pan
et al., 2020). Sarcasm is a subtle form of human
language that intends to express criticism, humor
or mock sentiments by means of hyperbole, figura-
tion, etc (Castro et al., 2019). The literal meaning
of an ironic expression differs from its real impli-
cation, which can completely flip the polarity of
sentiment. Hence, sentiment comes into view and
tightly couples with sarcasm in that one helps the
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understanding of the other. Consequently, jointly
detecting sarcasm and sentiment would bring bene-
fits to each other.

Judging sarcasm and sentiment of human lan-
guage, e.g., an utterance in a conversation, in-
volves intrinsically uncertain human cognition pro-
cesses (Carroll and Carroll, 1999). The uncertainty
is rooted on the spontaneity of human subjective
activities, where the generation of sarcasm and sen-
timent is often spontaneous and intuitive without
a rational reasoning process. Meanwhile, human
language is multi-modal in nature, involving multi-
modal (e.g., textual and visual) features that inter-
act with each other and introduce extra cognitive
complexity. Thus, it is essential to study sarcasm
and sentiment from a general cognitive perspective.

Motivated by recent success in using quantum
probability (QP) as a formal framework for mod-
eling the intrinsic uncertainty in human cognition,
we take the first step towards using QP to solve
the joint multi-modal sarcasm and sentiment analy-
sis problem. Originally as the mathematical foun-
dation of quantum mechanics that describes the
behaviors of particles, QP has been employed to
formalize the uncertainty in various macro-tasks
such as semantic analysis (Bruza et al., 2009; Up-
rety et al., 2020), question answering (Zhang et al.,
2018a; Li et al., 2019) and sentiment classifica-
tion (Zhang et al., 2020; Gkoumas et al., 2021),
with verified effectiveness and advantages. Differ-
ent from these existing approaches, at the heart of
our work are quantum inspired modeling of multi-
modal fusion in conversational context and explor-
ing the inter-task correlations via quantum incom-
patible measurement.

The reasons to use QP are four fold: (1) QP is
advantageous in modeling the uncertainty in hu-
man cognition because it introduces the concept of
complex probability amplitude, and models an ut-
terance as a quantum superposition of basis words
or pixels; (2) Quantum interference embodies a
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non-linear fusion of multi-modal features, due to
an interference term for modeling two decision
paths (e.g., textual and visual modalities) interfer-
ing with each other in reaching a final decision (e.g.
sarcasm judgment); (3) Quantum contextuality re-
flects the intra-modality contextual interaction as
quantum composition; (4) Quantum incompatible
measurement describes the correlations across mul-
tiple tasks. Since sarcasm and sentiment are tightly
coupled, we thus argue that they are incompati-
ble, i.e., judging one will affect the judgment of
the other. To sum up, we can intuitively discover
some commonality between QP and mutli-modal
sarcasm and sentiment analysis, and benefit from
the unified and principled mathematics of QP. A
detailed formal explanation is provided in Sec. 3.

In this paper, we propose a QP driven multi-
task (QPM) learning framework. Specially, QPM
involves a complex-valued multi-modal representa-
tion encoder, a quantum-like fusion network and a
quantum measurement mechanism. First, inspired
by (Li et al., 2019), each modality of utterance is
described as a quantum superposition of a set of
basis semantic units and represented by a complex-
valued embedding. Then, we propose a quantum-
like fusion network that leverages quantum state
composition and quantum interference to capture
intra-modal contextuality and inter-modal incon-
gruity. The contextuality is described as the contex-
tual interaction between adjacent utterances, which
is mathematically encapsulated in a density ma-
trix. The inter-modal incongruity is handled at the
feature level with a quantum interference-like fu-
sion approach. Finally, since all the information
contained in one system is represented by the proba-
bility distribution of quantum measurement results,
the final multi-modal features can be extracted via
quantum incompatible measurement, while these
features are passed to a fully connected layer to
yield sarcasm and sentiment predictions.

Extensive empirical results on two benchmark
datasets, MUStARD and Memotion, show that the
effectiveness of QPM over state-of-the-art base-
lines. The major innovations of the work are:

• The first QP driven multi-task learning frame-
work for joint multi-modal sarcasm and senti-
ment analysis.

