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Abstract

We report two essential improvements in read-
ability assessment: 1. three novel features in
advanced semantics and 2. the timely evidence
that traditional ML models (e.g. Random For-
est, using handcrafted features) can combine
with transformers (e.g. RoBERTa) to augment
model performance. First, we explore suitable
transformers and traditional ML models. Then,
we extract 255 handcrafted linguistic features
using self-developed extraction software. Fi-
nally, we assemble those to create several hy-
brid models, achieving state-of-the-art (SOTA)
accuracy on popular datasets in readability as-
sessment. The use of handcrafted features help
model performance on smaller datasets. Nota-
bly, our RoBERTA-RF-T1 hybrid achieves the
near-perfect classification accuracy of 99%,
a 20.3% increase from the previous SOTA.

1 Introduction

The long quest for advancing readability assess-
ment (RA) mostly centered on handcrafting the
linguistic features that affect readability (Pitler and
Nenkova, 2008). RA is a time-honored branch of
natural language processing (NLP) that quantifies
the difficulty with which a reader understands a text
(Feng et al., 2010). Being one of the oldest system-
atic approaches to linguistics (Collins-Thompson,
2014), RA developed various linguistic features.
These range from simple measures like the aver-
age count of syllables to those as sophisticated as
semantic complexity (Buchanan et al., 2001).

Perhaps due to the abundance of dependable lin-
guistic features, an overwhelming majority of RA
systems are Support Vector Machines (SVM) with
handcrafted features (Hansen et al., 2021). Such
traditional machine learning (ML) methods were
linguistically explainable, expandable, and most
importantly, competent against the modern neural
models. As a fragmentary example, Filighera et al.
(2019) reports that a large ensemble of 6 BiLSTMs

with BERT (Devlin et al., 2019), ELMo (Peters
et al., 2018), Word2Vec (Mikolov et al., 2013),
and GloVe (Pennington et al., 2014) embeddings
showed only ∼1% accuracy improvement from a
single SVM model developed by Xia et al. (2016).

Even though deep neural networks have achieved
state-of-the-art (SOTA) performance in almost all
semantic tasks where sufficient data were available
(Collobert et al., 2011; Zhang et al., 2015), neural
models started showing promising results in RA
only quite recently (Martinc et al., 2021). A known
challenge for the researchers in RA is the lack of
large public datasets – with the unique exception of
WeeBit (Vajjala and Meurers, 2012). Technically
speaking, even WeeBit is not entirely public since
it has to be directly obtained from the authors.

Martinc et al. (2021) raised the SOTA classi-
fication accuracy on the popular WeeBit dataset
(Vajjala and Meurers, 2012) by about 4% using
BERT. This was the first solid proof that neural
models with auto-generated features can show sig-
nificant improvement compared to traditional ML
with handcrafted features. However, neural models,
or transformers (which is the interest of this paper),
still show not much better performance than tradi-
tional ML on smaller datasets like OneStopEnglish
(Vajjala and Lučić, 2018), despite the complexity.

From our observations, the reported low perfor-
mances of transformers on small RA datasets can
be accounted for two reasons. 1. Only BERT was
applied to RA, and there could be other transform-
ers that perform better, even on small datasets. 2.
If a transformer shows weak performance on small
datasets, there must be some additional measures
done to supply the final model (e.g. ensemble) with
more linguistic information, but such a study is rare
in RA. Hence, we tackle the abovementioned issues
in this paper. In particular, we 1. perform a wide
search on transformers, traditional ML models, and
handcrafted features & 2. develop a hybrid archi-
tecture for SOTA and robustness on small datasets.
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However, before we move on to hybrid mod-
els, we begin by supplementing an underexplored
linguistic branch of handcrafted features. Accord-
ing to survey research on RA (Collins-Thompson,
2014), the study on advanced semantics is scarce.
We lack a model to capture how deeper semantic
structures affect readability. We attempt to solve
this issue by viewing a text as a collection of latent
topics and calculating the probability distribution.

Then, we move on to combine traditional ML
(w handcrafted features1) and transformers. Such
a hybrid system is only reported by Deutsch
et al. (2020), concluding, “(hybrid models) did not
achieve SOTA performance.” But we obtain con-
trary results. Through a large study on the optimal
combination, we obtain SOTA results on WeeBit
and OneStopEnglish. Also, our BERT-GB-T1 hy-
brid beats the (previous) SOTA accuracy with
only 30% of the full dataset, in section 4.7.

Our main objectives are creating advanced se-
mantic features and hybrid models. But our contri-
butions to academia are not limited to the above-
mentioned two. We make the following additions:
1. We numerically represent certain linguistic prop-
erties pertaining to advanced semantics.
2. We develop a large-scale, openly available 255
features extraction Python toolkit (which is highly
scarce2 in RA). We name the software LingFeat3.
3. We conduct wide searches and parametrizations
on transformers4 and traditional ML5 for RA use.
4. We develop hybrid models for SOTA and robu-
stness on small datasets. Notably, RoBERTa-RF-
T1 achieves 99% accuracy on OneStopEnglish,
20.3% higher than the previous SOTA (table 5).

2 Advanced Semantics

2.1 Definition, Background, and Overview

A text is a communication between author and
reader, and its readability is affected by the reader
having shared world/domain knowledge. Accord-
ing to Collins-Thompson (2014), the features re-
sulting from topic modeling may characterize the
deeper semantic structures of a text. These deeper
representations accumulate and appear to us in the
form of perceivable properties like sentiment and

1For simplicity, we use “handcrafted features” and “lin-
guistic features” interchangeably throughout this paper.

2A known exception is Dr. Vajjala’s Java toolkit, available
at bitbucket.org/nishkalavallabhi/complexity-features.

3github.com/brucewlee/lingfeat
4github.com/yjang43/pushingonreadability_transformers
5github.com/brucewlee/pushingonreadability_traditional_ML

genre. But advanced semantics aims to capture the
deeper representation itself.

Among the four branches of linguistic properties
(in RA) identified by Collins-Thompson (2014),
advanced semantics remain unexplored. Lexico-
semantic (Lu, 2011; Malvern and Richards, 2012),
syntactic (Heilman et al., 2007; Petersen and Os-
tendorf, 2009), and discourse-based (McNamara
et al., 2010) properties had several notable works
but little dealt with advanced semantics as the given
definition. The existing examples in higher-level
semantics focus on word-level complexity (Collins-
Thompson and Callan, 2004; Crossley et al., 2008;
Landauer et al., 2011; Nam et al., 2017).

Such a phenomenon is complex. The lack of in-
vestigation on advanced semantics could be due to
its low correlation with readability. This is plausi-
ble because RA studies often test their features on a
human-labeled dataset, potentially biased towards
easily recognizable surface-level features (Evans,
2006). Such biases could cause low performance.

Further, it must be noted that: 1. world knowl-
edge might not always directly indicate difficulty,
and 2. there can be other existing substitute features
that capture similar properties on a word level.

S1) Kindness is good.

S2) Christmas is good.

S3) I return with the stipulation to dismiss Smith’s
case; the same being duly executed by me.