• A quantum-like fusion network for mod-
elling intra-modality contextuality and inter-
modality incongruity.

• A quantum incompatible measurement ap-

proach capturing inter-task dependency.

2 Quantum Probability Preliminaries

Quantum Superposition and Density Matrix. The
mathematical base of quantum probability is estab-
lished on a complex Hilbert Space, denoted asH.
A quantum state vector u is expressed as a ket |u〉
, its transpose is expressed as a bra 〈u|. The inner
product and outer product of two state vectors |u〉
and |v〉 are denoted as 〈u|v〉 and |u〉〈v|. Quantum
superposition states that a pure quantum state can
be in multiple mutually exclusive basis states simul-
taneously, with a probability distribution until it is
measured. A quantum mixture of states gives rise
to a mixed state represented by a density matrix,
ρ =

∑
i pi |u〉 〈u|, where pi denotes the probability

distribution of each pure state.

Quantum Interference. In the double-slit exper-
iment, two paths interfering with each other affects
the probability distribution of the particle reaching
the final position of the detection screen. We use
the wave function ϕ(x) to interpret this behavior.
The wave function represents the probability ampli-
tude of a particle be at a position x, and the square
of the wave function represents the possibility. The
state of the photon is in a quantum superposition of
the state of path 1 and path2, which is formulated
as: ϕp(x) = αϕ1(x) + βϕ2(x), where ϕ1(x) and
ϕ2(x) are the wave function of path1 and path2. α
and β are complex numbers. Its probability is:

P (x) = |ϕp(x)|2 = |αϕ1(x) + βϕ2(x)|2

= |αϕ1(x)|2 + |βϕ2(x)|2 + 2|αβϕ1(x)ϕ2(x)| cosφ
(1)

where φ is the interference angle. I =
2|αϕ1(x)βϕ2(x)| cosφ is the interference term,
which describes the interaction between two paths.

Quantum Measurement. Quantum measure-
ment is described by a set of measurement opera-
tors acting on the state space of the system being
measured {Mm}, where m represents the possi-
ble measurement outcomes. Suppose the quantum
system is in a state of |u〉, then the probability to
obtain the outcome m after the measurement is
p (m) = 〈u|M †mMm|u〉. The Gleason’s Theorem
(Sordoni et al., 2013) has proven the existence of
a mapping function M (|u〉〈u|) = tr (ρ|u〉〈u|) for
any event |u〉〈u|.
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3 Theoretical Justification of the
Proposed QPM Framework

Based on the general QP and a few previous stud-
ies (Wang et al., 2019; Li et al., 2019), this sec-
tion proposes theoretical justification of our QPM
framework in the form of four claims.

Claim 1 Quantum probability is more general to
capture the uncertainty in human language.

Assume z (x) represents a complex probability
amplitude of an event x, where z (x) = reiθ. QP
defines the modulus square of this complex proba-
bility amplitude to represent a classical probability
p (x) = |z (x)|2 = r2. It defines a many-to-one re-
lationship between complex probability amplitude
and probability.

For example, the probability of a word w is 0.5,
i.e., p (x = w) = 1

2 , then the corresponding prob-

ability amplitude may be z (x = w) =
√
2
2 e

iπ
4 or

z (x = w) =
√
2
2 e

i 3π
5 , etc. The amplitude r links

to the probability, while the phase θ may be associ-
ated with hidden sentiment or sarcasm orientations.
The reasons are: (1) by using this formulation, two
antonym words could have similar amplitudes but
they may have different sentimental polarities rep-
resented in the phase term. (2) words often carry
multiple dimensions (e,g., semantic and sentiment)
of information. It is reasonable to use amplitude-
phase format to model the semantic and sentiment
jointly. Then, an utterance could be represented in
an amplitude-phase manner.

Claim 2 Quantum interference embodies a non-
linear multi-modal fusion.

Quantum interference describes a phenomenon
that two propagation paths (e.g., textual and visual
channels) interfering with each other affects the
probability distribution of a particle (e.g., the au-
thor’s attitude). Assume z (x) represents a complex
probability amplitude of the modality x, the proba-
bility amplitude of multi-modality that consists of
two modalities x1, x2 can be formalized as:

z3 (x3) = αz1 (x1) + βz2 (x2) (2)

where α and β are complex coefficients. The prob-
abilities of x1 and x2 are measured as:

p (x1) = |α|2 |z1 (x1)|2 , p (x2) = |β|2 |z2 (x2)|2 (3)

We can derive the probability of multi-modality:

p (x3) = |z3 (x3)|2 = |αz1 (x1) + βz2 (x2)|2

= p (x1) + p (x2) + 2
√
p (x1) p (x2)cosφ

= p (x1) + p (x2) +
√
p (x1) p (x2)

(
eiφ + e−iφ

)
(4)

Hence, the probability of multi-modality is a non-
linear combination of the probabilities of two uni-
modalities, with an interference term determined
by the relative phase φ. This provides a higher level
of abstraction (Jiang et al., 2020; Li et al., 2021).
Claim 3 Quantum composition captures the con-
textuality between utterances.

Quantum contextuality describes the results of
measurements on a particle depending on the mea-
surement environment. This intuitively reflects the
phenomena that the sarcastic and sentimental states
of an utterance are decided by its contexts.

Assume ui and uj represent two adjacent utter-
ances in a conversation, each of which is made up
of two basis words:

|ui〉 = α1|w1〉+ β1|w2〉, |uj〉 = α2|w1〉+ β2|w2〉 (5)

The contextual interaction between utterances
ui and uj constructs the state space of a composite
systemHui,uj , which is defined as a tensor product
of the individual state spaces |ui〉 and |uj〉:

Hui,uj = |ui〉 ⊗ |uj〉
= α1α2|w1w1〉+ α1β2|w1w2〉
+ β1α2|w2w1〉+ β1β2|w2w2〉

(6)

Eq. 6 shows that the composition system consisting
of utterances embodies the correlations between
words, which inspires us to model the contextuality
by a “global to local” way (Zhang et al., 2018b).
Claim 4 Quantum incompatible measurement de-
scribes the correlations across multi-tasks.

Given two sets of G measurement operators
for sarcasm and sentiment observables, M sar ={
M sar
γ

}G
γ=1

, M sen = {M sen
δ }

G
δ=1. If any cross-

task pair of measurement operators satisfy the com-
mutation rule1, i.e.,

[
M sar
γ ,M sen

δ

]
= 0 for all γ

and δ, then the sarcasm and sentiment observables
are called compatible, otherwise we say they are
incompatible (Designolle et al., 2019). Here, sar-
casm and sentiment are tightly intertwined and the
judgment on one may affect the other. Thus we
intuitively argue that they are incompatible, and
check whether our hypothesis is tenable in the ex-
periments (c.f. Sec. 5.8). We introduce quantum

1[Msar
γ ,Msen

δ

]
= Msar

γ Msen
δ −Msen

δ Msar
γ = 0
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relative entropy to quantitatively analyze the inter-
task correlation, and help measure specific degree
of correlation across different tasks.

4 Methodology

4.1 Task Definition and Overall Network

Task Definition. Suppose the dataset has L multi-
modal samples. The ξth sample Xξ is repre-
sented as

{
Xξ =

(
Ci, U ξ

)
, Y ξ

}
, where Ci, U ξ,

Y ξ denote the ith conversational context, the multi-
modal utterance and the label respectively, and
i ∈ [1, 2, ..., k], ξ ∈ [1, 2, ..., L]. Both the con-
text and the multi-modal utterance consist of tex-
tual and visual modalities, i.e., Ci =

(
Cit , C

i
v

)
,

U ξ =
(
U ξt , U

ξ
v

)
.

Now, the task of multi-modal sarcasm and senti-
ment detection can be formulated as:

ζ =
∏
i

p
(
Y ξ|Ci, Uξ,Θ

)
(7)

where Θ represents the parameter set.
Overall Network. The overall architecture of the

QPM framework is shown in Figure 1. (1) The ξth

textual utterance and its visual counterpart are rep-
resented by complex-valued embeddings, denoted
as |uξt 〉 and |uξv〉. (2) Then, |uξt 〉 and |uξv〉 are fed
into the quantum composition layer to capture the
contextuality, where the results are encapsulated in
two density matrices ρtext and ρimg. (3) We then
fuse ρtext and ρimg for obtaining a multi-modal rep-
resentation via the quantum interference layer. (4)
We extract the final sarcastic and sentimental fea-
tures via quantum incompatible measurement, and
feed these features into a fully connected softmax
layer to yield sarcasm and sentiment predictions.