S2 above seems to require more world knowl-
edge than S1. However, “Christmas”, as a familiar
entity, seems to have no apparent contribution to in-
creased difficulty. If any, similar properties can be
captured by word frequency/familiarity measures
(lexico-semantics) in a large representative corpus
(Leroy and Kauchak, 2013). Also, it seems that S3
is the most difficult, and this can be easily deduced
using entity counts (discourse). Entities mostly in-
troduce conceptual information (Feng et al., 2010).

Our key objective in studying advanced seman-
tics is to identify features that add orthogonal in-
formation. In other words, we hope to see a perfor-
mance increase in our overall RA model rather than
specific features’ high correlations with readability.

Given the considerations, we draw two guide-
lines: 1. develop passage-level features since most
word-level attributes are captured by existing fea-
tures, and 2. value the orthogonal addition of infor-
mation, not individual feature’s high correlation.
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Figure 1: Graphical representation. Semantic Richness,
Clarity, and Noise. abbrev: abbreviation.

2.2 Approach

Topics convey text meaning on a global level (Holt-
graves, 1999). In order to capture the deeper struc-
ture of meaning (advanced semantics), we hypothe-
sized that calculating the distribution of document-
topic probabilities from latent dirichlet allocation
(LDA) (Blei et al., 2003) could be helpful.

Moreover, domain/world knowledge can be ac-
counted for in LDA-resulting measures since LDA
can be trained on various data. As explored in Qum-
siyeh and Ng (2011), it may seem sensible to use
the count of discovered topics as the measure of
required knowledge. However, such measures can
be extremely sensitive to passage length. Along
with the count of discovered topics, we develop
three others that consider how these topics are dis-
tributed: semantic richness, clarity, and noise.

Fig. 1 depicts the steps: 1. obtain output from a
trained LDA model, 2. ignore topic ID and create a
sorted probabilities list, and 3. calculate semantic
richness, clarity, and noise. We model “how” the
topics are distributed, not “what” the topics are.

2.3 Semantic Richness

Traditionally, semantic richness is quantified ac-
cording to word usage (Pexman et al., 2008). In
a high-dimensional model of semantic space (Li
et al., 2000), co-occurring words clustered as se-
mantic neighbors, quantifying semantic richness.
As such, the previous models of semantic rich-
ness were often studied for word-level complexity
and made no explicit connection with readability
on a global level. Also, they were often subject-
dependent (Buchanan et al., 2001). As concluded

by Pexman et al. (2008), semantic richness is de-
fined in several ways. We propose a novel variation.

We apply the similar co-occurrence concept but
on the passage level using LDA. Here, semantic
richness is the measure of how “largely” populated
the topics are. In fig. 1, we approximately define
richness as the product total of SPL, which mea-
sures the count of discovered topics (n) and topic
probability (p). Additionally, we multiply index
(i) to reward longer n so that the overall richness
increases faster with more topics. See eqn. 1.

Semantic Richness =
n∑

i=1

pi · i (1)

2.4 Semantic Clarity

Semantic clarity is critical in understanding text
(Peabody and Schaefer, 2016). Likewise, complex
meaning structures lead to comprehension diffi-
culty (Pires et al., 2017). Some existing studies
quantify semantic complexity (or clarity) through
various measures, but most on the fine line between
lexical and semantic properties (Collins-Thompson,
2014). They rarely deal with the latent meaning
representations or the clarity of the main topic.

For semantic clarity, we quantify how the prob-
ability distribution (fig. 1) is focused (skewed) to-
wards the largest discovered topic. In other words,
we hope to see how easily identifiable the main
topic is. We wanted to adopt the standard skewness
equation from statistics, but we developed an alter-
native (eqn. 2) because the standard equation failed
to capture the anticipated trends in appendix A.

Semantic Clarity =
1

n
·

n∑
i=1

(max(p)− pi) (2)

2.5 Semantic Noise

Semantic noise is the measure of the less-important
topics (those with low probability), also the “tailed-
ness” of sorted probability lists (fig. 1). A sorted
probability list that resembles a (right-halved) lep-
tokurtic curve would have higher semantic noise.
In comparison, a (right-halved) platykurtic curve of
similar length would have low semantic noise. We
adopt the kurtosis equation under Fisher definition
(Kokoska and Zwillinger, 2000). See eqn. 3.

Semantic Noise = n ·
∑n

i=1(pi − p̄)4

(
∑n

i=1(pi − p̄)2)2
(3)
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3 Covered Features

We study 255 linguistic features. For the already
existing features, we add variations to widen cov-
erage. The full list of features, feature codes, and
definition are provided in appendix B. Also, we
classify features into 14 subgroups. External depe-
ndencies (e.g. parser) are reported in appendix D.

3.1 Advanced Semantic Features (AdSem)
Here, we follow the methods provided in section 2.

1∼3) Wikipedia (WoKF), WeeBit (WBKF),
& OneStop Knowledge Features (OSKF). Each
subgroup name represents the respective training
data. We train Online LDA (Hoffman et al., 2010)
with the 20210301 dump6 from English Wikipedia
for WoKF. The others are trained on two popular
corpora in RA: WeeBit and OneStopEnglish.

For each training set, four variations of 50, 100,
150, 200 topics models are trained. Four features –
semantic richness, clarity, noise, and the total count
of discovered topics – are extracted per model.

3.2 Discourse-Based Features (Disco)
A text is more than a series of random sentences. It
indicates a higher-level structure of dependencies.

4) Entity Density Features (EnDF). Concep-
tual information is often introduced by entities.
Hence, the count of entities affects the working
memory burden (Feng et al., 2009). We bring
entity-related features from Feng et al. (2010).

5) Entity Grid Features (EnGF) Coherent
texts are easy to comprehend. Thus, we measure
coherence through entity grid, using the 16 transi-
tion pattern ratios approach by Pitler and Nenkova
(2008) as features. Also, we adopt local coherence
scores (Guinaudeau and Strube, 2013), using the
code implemented by Palma and Atkinson (2018).

3.3 Syntactic Features (Synta)
Syntactic complexity is associated with longer pro-
cessing times (Gibson, 1998). Such syntactic prop-
erties also affect the overall complexity of a text
(Hale, 2016), an important indicator of readability.

6) Phrasal Features (PhrF). Ratios involving
clauses correlate with learners’ abilities to read (Lu,
2010). We implement several variations, including
the counts of noun, verb, and adverb phrases.

7) Tree Structure Features (TrSF). We deal
with the structural shape of parsed trees, inspired by
the work on average parse tree height by Schwarm

6dumps.wikimedia.org/enwiki

and Ostendorf (2005). On a constituency parser
(appendix D) output, NLTK (Loper and Bird, 2002)
is used for the final calculation of features.

8) Part-of-Speech Features (POSF). Several
studies report the effectiveness of using POS counts
as features (Tonelli et al., 2012; Lee and Lee,
2020a). We count based on Universal POS tags7.

3.4 Lexico-Semantic Features (LxSem)

Perhaps the most explored, lexico-semantics cap-
ture the attributes associated with the difficulty or
unfamiliarity of words (Collins-Thompson, 2014).

9) Variation Ratio Features (VarF) Lu (2011)
reports noun, verb, adjective, and adverb variations,
which represent the proportion of the respective cat-
egory’s words to total. We implement the features
with variants from Vajjala and Meurers (2012).