4.2 Complex-valued Textual and Visual
Embedding

Inspired by Li and Wang’s work (Li et al., 2019),
for textual modality, an utterance can be seen as
a collection of words. We assume that the textual
Hilbert spaceHt is spanned by a set of orthogonal
basis states |{wjt 〉}nj=1. With words as the basic
semantic unit, the jth word wjt can be used as the
basis state |wjt 〉, represented by one-hot encoding,
i.e., the j-th element being 1 and 0s elsewhere.

Then, we regard the ξth target utterance uξt as
a quantum superposition of a set of basis words{
|w1
t 〉, |w2

t 〉, ..., |wnt 〉
}

, which is formulated as:

|uξt 〉 =

n∑
j=1

zjt |w
j
t 〉, zjt = rjt e

iθ
j
t (8)

where n is the number of words in the utterance.
zjt is a complex probability amplitude expressed in
the polar form. i is the imaginary number. rjt is the
modulus of the complex number, termed amplitude.
θjt ∈ [−π, π] is the argument (phase) of zjt .

We construct the complex-valued vector of the
ξth utterance, by associating the amplitude r with
the semantic knowledge and the phase θ with the
pre-assigned sentiment orientation, i.e., |uξt 〉 =(
r1t e

iθ1t , r2t e
iθ2t , ..., rnt e

iθnt

)T
.

For visual modality, the low-level visual features
are seen as the basic unit. We assume that the visual
Hilbert spaceHv is spanned by a set of orthogonal
basis visual features {|wjv〉}nj=1, where the visual

part of the target utterance is represented as |uξv〉.
The textual and visual embeddings of ith contex-

tual utterance, |cit〉 and |civ〉, can be calculated in
the same way.

4.3 Learning Intra-modality Contextuality
with the Quantum Composition Layer

Treating the target multimodal utterance as a quan-
tum system, its contexts as the surrounding environ-
ments, we propose a quantum composition layer to
learn the intra-modality contextuality.

For text, given that the target utterance |uξt 〉 and
its contexts

{
|c1t 〉 . . . |ckt 〉

}
, the contextual interac-

tion between them constructs a textual composite
system Ψξ,k

t , which is given by the tensor product
of individual utterance embeddings. We aim to
learn both long and short range contextual interac-
tions, by constructing multiple composite systems
with a variable number of contexts. The λth com-
posite system is computed as:

|Ψξ,λ
t 〉| = |u

ξ
t 〉 ⊗ |c

1
t 〉 ⊗ |c2t 〉⊗, ...,⊗|cλt 〉 (9)

where λ ∈ [1, k]. We can build k composite
systems for k context utterances, i.e., Ψt,k ={
|Ψξ,1

t 〉, |Ψ
ξ,2
t 〉, ..., |Ψ

ξ,k
t 〉
}

.

These k composite systems are mathematically
encapsulated in a textual density matrix ρtext, to
obtain the representation of the target utterance uξt .

ρtext =

k∑
λ=1

pλ|Ψξ,λ
t 〉〈Ψ

ξ,λ
t | (10)

where pλ represents the weights to be learned dur-
ing training. The density matrix unifies the target
utterance and its contexts.

For the visual part, we also build k composi-
tion system for k visual contexts, i.e., Ψv,k =
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Figure 1: The architecture of the QPM framework. ⊗ denotes the tensor product operation. ~ denotes an outer
production to a vector. � denotes point-wise multiplication. ⊕ refers to a element-wise addition. } is the matrix
multiplication. √© refers to the square operation. M© refers to the quantum measurement operation.

{
|Ψξ,1

v 〉, |Ψξ,2
v 〉, ..., |Ψξ,k

v 〉
}

, and obtain the visual
density matrix ρimg using Eq. 10.

Then, textual and visual density matrices ρtext
and ρimg are flattened into two vectors |ft〉 and |fv〉
for multi-modal fusion via quantum interference.

4.4 Quantum Interference-like Fusion Layer

Based on Eq. 2, 3 and 4, we argue that the
subjective attitude of a speaker is in a quantum
superposition-like of textual and visual representa-
tions, expressed as:

zp(x) = αzt(x) + βzv(x) (11)

where zt(x) and zv(x) represent the complex prob-
ability amplitudes of textual and visual repre-
sentations. ft(x) = |α|2|zt(x)|2 and fv(x) =
|β|2|zv(x)|2 represent the corresponding probabil-
ity distributions. The probability distribution of
multi-modal representation is then written as:

fp(x) = ft(x) + fv(x) + 2
√
ft(x)fv(x) cosφi (12)

where x is the xth feature component of
the multi-modal representation |fp〉. I =
2
√
ft(xi)fv(xi) cosφi is the interference item.

|fp〉 = (fp(x1), fp(x2), ..., fp(xn))T represent the
multi-modal fused features.

4.5 Quantum Measurement Layer

In QP, the properties of a system (e.g., an utter-
ance’s sarcastic information) can be depicted by
the probability distribution of the measurement
outcomes. The multi-modal representation |fp〉
is shared across the two branches of our proposed

QPM, and we propose to perform a sequence of
quantum incompatible measurements on |fp〉, for
obtaining the sarcastic and sentimental probabilis-
tic features ~msar and ~msen.

Specifically, two sets of measurement opera-
tors M sar =

{
M sar
γ

}G
γ=1

, M sen = {M sen
δ }

G
δ=1

are pre-defined, each constructed by the outer
product of the corresponding measurement vec-
tor |Eγ〉 or |Aδ〉, i.e., M sar

γ = |Eγ〉〈Eγ |, M sen
δ =

|Aδ〉〈Aδ|. The probability distribution over the
measurement outcomes can be computed as: ~ms =

tr
(

(M s)†M s|fp〉〈fp|
)

, where s ∈ {sar, sen}.

4.6 Dense Layer

The sarcastic and sentimental outcomes ~msar,
~msen are forwarded through a fully connected layer
and the softmax function to yield the sarcasm and
sentiment predictions. We use cross entropy with
L2 regularization as the loss functions ζsar and
ζsen, and jointly minimize them with different
weights, e.g., ζ = wsarζsar + wsenζsen. We re-
ceive gradients of error from two branches. and
accordingly adjust the weights.

5 Experiments and Analysis

5.1 Experiment Settings

Datasets. We choose benchmark datasets that have
textual and visual modalities with both sarcasm
and sentiment labels. Only the extended version
of MUStARD (MUStARDext for short)2 (Chauhan

2http://www.iitp.ac.in/ai-nlp-ml/resources.html
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Dataset Task Classes No. of Utter. RC(%)

Memotion

Sarcasm Sar. 5448 77.92
Non. 1544 22.08

Sentiment
Pos. 631 9.02
Neg. 4160 59.50
Neu. 2201 31.48

MUStARDext

Sarcasm Sar. 345 50.00
Non. 345 50.00

Sentiment
Pos. 210 30.43
Neg. 391 56.67
Neu. 89 12.90

Table 1: Dataset statistics.

Hyper-parameters MUStARDext Memotion
Embedding size 768
Activations Relu
Batch 48
Learning rate 0.001 0.003
No. of measurement 1000 800
dropout 0.6 0.5
Interference item cosφi -0.3 0.2
(α2, β2) (0.7,0.3) (0.8,0.2)

Table 2: Model configurations.

et al., 2020) and Memotion3 (Sharma et al., 2020)
datasets meet these criteria. MUStARDext: The ut-
terance in each dialogue is annotated with sarcastic
or non-sarcastic labels. As an extended version of
MUStARD, MUStARDext re-annotate sentiment
and emotion labels. Memotion: It consists of 6992
training samples and 1879 testing samples. Each
memo data has been labelled with semantic dimen-
sions, e.g., sentiment, sarcasm, humor, etc. Table 1
shows the detailed statistics for these two datasets.