10) Type Token Ratio Features (TTRF). TTR
has been widely used as a measure of lexical rich-
ness in language acquisition studies (Malvern and
Richards, 2012). We bring five variations of TTR
from Vajjala and Meurers (2012). For MTLD (Mc-
Carthy and Jarvis, 2010), we default TTR to 0.72.

11) Psycholinguistic Features (PsyF) As ex-
plored in Vajjala and Meurers (2016), we imple-
ment various Age-of-Acquisition features from Ku-
perman study database Kuperman et al. (2012).

12) Word Familiarity Features (WorF) Word
frequency in a large representative corpus often rep-
resents lexical difficulty (Collins-Thompson, 2014)
due to unfamiliarity. We use SubtlexUS database
(Brysbaert and New, 2009) to measure familiarity.

3.5 Shallow Traditional Features (ShaTr)

Classic readability formulas (e.g. Flesch-Kincaid
Grade) (Kincaid et al., 1975) or shallow measures
often do not represent a specific linguistic branch.

13) Shallow Features (ShaF) These features
capture surface-level difficulty. Our measures in-
clude the average count of tokens and syllables.

14) Traditional Formulas (TraF). For Flesh-
Kincaid Grade Level, Automated Readability, and
Gunning Fog, we follow the “new” formulas in
Kincaid et al. (1975). We follow Si and Callan
(2001) for Smog Index (Mc Laughlin, 1969). And
we follow Eltorai et al. (2015) for Linsear Write.

7universaldependencies.org/u/pos
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Figure 2: Hybrid model. AdSem, Disco, LxSem, Synta, and ShaTr show handcrafted features’ linguistic branches.

4 Hybrid Model

4.1 Overview

As shown in section 3, myriad linguistic properties
affect readability. Despite the continual effort at
handcrafting features, they lack coverage. Deutsch
et al. (2020) hint neural models can better model
the linguistic properties for RA task. But the perfor-
mance/flexibility of neural models could improve.

In our hybrid model, we take a simple approach
of joining the soft label predictions of a neural
model (e.g. BERT) with handcrafted features and
wrapping it with a non-neural model (e.g. SVM).

In fig. 2, the non-neural model (i.e. secondary
predictor) learns 1. predictions/outputs of the neu-
ral model and 2. handcrafted features. The addition
of handcrafted features supplements what neural
models (i.e. initial predictor) might miss, reinforc-
ing performance on the secondary prediction.

4.2 In Pursuit of the Best Combination

Our hybrid architecture (fig. 2) is simple; Deutsch
et al. (2020) explored a similar concept but did
not achieve SOTA. But the benefits (section 4.1)
from its simplicity are critical for RA, which has a
lacking number/size of public datasets, wide edu-
cational use, and diverse handcrafted features. We
obtain SOTA with a wider search on combinations.

4.2.1 Datasets and Evaluation Setups
WeeBit. Perhaps the most widely-used, WeeBit is
often considered the gold standard in RA. It was
first created as an expansion of the famous Weekly
Reader corpus (Feng et al., 2009). To avoid classi-
fication bias, we downsample classes to equalize
the number of items (passages) in each class to 625.
It is common practice to downsample WeeBit.

Properties WeeBit OneStopEng Cambridge

Target Audience General L2 L2
Covered Age 7∼16 Adult A2∼C2 (CEFR)

Curriculum-Based? No No Yes
Class-Balanced? No Yes No

# of Classes 5 3 5
# of Items/Class 625 189 60
# of Tokens/Item 217 693 512

Accessibility Author Public Public

Table 1: Statistics for datasets.

OneStopEnglish. OneStopEnglish is an aligned
passage corpus developed for RA and simplifica-
tion studies. A passage is paraphrased into three
readability classes. OneStopEnglish is designed to
be a balanced dataset. No downsampling is needed.

Cambridge. Cambridge (Xia et al., 2016) cate-
gorizes articles based on Cambridge English Exam
levels (KET, PET, FCE, CAE, CPE). These five ex-
ams are targeted at learners at A2–C2 levels of the
Common European Framework of Reference (Xia
et al., 2016). We downsample to 60 items/class.

For evaluation, we calculate accuracy, weighted
F1 score, precision, recall, and quadratic weighted
kappa (QWK). The use of QWK is inspired by
Chen et al. (2016); Palma et al. (2019). We use strat-
ified k-fold (k=5, train=0.8, val=0.1, test=0.1) and
average the results for reliability. We use SciKit-
learn (Pedregosa et al., 2011) for metrics.

4.2.2 Search on Neural Model
Extending from the existing use of BERT on RA
(Deutsch et al., 2020; Martinc et al., 2021), we ex-
plore RoBERTa, (Liu et al., 2019), BART (Lewis
et al., 2020), and XLNet (Yang et al., 2019). We
use base models for all (details in appendix D).
For each of the four models (table 2), we perform
grid searches on WeeBit validation sets to identify
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Corpus BERT RoBERTa BART XLNet

WeeBit

Accuracy 0.893 0.900 0.889 0.881
F1 0.893 0.900 0.889 0.880
Precision 0.896 0.902 0.892 0.881
Recall 0.896 0.902 0.892 0.881
QWK 0.966 0.970 0.963 0.966

OneStopE

Accuracy 0.801 0.965 0.968 0.804
F1 0.793 0.965 0.968 0.794
Precision 0.815 0.968 0.970 0.810
Recall 0.814 0.968 0.970 0.810
QWK 0.840 0.942 0.952 0.845

Cambridge

Accuracy 0.573 0.680 0.620 0.573
F1 0.517 0.658 0.598 0.554
Precision 0.528 0.693 0.643 0.591
Recall 0.525 0.693 0.643 0.591
QWK 0.809 0.881 0.835 0.832

Table 2: Best performances, neural models.

the well-performing hyperparameters based on 5-
fold mean accuracy. Once identified, we used the
same configuration for all the other corpora and
performed no corpus-specific tweaking. We search
the learning rates of [1e-5, 2e-5, 4e-5, 1e-4] and
the batch sizes of [8, 16, 32]. The input sequence
lengths are all set at 512, and we used Adam op-
timizer. Last, we fine-tuned the model for three
epochs. Full hyperparameters are in appendix F.

In table 2, RoBERTa & BART beat BERT & XL-
Net on most metrics. Martinc et al. (2021) reports
that transformers are weak on parallel datasets (On-
eStopEnglish) due to their reliance on semantic
information. However, RoBERTa & BART show
great performances on OneStopEnglish as well.
Such a phenomenon likely derives from numer-
ous aspects of the architecture. We carefully posit
that the varying pretraining steps could be a reason.

BERT uses two objectives, masked language
model (MLM) and next sentence prediction (NSP).
The latter was included to capture the relation be-
tween sentences for natural language inference.
Thus, sentence/segment-level input is used. Like-
wise, XLNet adopts a similar idea, limiting input to
sentence/segment-level. But RoBERTa disproved
the efficiency of NSP, adopting document-level in-
puts. Similarly, BART, via random shuffling of
sentences and in-filling scheme, does not limit it-
self to a sentence/segment size input. As in section
3, “readability” is possibly a global-level represen-
tation (accumulated across the whole document).
Thus, the performance differences could stem from
the pretraining input size; sentence/segment-level
input likely loses the global-level information.