Evaluation metrics. We adopt precision (P),
recall (R) and micro-F1 (Mi-F1) as evaluation met-
rics in our experiments. We also introduce a bal-
anced accuracy metric for an ablation test.

Hyper-parameter Setup. The textual and vi-
sual amplitudes are initialized with BERT and
ResNet152 respectively. The phases are initialized
with the pre-assigned sentiments using BERT. The
quantum measurements are randomly initialized
with an unit vector and is set to be trainable. The
optimal hyper-parameters are listed in Table 2.

5.2 Baselines

A wide range of state-of-the-art baselines are in-
cluded for comparison. They are:

SVM+BERT (Devlin et al., 2019): It represents
the textual utterances using BERT vectors and stan-
dard hyperparameter settings. We also concatenate
the contextual features.

RCNN-RoBERTa (Potamias et al., 2020): It uti-
lizes pre-trained RoBERTa vectors combined with

3https://competitions.codalab.org/competitions/20629

Dataset Method Sarcasm Detection
P R Mi-F1

MUStARDext

SVM+BERT 65.14 64.61 64.68
SVM+BERT (+context) 65.53 65.11 65.06
RCNN-RoBERTa 68.70 64.33 65.16
EfficientNet 63.58 64.19 63.77
UPB-MTL 65.12 65.41 65.41
QMSA 70.23 70.04 70.00
A-MTL 77.09 76.67 76.57
Text-QPM 72.07 72.34 72.12
Image-QPM 65.36 65.46 65.42
QPM 77.49 77.61 77.53
4SOTA (+0.5%) (+1.3%) (+1.3%)

Memotion

SVM+BERT 44.17 44.36 44.15
SVM+BERT (+context) 45.11 45.22 45.04
RCNN-RoBERTa 50.44 50.77 50.52
EfficientNet 50.59 50.81 50.75
UPB-MTL 51.38 51.71 51.59
QMSA 55.84 56.36 56.42
A-MTL 60.23 59.74 59.85
Text-QPM 51.29 51.05 51.12
Image-QPM 51.69 51.87 51.87
QPM 61.42 61.07 61.39
4SOTA (+2.0%) (+2.2%) (+2.1%)

Table 3: Comparison of different models.

a RCNN in order to capture contextual information.
EfficientNet (Tan and Le, 2019): It uses a com-

pound scaling method to create different models,
which has achieved state-of-the-art performance on
the ImageNet challenge.

UPB-MTL (Vlad et al., 2020): It is a multi-
modal multi-task learning architecture that com-
bines ALBERT for text encoding with VGG-16 for
image representation.

QMSA (Zhang et al., 2018c): It first extracts
visual and textual features using density matrices,
and feeds them into the SVM classifier.

A-MTL framework (Chauhan et al., 2020): It
proposes an attention based multi-task model to
simultaneously analyse sentiment, emotion and de-
tect sarcasm.

5.3 Comparative Analysis

The experimental results are summarized in Table 3.
Text-QPM and Image-QPM, which are single-
modality variants of QPM, do not perform well,
demonstrating that text or visual modalities can-
not be treated independently for multi-modal sar-
casm and sentiment detection. The proposed QPM
model achieves the best micro-F1 of 77.53% as
compared to 76.57% of the state-of-the-art system
(i.e., A-MTL) on MUStARDext. QPM achieves
a micro-F1 of 61.39% as compared to 59.85% of
A-MTL on Memotion. The results show that the
proposed QPM framework leverages the advan-
tages of QP in modeling the uncertainty in human
language. We attribute the main improvements to
both quantum-like fusion network and quantum
measurement mechanism, which ensures that QPM
can model intra-modality contextuality and inter-
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Task
Dataset Setups T V T+V

Mi-F1 Acc Mi-F1 Acc Mi-F1 Acc
Sarcasm

MUStARD
STL 62.51 62.48 64.00 64.00 66.37 66.21
MTL 72.12 72.04 65.42 65.34 77.53 77.50

Sentiment
MUStARD

STL 55.31 55.19 57.54 57.50 60.00 60.00
MTL 55.43 55.40 62.36 62.14 66.11 66.05

Sarcasm
Memotion

STL 50.47 50.50 51.62 51.62 52.11 52.03
MTL 51.12 51.07 51.87 52.04 61.39 61.45

Sentiment
Memotion

STL 37.54 37.60 37.33 37.42 39.23 39.14
MTL 42.10 41.22 41.26 41.26 42.67 42.70

Table 4: Comparison with single-task learning (STL)
and multi-task (MTL) learning frameworks. T: Text, V:
Visual, T+V: QPM

modality interference, and refine the final features.

5.4 STL v/s MTL Framework

We outline the comparison results between the
multi-task (MTL) and single-task (STL) learning
frameworks in Table 4. Bi-modal (T+V) shows a
better performance over unimodal setups.

For sarcasm detection, MTL outperforms STL
by a large margin in text modality and bi-modal.
The reason is that visual sarcasm detection involves
a higher level of abstraction and more subjectiv-
ity. For sentiment analysis, MTL with sarcasm
together achieves better performance than STL on
all modalities. This indicates that sarcasm assists
sentiment analysis through the sharing of knowl-
edge, and vice versa. Our QP-based MTL frame-
work could learn the inter-dependence between two
related tasks and improves performance.

5.5 Effect of Context Range

Since the Memotion dataset does not involve con-
texts, we only report results on MUStARDext in
Tables 5 with different context scopes. “Zero con-
text” means that we only use the target utterance,
ignoring its context. “One context” denotes that we
use one previous utterance to construct the density
matrix. “Two contexts” means the use of previous
two utterances as context.

The performance steadily increases as context
range increases (with F1 scores of 66.03%, 68.75%,
72.54% and 77.53%), showing the importance of
incorporating conversational context. QPM with
zero context unsurprisingly performs worst. QPM
with all contexts achieves the best F1 score, imply-
ing that incorporating all conversational contexts
would be the best way to reach an optimal perfor-
mance.

5.6 Ablation Study

We perform an ablation study to further study the
effectiveness of different components of QPM: (1)

Dataset Context range Metrics
Mi-F1 Acc

MUStARDext

Zero 66.03 66.03
One 68.75 68.67
Two 72.54 72.47
All 77.53 77.50

Table 5: Effect of context range.

Dataset Models Metrics
Mi-F1 Acc

MUStARDext

QPM-Real 70.03 70.01
QPM-Speaker Independent 66.22 66.09
QPM-Concat 66.13 66.04
QPM-Trad 62.31 62.18
QPM 77.53 77.50

Memotion
(No context)

QPM-Real 53.48 53.48
QPM-Concat 52.64 52.64
QPM-Trad 52.08 52.11
QPM 61.39 61.45

Table 6: Ablation experiment results.

QPM-Real that does not consider the complex em-
bedding, i,e., replacing utterance embeddings with
their real counterparts; (2) QPM-Speaker Indepen-
dent without modeling contextuality; (3) QPM-
Concat that repalces the quantum interference-like
fusion layer with multi-modal concatenation; (4)
QPM-Trad that replaces quantum incompatible
measurements with traditional softmax layers.

The results in Table 6 show that quantum incom-
patible measurement contributes the most to overall
performance, as it effectively captures the inter-
dependencies between tasks and extracts refined
features. It is followed by the quantum-interference
based fusion of multi-modalities and the modelling
of contextuality. The complex-valued represen-
tation, which captures the uncertainty in human
language, also plays an important role.

5.7 Error Analysis

We perform an error analysis and show a few mis-
classification cases (utterance+image), including
the cases that MTL predicts correctly while STL
fails, and that both setups fail to predict correctly.

From Table 7 and Figure 2, we notice that mis-
classification for STL often happens in the situation
where the literal meaning of an ironic expression
differs from its real sentiment. Through utilizing
the sentiment knowledge, MTL obtains a signif-
icant improvement. Moreover, we observe that
MTL might struggle in intricate cases requiring
external information.
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No. Utterances Sarcasm (T+V)
Actual STL MTL

1 Nice job Joe, you are quite the craftsman! S NS S
2 Ph.D. in electrical engineering made the world laugh without saying a word. S NS NS
3 Good idea, sit with her. Hold her, comfort her. And if the moment feels right, see if you can cop a feel. S NS S
4 Not a great movie, but look at that beautiful desert. NS S S
5 Those candy canes are making you fatter. NS S NS

Table 7: Few error cases where MTL framework performs better than the STL framework.