Corpus SVM RandomF XGBoost LogR

WeeBit

Accuracy 0.679 0.638 0.638 0.622
F1 0.672 0.626 0.627 0.615
Precision 0.696 0.645 0.656 0.676
Recall 0.679 0.638 0.638 0.622
QWK 0.716 0.703 0.692 0.640

OneStopE

Accuracy 0.737 0.709 0.719 0.778
F1 0.730 0.706 0.701 0.770
Precision 0.751 0.726 0.734 0.778
Recall 0.737 0.709 0.719 0.778
QWK 0.400 0.434 0.363 0.486

Cambridge

Accuracy 0.627 0.673 0.685 0.680
F1 0.613 0.663 0.681 0.657
Precision 0.660 0.696 0.701 0.694
Recall 0.627 0.673 0.674 0.680
QWK 0.857 0.880 0.852 0.855

Table 3: Best performances, non-neural models.

Subgr
Model

LogR SVM

EnDF 0.442 0.374
ShaF 0.404 0.409
TrSF 0.396 0.360
POSF 0.394 0.513
WorF 0.391 0.387
PsyF 0.378 0.437

WoKF 0.367 0.369

(a) WeeBit

Subgr
Model

LogR SVM

TraF 0.513 0.620
PsyF 0.437 0.696
PhrF 0.429 0.608
VarF 0.409 0.626
TrSF 0.391 0.614
WorF 0.387 0.637
OSKF 0.359 0.605

(b) OneStopEnglish

Subgr
Model

LogR SVM

TraF 0.640 0.593
WorF 0.613 0.593
ShaF 0.600 0.587
VarF 0.600 0.533
PsyF 0.593 0.620
POSF 0.553 0.407
WoKF 0.540 0.433

(c) Cambridge

Table 4: Top 7 Feature Subgroups.

4.2.3 Search on Non-Neural Model
We explored SVM, Random Forest (RandomF),
Gradient Boosting (XGBoost) (Chen and Guestrin,
2016), and Logistic Regression (LogR). With the
exception of XGBoost, the chosen models are fre-
quently used in RA but rarely go through adequate
hyperparameter optimization steps (Ma et al., 2012;
Yaneva et al., 2017; Mohammadi and Khasteh,
2020). We perform a randomized search to first
identify the sensible range of hyperparameters to
search. Then, we apply grid search to specify the
optimal values. The parameters are in appendix F.

In table 3, we report the performances of the
parameter-optimized models trained with all 255
handcrafted features. Compared to transformers,
these non-neural models show lower accuracy in
general. Even on the smallest Cambridge dataset,
non-neural models do not necessarily show higher
performances than transformers. But it is important
to note that they managed to show fairly good, “ex-
pectable” performances on a much smaller dataset.

4.2.4 Search on Handcrafted Features
We start by ranking performances of the feature
subgroups. In table 4, we report the top 7 (upper
half) by accuracy on WeeBit. The result is obtained
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Corpus

Model

Baselines, Previous Studies BERT RoBERTa BART XLNet

Xia-16 Fili-19 Mar-21 hybrid ∆ ∆ hybrid ∆ ∆ hybrid ∆ ∆ hybrid ∆ ∆

SVM LSTM BERT HAN GB-T1 BERT GB RF-T1 RBRT RF RF-T1 BART RF RF-P3 XLNet RF

WeeBit

Accuracy 0.803 0.813 0.857 0.752 0.895 0.002 0.257 0.902 0.002 0.264 0.905 0.016 0.267 0.892 0.011 0.254
F1 - - 0.866 0.753 0.895 0.002 0.268 0.902 0.002 0.276 0.905 0.016 0.279 0.892 0.012 0.266
Precision - - 0.857 0.752 0.897 0.001 0.241 0.903 0.001 0.258 0.905 0.013 0.260 0.893 0.012 0.248
Recall - - 0.858 0.752 0.897 0.001 0.259 0.903 0.001 0.265 0.904 0.012 0.266 0.892 0.011 0.254
QWK - - 0.953 0.886 0.969 0.001 0.277 0.971 0.001 0.268 0.968 0.005 0.265 0.966 0.000 0.263

OneStopE

Accuracy - - 0.674 0.787 0.982 0.181 0.263 0.990 0.025 0.281 0.971 0.003 0.262 0.848 0.044 0.139
F1 - - 0.740 0.798 0.982 0.189 0.281 0.995 0.030 0.289 0.971 0.003 0.265 0.848 0.050 0.142
Precision - - 0.674 0.787 0.983 0.168 0.249 0.995 0.027 0.269 0.972 0.002 0.246 0.852 0.042 0.126
Recall - - 0.677 0.789 0.982 0.168 0.263 0.996 0.028 0.287 0.971 0.001 0.262 0.848 0.038 0.139
QWK - - 0.708 0.825 0.973 0.133 0.610 0.996 0.054 0.562 0.952 0.000 0.518 0.855 0.010 0.369

Cambridge

Accuracy 0.786** - - - 0.687 0.114 0.002 0.763 0.083 0.090 0.727 0.107 0.054 0.687 0.114 0.014
F1 - - - - 0.682 0.165 0.001 0.752 0.094 0.089 0.727 0.129 0.064 0.676 0.122 0.013
Precision - - - - 0.732 0.204 0.031 0.792 0.099 0.096 0.760 0.117 0.064 0.710 0.119 0.014
Recall - - - - 0.687 0.162 0.013 0.753 0.060 0.080 0.727 0.084 0.054 0.687 0.096 0.014
QWK - - - - 0.873 0.064 0.021 0.919 0.038 0.039 0.889 0.054 0.009 0.888 0.056 0.008

** Xia-16 (Cambridge) uses semi-supervised learning (self-training) on a larger corpus to increase performance.

Table 5: Best performances, hybrid models.

Set Features LogR

T1 AdSem+Disco+Synta+LxSem+ShaTr 0.622

P3 ShaTr+EnDF+TrSF+POSF+WorF+PsyF+TraF+VarF 0.647

* Note: 5 letters (e.g. AdSem) mean linguistic branch. 4 letters
(e.g. PhrF) mean subgroup. We report accuracy on WeeBit.

Table 6: Best feature sets.

after training the respective model using the spec-
ified feature subgroup. Importantly, the advanced
semantic features show good performance in all
measures. WorF and PsyF, features calculated from
external databases, rank in the top 7 for all corpora,
hinting they are strong measures of readability.

Moving on, we constructed several types of fea-
ture combinations with varying aims. These incl-
ude: 1. T-type to thoroughly capture linguistic
properties and 2. P-type to collect features by per-
formance. We tested the variations on LogR and
SVM to determine the optimal. Two sets (table 6)
performed well. Appendix G reports all tested vari-
ations. We highlight that both advanced semantics
and discourse added distinct (orthogonal) informa-
tion, which was evidenced by performance change.

4.3 Assembling Hybrid Model

Based on the exploration so far, we assemble our
hybrid model. We perform a brute-force grid search
on four neural models (table 2), four non-neural
models (table 3), and 14 feature sets (table 24).

To interweave the model, we followed the steps
of 1: obtain soft labels (probabilities that a text
belongs to the respective readability class) from a

neural model by softmax layer, 2: append the soft
labels to handcrafted features (create a dataframe),
3. train non-neural model on the dataframe. As
in fig 2, the neural models performed a sort of re-
prediction to the data used for training to match the
dataframe dimensions in training and test stages.

Table 5 reports the best performing combination
per respective neural model. Under “hybrid” col-
umn are code names (e.g. GB-T1 under BERT =
XGBoost trained with handcrafted feature set T1
and BERT outputs). Under “∆” column, we report
differences with the respective single model per-
formance. We also include SOTA baseline results
Xia-16 → Xia et al. (2016), Fili-19 → Filighera
et al. (2019), Mar-21→Martinc et al. (2021).

4.4 Hybrid Model Results and Limitations

In table 5, our hybrid models achieve SOTA per-
formances on WeeBit (BART-RF-T1) and OneSt-
opEnglish (RoBERTa-RF-T1). With the exception
of Xia et al. (2016) which uses extra data to in-
crease accuracy, we also achieve SOTA on Cam-
bridge: 76.3% accuracy on a small dataset of only
60 items/class. Among the hybrids, RoBERTa-RF-
T1 showed consistently high performance on all
metrics. But all hybrid models beat previous SOTA
results by a large margin. Notably, we achieve the
near-perfect accuracy of 99% on OneStopEnglish,
a massive 20.3% increase from the previous SOTA
(Martinc et al., 2021) by HAN (Meng et al., 2020).

Both neural and non-neural models benefit from
the hybrid architecture. This is explicitly shown
in BERT-GB-T1 performance on OneStopEnglish,
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achieving 98.2% accuracy. This is an 18.1% in-
crease from BERT and a 26.3% increase from
XGBoost. However, BART did not benefit much
from the hybrid architecture on WeeBit and On-
eStopEnglish, meaning that hybrid architectures do
not augment model performance at all conditions.

Along similar lines, the hybrid architecture per-
formance on the larger WeeBit dataset showed only
a small improvement from the transformer-only
result. On the other hand, the hybrid architecture
performance on the smaller Cambridge dataset was
consistently better than the transformer-only per-
formance. The hybrid shows ∼10% improvement
in accuracy on average for Cambridge. On the
smallest dataset (Cambridge), the hybrid architec-
ture benefited more from a non-neural, handcrafted
features-based model like RF (Random Forest) and
GB (XGBoost). On the largest dataset (WeeBit),
the hybrid benefited more from a transformer.

Our explanation is that the handcrafted features
do not add much, at the data size of WeeBit. But the
handcrafted features could be a great help where
data is insufficient like they did for the Cambridge
dataset. OneStopEnglish, being the medium-sized
parallel dataset, could have hit the sweet spot for
the hybrid architecture. But it must be noted that
the data size is not the only determining factor as
to which model (neural or non-neural) the hybrid
architecture benefits more from. It must also be
questioned if the max performance (∵ label noise
induced by subjectivity) (Frénay et al., 2014) is
already achieved on WeeBit (Deutsch et al., 2020).

Also, it seems that the hybrid architecture ben-
efits when each model (neural and non-neural) al-
ready shows considerably good performance. This
is plausible as the neural model outputs are consid-
ered features for the non-neural model. Including
more “fairly” well-performing features only cre-
ates extra distractions. The hybrid architecture’s
limit is that it gets a model from “good” to “great,”
not “fair” to “good.” But determining the definition
of “fair” performance is a difficult feat as it likely
depends on the dataset and a researcher’s intuition
from the empirical experience of the model. Hence,
the hybrid architecture’s limit is that one must test
several combinations to pick the effective one.

4.5 Why Not Directly Append Features?

Regarding the model architecture, we examined
appending the handcrafted features to transformer
embeddings without the use of a secondary predic-

Figure 3: Performance Change, WeeBit Data Size

tor like SVM. But an existing example of Read-
Net (Meng et al., 2020) hints that such a model
is not robust to small datasets. ReadNet reports
52.8% accuracy on Cambridge, worse than any of
our tested models (table 2, 3, 5). Besides, Read-
Net claims to have achieved 91.7% accuracy on
WeeBit, without reports on downsampling. Many
studies, like Deutsch et al. (2020), report that the
model accuracy can increase∼4% on the full, class-
imbalanced WeeBit. Hence, ReadNet is not directly
comparable. We omitted ReadNet from table 5.

4.6 BERT vs BERT, Ours Was Better
Noticeable in table 2 and table 5 is that our BERT
implementation performed much better on WeeBit
than what was reported. The dataset preparation
methods and overall evaluation settings are the
same or very similar across ours (accuracy: 89.3%),
Deutsch et al. (2020)’s (accuracy: 83.9%), and Mar-
tinc et al. (2021)’s (accuracy: 85.7%). We believe
that the differences stem from the hyperparameters.

Notably, Deutsch et al. (2020) uses 128 input se-
quence length. This is ineffective as the downsam-
pled WeeBit has 2374 articles of over 128 tokens
but only 275 articles of over 512 tokens (which was
our input sequence length). Hence, we can reason-
ably think that much semantic information was lost
in Deutsch et al. (2020)’s implementation. Martinc
et al. (2021) uses 512 input sequence length but
lacks a report on other possibly critical hyperpa-
rameters, and we cannot compare in detail.

4.7 Data Size Effect
In table 5, our hybrid architecture generally did
not contribute much to the classification on WeeBit.
But we argue that it has much to do with data size.

To model how data size affects the accuracies of
1. hybrid model, 2. transformer, and 3. traditional
ML, we conducted an additional experiment using
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the same test data (10% of WeeBit) explained in
section 4.2.1. However, we random sampled the
train data (80% of WeeBit) into the smaller sizes of
from 50 to 750, with 50 passages increase each set.
We sampled with equal class weights, meaning that
a 250 passages train set has 50 from each readabil-
ity class. We trained BERT-GB-T1 (table 5) on the
sampled data and evaluated on the same test data
throughout. We also recorded BERT and XGBoost
(with T1 features) performances in fig. 3.

In fig. 3, the hybrid model performs consistently
better than transformer (+0.01 ∼ 0.05) at all sizes.
But the difference gap gets smaller as the train data
size increases. The hybrid model does help the
efficiency of learning RA linguistic properties.

Contrary to the conventional beliefs, the trans-
former (BERT) performed better than our ex-
pectations, even on smaller data sizes. BERT
always outperformed XGBoost. The traditional
ML performance was arguably more consistent but
never better than a transfomer’s.

BERT-GB-T1’s trend line seemed like the mix-
ture of GB-T1’s and BERT’s. Notably, BERT-GB-
T1 achieves 85.8% accuracy on WeeBit using only
750 passages, 30% of the original train data. For
comparison, 85.7% was the past SOTA (table 5).

5 Domain Overfitting and Cross Domain
Evaluation

99% accuracy on OneStopEnglish (table 5) shows
that our model is capable of almost perfectly captur-
ing the linguistic properties relating to readability
on certain datasets. This is a positive and abnor-
mally quick improvement, considering that the re-
ported RA accuracies have never exceeded 90% on
popular datasets (Vajjala and Meurers, 2012; Xu
et al., 2015; Xia et al., 2016; Vajjala and Lučić,
2018) until 2021. Since the reported in-domain
accuracies in RA had much room for improvement,
we were not at the stage to be seriously concerned
about cross-domain evaluation (Štajner and Nisioi,
2018) in this paper.