Figure 2: Wrongly classified visual samples.

(a) (b) (c) (d)

Figure 3: Visualization of the commutation relation (a:
MUStARD, b: Memotion) and quantum relative entropy
(c: MUStARD, d: Memotion).

5.8 Discussion on Inter-Task Incompatibility

For a more detailed exploration of the incompat-
ible measurement, we train 1000 and 800 pairs
of sentiment and sarcasm measurement operators
for MUStARD and Memotion respectively, and
calculate the commutation relation for each pair.
The results are visualized in Figure 3a and 3b. We
can notice a violation of the commutation law, i.e.,[
M sar
γ ,M sen

δ

]
6= 0 for all pairs, implying senti-

ment and sarcasm are incompatible. To further
validate this observation, we introduce quantum
relative entropy4, which is a kind of “distance”
measure between quantum states, the smaller quan-
tum relative entropy show the closer correlation
between sentiment and sarcasm operators. Aver-
age correlation and sample correlation scores are
presented in Table 8 and Figure 3c, 3d, showing
the two tasks are correlated. The result justifies the
need of incompatible measurement and explains its
effectiveness against traditional multi-task learning
setting in Table 6.

Furthermore, an analysis of data shows that 84%
of sarcasm samples in MUStARD express explicit
sentiments while the proportion in Memotion is
74%. In MUStARD 38% of ironic utterances are

4D(σ||ρ) = Trσlogσ − Trσlogρ. Here σ and ρ are two
measurement operators, Tr means the trace operation

Dataset Avg. Sample Correlation Scores
MUStARD 0.484 0.517 0.422 0.448 0.461 0.437 0.494
Memotion 0.461 0.471 0.487 0.677 0.576 0.403 0.401

Table 8: The correlation between sentiment and sar-
casm tasks.

also positive, and in Memotion it is 36%. These
results support our hypothesis that sarcasm and
sentiment are closely related.

6 Related Work

(a) Multi-Modal Sarcasm Detection. Schifanella
et al. (2016) studied the relationship between tex-
tual and visual posts from three major social plat-
forms. Cai et al. (2019) proposed a hierarchical
fusion model for multi-modal sarcasm detection.
Li et al. (2020) presented an approach based on
the state-of-the-art visiolinguistic model ViLBERT.
Similarly, Wang et al. (2020) proposed an image-
text model for sarcasm detection using the pre-
trained BERT and ResNet. Pan et al. (2020) pro-
posed a BERT-based model, which concentrated
on both intra and inter-modality incongruity.

(b) Multi-modal Sentiment Analysis. Most
recent multi-modal sentiment analysis work is per-
formed from a multi-modal deep learning perspec-
tive (Cambria et al., 2019; Kumar and Garg, 2019).
Zadeh et al. (2017) introduced a tensor fusion net-
work to fuse audio and visual features. Huang
et al. (2019) proposed a deep multi-modal atten-
tive fusion approach. Poria et al. (2019) created
the first multi-modal multi-party conversational
dataset, namely MELD. Furthermore, Firdaus et
al. (2020) and Yu et al. (2020) presented their
datasets, i.e., MEISD and CH-SIMS.

Remarkable progress has been made in the cur-
rent state-of-the-art. However, there is yet lack of
mechanisms to capture the inherent uncertainty in
multimodal human language for sarcasm and sen-
timent detection. Different from existing studies,
we tackle the problem from a general cognitive per-
spective with a quantum probabilistic framework.
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7 Conclusions

We have proposed a quantum probability driven
multi-task learning framework. The main idea is
to treat each utterance as a complex-valued vector.
The contextual interaction between utterances and
the correlations across modalities are modeled via
quantum composition and quantum interference.
Quantum incompatible measurement is performed
to yield the probabilistic outcomes. The experimen-
tal results verify the effectiveness of the QPM.
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