It would be very favorable to run an extra cross-
domain evaluation (which we believe to be a next-
level topic). But realistically, performing a cross-
domain evaluation requires a thorough study on at
least two datasets, which is potentially out of scope
in this research. The readability classes/levels are
labeled by a few human experts, making the stan-
dards vary among datasets. To make two datasets
suitable for cross-domain evaluation, much effort

is needed to connect the two, such as the class
mapping used in Xia et al. (2016). However, it
should be noted for future researchers that the no-
tion of domain overfitting is indeed a common prob-
lem faced in RA, which often uses one dataset for
train/test/validation. Without a new methodology
to connect several datasets or a new large public
dataset for RA, it will forever be challenging to de-
velop a RA model for general use (Vajjala, 2021).

6 Conclusion

We have reported the four contributions mentioned
in section 1. We checked that the new advanced
semantic features add orthogonal information to the
model. Further, we created hybrid models (table
5) that achieved SOTA results. RoBERTA-RF-T1
achieved 99% accuracy on OneStopEnglish, and
BERT-GB-T1 beat the previous SOTA on WeeBit
using only 30% of the original train data.

6.1 As a Gentle Reminder
To the general NLP community, the most promi-
nent characteristic of our proposed method might
be that we utilize handcrafted features and tradi-
tional ML models, which are often considered “out-
dated.” Interestingly, these outdated methods main-
tained SOTA in RA until Martinc et al. (2021) uti-
lized BERT (as already discussed).

The findings we report are not limited to the
technical innovations that achieved the new SOTA.
Rather, we want to stress that: 1. there are still
many areas in NLP that insist on traditional method-
ologies, which potentially hinders the improvement
in model accuracy, 2. but we must also take time to
look back on these outdated methods and their lin-
guistic values. If we achieved anything meaningful
through this research, it was possible because we
realized the abovementioned two situations.
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A Trend, Advanced Semantic Features

Sorted Probability List R. out C. out N. out
9, 0.5, 0.5 Low 115 High 56.7 H-M 30.0
6, 2, 1, 0.5, 0.3, 0.2 L-M 177 H-M 43.3 High 48.1
4, 4, 1, 1 Mid 190 L-M 15.0 L-M 18.5
4, 2, 1, 1, 0.6, 0.4 H-M 204 Mid 25.0 Mid 35.3
2.5, 1.5, 1.5, 1.5, 1.5, 1.5 High 325 Low 8.34 Low 13.3

Table 7: Trends. Richness, Clarity, Noise. All numbers
×10 for conciseness. L-M: Low-Mid. H-M: High-Mid.

In table 7, we name each list as 1 ∼ 5 from top to
bottom. “out” refers to raw output from equations.
See what the sorted probabilities list is in fig. 1.

Semantic Richness. List 4 and list 5 have the
same lengths. However, list 5 contains more mean-
ingful topics (↑ p) throughout the list, resulting
in higher overall semantic richness. As such, se-
mantic richness rewards long probability lists (↑ n)
with more meaningful (↑ p) topics. Similarly, list 3
(↓ n,↑ p) has higher richness than list 2 (↑ n,↓ p).

Semantic Clarity. List 3 and list 4 have the
same max(p) and two other same elements (1).
However, the second element in list 3 is the same
as the first element, resulting in increased difficulty
in identifying the main topic (max(p)). Likewise,
semantic clarity rewards the deviation between the
max(p) and the other elements & short probability
lists (↓ n). Hence, list 1 has the highest clarity.

Semantic Noise. List 2 and list 4 have the same
lengths of 6 elements. However, list 2 contains
more extraneous topics (↓ p), resulting in higher
semantic noise. As such, semantic noise rewards
longer lists (↑ n) with more extraneous elements
(↓ p). As a result, list 5 has the least semantic noise.

B Features, Codes, and Definitions

idx Code Definition
1 WRich05_S Richness, 50 topics extracted from Wikipedia Dump
2 WClar05_S Clarity, 50 topics extracted from Wikipedia Dump
3 WNois05_S Noise, 50 topics extracted from Wikipedia Dump
4 WTopc05_S # of topics, 50 topics extracted from Wikipedia Dump
5 WRich10_S Richness, 100 topics extracted from Wikipedia Dump
6 WClar10_S Clarity, 100 topics extracted from Wikipedia Dump
7 WNois10_S Noise, 100 topics extracted from Wikipedia Dump
8 WTopc10_S # of topics, 100 topics extracted from Wikipedia Dump
9 WRich15_S Richness, 150 topics extracted from Wikipedia Dump
10 WClar15_S Clarity, 150 topics extracted from Wikipedia Dump
11 WNois15_S Noise, 150 topics extracted from Wikipedia Dump
12 WTopc15_S # of topics, 150 topics extracted from Wikipedia Dump
13 WRich20_S Richness, 200 topics extracted from Wikipedia Dump
14 WClar20_S Clarity, 200 topics extracted from Wikipedia Dump
15 WNois20_S Noise, 200 topics extracted from Wikipedia Dump
16 WTopc20_S # of topics, 200 topics extracted from Wikipedia Dump

Table 8: Wikipedia Knowledge Features (WoKF).

idx Code Definition
17 BRich05_S Richness, 50 topics extracted from WeeBit Corpus
18 BClar05_S Clarity, 50 topics extracted from WeeBit Corpus
19 BNois05_S Noise, 50 topics extracted from WeeBit Corpus
20 BTopc05_S # of topics, 50 topics extracted from WeeBit Corpus
21 BRich10_S Richness, 100 topics extracted from WeeBit Corpus
22 BClar10_S Clarity, 100 topics extracted from WeeBit Corpus
23 BNois10_S Noise, 100 topics extracted from WeeBit Corpus
24 BTopc10_S # of topics, 100 topics extracted from WeeBit Corpus
25 BRich15_S Richness, 150 topics extracted from WeeBit Corpus
26 BClar15_S Clarity, 150 topics extracted from WeeBit Corpus
27 BNois15_S Noise, 150 topics extracted from WeeBit Corpus
28 BTopc15_S # of topics, 150 topics extracted from WeeBit Corpus
29 BRich20_S Richness, 200 topics extracted from WeeBit Corpus
30 BClar20_S Clarity, 200 topics extracted from WeeBit Corpus
31 BNois20_S Noise, 200 topics extracted from WeeBit Corpus
32 BTopc20_S # of topics, 200 topics extracted from WeeBit Corpus

Table 9: WeeBit Knowledge Features (WBKF).

idx Code Definition
33 ORich05_S Richness, 50 topics extracted from OneStop Corpus
34 OClar05_S Clarity, 50 topics extracted from OneStop Corpus
35 ONois05_S Noise, 50 topics extracted from OneStop Corpus
36 OTopc05_S # of topics, 50 topics extracted from OneStop Corpus
37 ORich10_S Richness, 100 topics extracted from OneStop Corpus
38 OClar10_S Clarity, 100 topics extracted from OneStop Corpus
39 ONois10_S Noise, 100 topics extracted from OneStop Corpus
40 OTopc10_S # of topics, 100 topics extracted from OneStop Corpus
41 ORich15_S Richness, 150 topics extracted from OneStop Corpus
42 OClar15_S Clarity, 150 topics extracted from OneStop Corpus
43 ONois15_S Noise, 150 topics extracted from OneStop Corpus
44 OTopc15_S # of topics, 150 topics extracted from OneStop Corpus
45 ORich20_S Richness, 200 topics extracted from OneStop Corpus
46 OClar20_S Clarity, 200 topics extracted from OneStop Corpus
47 ONois20_S Noise, 200 topics extracted from OneStop Corpus
48 OTopc20_S # of topics, 200 topics extracted from OneStop Corpus

Table 10: OneStop Knowledge Features (OSKF).

idx Code Definition
49 to_EntiM_C total number of Entities Mentions
50 as_EntiM_C average number of Entities Mentions per sentence
51 at_EntiM_C average number of Entities Mentions per token (word)
52 to_UEnti_C total number of unique Entities
53 as_UEnti_C average number of unique Entities per sentence
54 at_UEnti_C average number of unique Entities per token (word)

Table 11: Entity Density Features (EnDF).

idx Code Definition
55 ra_SSToT_C ratio of SS transitions : total, count from Entity Grid
56 ra_SOToT_C ratio of SO transitions : total, count from Entity Grid
57 ra_SXToT_C ratio of SX transitions : total, count from Entity Grid
58 ra_SNToT_C ratio of SN transitions : total, count from Entity Grid
59 ra_OSToT_C ratio of OS transitions : total, count from Entity Grid
60 ra_OOToT_C ratio of OO transitions : total, count from Entity Grid
61 ra_OXToT_C ratio of OX transitions : total, count from Entity Grid
62 ra_ONToT_C ratio of ON transitions : total, count from Entity Grid
63 ra_XSToT_C ratio of XS transitions : total, count from Entity Grid
64 ra_XOToT_C ratio of XO transitions : total, count from Entity Grid
65 ra_XXToT_C ratio of XX transitions : total, count from Entity Grid
66 ra_XNToT_C ratio of XN transitions : total, count from Entity Grid
67 ra_NSToT_C ratio of NS transitions : total, count from Entity Grid
68 ra_NOToT_C ratio of NO transitions : total, count from Entity Grid
69 ra_NXToT_C ratio of NX transitions : total, count from Entity Grid
70 ra_NNToT_C ratio of NN transitions : total, count from Entity Grid

Table 12: Entity Grid Features (EnDF) Part 1.
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idx Code Definition
71 LoCohPA_S Local Coherence for PA score from Entity Grid
72 LoCohPW_S Local Coherence for PW score from Entity Grid
73 LoCohPU_S Local Coherence for PU score from Entity Grid
74 LoCoDPA_S Local Coherence dist. for PA score from Entity Grid
75 LoCoDPW_S Local Coherence dist. for PW score from Entity Grid
76 LoCoDPU_S Local Coherence dist. for PU score from Entity Grid

Table 13: Entity Grid Features (EnDF) Part 2.

idx Code Definition
77 to_NoPhr_C total count of Noun phrases
78 as_NoPhr_C average count of Noun phrases per sentence
79 at_NoPhr_C average count of Noun phrases per token
80 ra_NoVeP_C ratio of Noun phrases : Verb phrases count
81 ra_NoSuP_C ratio of Noun phrases : Subordinate clauses count
82 ra_NoPrP_C ratio of Noun phrases : Prep phrases count
83 ra_NoAjP_C ratio of Noun phrases : Adj phrases count
84 ra_NoAvP_C ratio of Noun phrases : Adv phrases count
85 to_VePhr_C total count of Verb phrases
86 as_VePhr_C average count of Verb phrases per sentence
87 at_VePhr_C average count of Verb phrases per token
88 ra_VeNoP_C ratio of Verb phrases : Noun phrases count
89 ra_VeSuP_C ratio of Verb phrases : Subordinate clauses count
90 ra_VePrP_C ratio of Verb phrases : Prep phrases count
91 ra_VeAjP_C ratio of Verb phrases : Adj phrases count
92 ra_VeAvP_C ratio of Verb phrases : Adv phrases count
93 to_SuPhr_C total count of Subordinate clauses
94 as_SuPhr_C average count of Subordinate clauses per sentence
95 at_SuPhr_C average count of Subordinate clauses per token
96 ra_SuNoP_C ratio of Subordinate clauses : Noun phrases count
97 ra_SuVeP_C ratio of Subordinate clauses : Verb phrases count
98 ra_SuPrP_C ratio of Subordinate clauses : Prep phrases count
99 ra_SuAjP_C ratio of Subordinate clauses : Adj phrases count
100 ra_SuAvP_C ratio of Subordinate clauses : Adv phrases count
101 to_PrPhr_C total count of prepositional phrases
102 as_PrPhr_C average count of prepositional phrases per sentence
103 at_PrPhr_C average count of prepositional phrases per token
104 ra_PrNoP_C ratio of Prep phrases : Noun phrases count
105 ra_PrVeP_C ratio of Prep phrases : Verb phrases count
106 ra_PrSuP_C ratio of Prep phrases : Subordinate clauses count
107 ra_PrAjP_C ratio of Prep phrases : Adj phrases count
108 ra_PrAvP_C ratio of Prep phrases : Adv phrases count
109 to_AjPhr_C total count of Adjective phrases
110 as_AjPhr_C average count of Adjective phrases per sentence
111 at_AjPhr_C average count of Adjective phrases per token
112 ra_AjNoP_C ratio of Adj phrases : Noun phrases count
113 ra_AjVeP_C ratio of Adj phrases : Verb phrases count
114 ra_AjSuP_C ratio of Adj phrases : Subordinate clauses count
115 ra_AjPrP_C ratio of Adj phrases : Prep phrases count
116 ra_AjAvP_C ratio of Adj phrases : Adv phrases count
117 to_AvPhr_C total count of Adverb phrases
118 as_AvPhr_C average count of Adverb phrases per sentence
119 at_AvPhr_C average count of Adverb phrases per token
120 ra_AvNoP_C ratio of Adv phrases : Noun phrases count
121 ra_AvVeP_C ratio of Adv phrases : Verb phrases count
122 ra_AvSuP_C ratio of Adv phrases : Subordinate clauses count
123 ra_AvPrP_C ratio of Adv phrases : Prep phrases count
124 ra_AvAjP_C ratio of Adv phrases : Adj phrases count

Table 14: Phrasal Features (PhrF)

idx Code Definition
125 to_TreeH_C total parsed Tree Height of all sentences
126 as_TreeH_C average parsed Tree Height per sentence
127 at_TreeH_C average parsed Tree Height per token
128 to_FTree_C total length of Flattened parsed Trees
129 as_FTree_C average length of Flattened parsed Trees per sentence
130 at_FTree_C average length of Flattened parsed Trees per token

Table 15: Tree Structural Features (TrSF)

idx Code Definition
131 to_NoTag_C total count of Noun tags
132 as_NoTag_C average count of Noun tags per sentence
133 at_NoTag_C average count of Noun tags per token
134 ra_NoAjT_C ratio of Noun : Adjective count
135 ra_NoVeT_C ratio of Noun : Verb count
136 ra_NoAvT_C ratio of Noun : Adverb count
137 ra_NoSuT_C ratio of Noun : Subordinating Conj. count
138 ra_NoCoT_C ratio of Noun : Coordinating Conj. count
139 to_VeTag_C total count of Verb tags
140 as_VeTag_C average count of Verb tags per sentence
141 at_VeTag_C average count of Verb tags per token
142 ra_VeAjT_C ratio of Verb : Adjective count
143 ra_VeNoT_C ratio of Verb : Noun count
144 ra_VeAvT_C ratio of Verb : Adverb count
145 ra_VeSuT_C ratio of Verb : Subordinating Conj. count
146 ra_VeCoT_C ratio of Verb : Coordinating Conj. count
147 to_AjTag_C total count of Adjective tags
148 as_AjTag_C average count of Adjective tags per sentence
149 at_AjTag_C average count of Adjective tags per token
150 ra_AjNoT_C ratio of Adjective : Noun count
151 ra_AjVeT_C ratio of Adjective : Verb count
152 ra_AjAvT_C ratio of Adjective : Adverb count
153 ra_AjSuT_C ratio of Adjective : Subordinating Conj. count
154 ra_AjCoT_C ratio of Adjective : Coordinating Conj. count
155 to_AvTag_C total count of Adverb tags
156 as_AvTag_C average count of Adverb tags per sentence
157 at_AvTag_C average count of Adverb tags per token
158 ra_AvAjT_C ratio of Adverb : Adjective count
159 ra_AvNoT_C ratio of Adverb : Noun count
160 ra_AvVeT_C ratio of Adverb : Verb count
161 ra_AvSuT_C ratio of Adverb : Subordinating Conj. count
162 ra_AvCoT_C ratio of Adverb : Coordinating Conj. count
163 to_SuTag_C total count of Subordinating Conj. tags
164 as_SuTag_C average count of Subordinating Conj. per sentence
165 at_SuTag_C average count of Subordinating Conj. per token
166 ra_SuAjT_C ratio of Subordinating Conj. : Adjective count
167 ra_SuNoT_C ratio of Subordinating Conj. : Noun count
168 ra_SuVeT_C ratio of Subordinating Conj. : Verb count
169 ra_SuAvT_C ratio of Subordinating Conj. : Adverb count
170 ra_SuCoT_C ratio, Subordinating Conj. : Coordinating Conj. count
171 to_CoTag_C total count of Coordinating Conj. tags
172 as_CoTag_C average count of Coordinating Conj. per sentence
173 at_CoTag_C average count of Coordinating Conj. per token
174 ra_CoAjT_C ratio of Coordinating Conj. : Adjective count
175 ra_CoNoT_C ratio of Coordinating Conj. : Noun count
176 ra_CoVeT_C ratio of Coordinating Conj. : Verb count
177 ra_CoAvT_C ratio of Coordinating Conj. : Adverb count
178 ra_CoSuT_C ratio, Coordinating Conj. : Subordinating Conj. count
179 to_ContW_C total count of Content words
180 as_ContW_C average count of Content words per sentence
181 at_ContW_C average count of Content words per token
182 to_FuncW_C total count of Function words
183 as_FuncW_C average count of Function words per sentence
184 at_FuncW_C average count of Function words per token
185 ra_CoFuW_C ratio of Content words to Function words

Table 16: Part-of-Speech Features (POSF)

idx Code Definition
186 SimpNoV_S unique Nouns/total Nouns #Noun Variation
187 SquaNoV_S (unique Nouns**2)/total Nouns #Squared Noun Variation
188 CorrNoV_S unique Nouns/sqrt(2*total Nouns) #Corrected Noun Var
189 SimpVeV_S unique Verbs/total Verbs #Verb Variation
190 SquaVeV_S (unique Verbs**2)/total Verbs #Squared Verb Variation
191 CorrVeV_S unique Verbs/sqrt(2*total Verbs) #Corrected Verb Var
192 SimpAjV_S unique Adjectives/total Adjectives #Adjective Var
193 SquaAjV_S (unique Adj**2)/total Adj #Squared Adj Variation
194 CorrAjV_S unique Adj/sqrt(2*total Adj) #Corrected Adj Var
195 SimpAvV_S unique Adverbs/total Adverbs #Adverb Variation
196 SquaAvV_S (unique Adv**2)/total Adv #Squared Adv Variation
197 CorrAvV_S unique Adv/sqrt(2*total Adv) #Corrected Adv Var

Table 17: Variation Ratio Features (VarF)
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idx Code Definition
198 SimpTTR_S unique tokens/total tokens #TTR
199 CorrTTR_S unique/sqrt(2*total) #Corrected TTR
200 BiLoTTR_S log(unique)/log(total) #Bi-Logarithmic TTR
201 UberTTR_S (log(unique))2/log(total/unique) #Uber
202 MTLDTTR_S #Measure of Textual Lexical Diversity (TTR, 0.72)

Table 18: Type Token Ratio Features (TTRF)

idx Code Definition
203 to_AAKuW_C total AoA (Age of Acquisition) of words, Kuperman
204 as_AAKuW_C average AoA of words per sentence, Kuperman
205 at_AAKuW_C average AoA of words per token, Kuperman
206 to_AAKuL_C total AoA of lemmas, Kuperman
207 as_AAKuL_C average AoA of lemmas per sentence, Kuperman
208 at_AAKuL_C average AoA of lemmas per token, Kuperman
209 to_AABiL_C total AoA of lemmas, Bird norm
210 as_AABiL_C average AoA of lemmas, Bird norm per sent
211 at_AABiL_C average AoA of lemmas, Bird norm per token
212 to_AABrL_C total AoA of lemmas, Bristol norm
213 as_AABrL_C average AoA of lemmas, Bristol norm per sent
214 at_AABrL_C average AoA of lemmas, Bristol norm per token
215 to_AACoL_C total AoA of lemmas, Cortese and Khanna norm
216 as_AACoL_C average AoA of lem, Cortese and K norm per sent
217 at_AACoL_C average AoA of lem, Cortese and K norm per token

Table 19: Psychollinguistic Features (PsyF)

idx Code Definition
218 to_SbFrQ_C total SubtlexUS FREQcount value
219 as_SbFrQ_C average SubtlexUS FREQcount value per sentence
220 at_SbFrQ_C average SubtlexUS FREQcount value per token
221 to_SbCDC_C total SubtlexUS CDcount value
222 as_SbCDC_C average SubtlexUS CDcount value per sent
223 at_SbCDC_C average SubtlexUS CDcount value per token
224 to_SbFrL_C total SubtlexUS FREQlow value
225 as_SbFrL_C average SubtlexUS FREQlow value per sent
226 at_SbFrL_C average SubtlexUS FREQlow value per token
227 to_SbCDL_C total SubtlexUS CDlow value
228 as_SbCDL_C average SubtlexUS CDlow value per sent
229 at_SbCDL_C average SubtlexUS CDlow value per token
230 to_SbSBW_C total SubtlexUS SUBTLWF value
231 as_SbSBW_C average SubtlexUS SUBTLWF value per sent
232 at_SbSBW_C average SubtlexUS SUBTLWF value per token
233 to_SbL1W_C total SubtlexUS Lg10WF value
234 as_SbL1W_C average SubtlexUS Lg10WF value per sent
235 at_SbL1W_C average SubtlexUS Lg10WF value per token
236 to_SbSBC_C total SubtlexUS SUBTLCD value
237 as_SbSBC_C average SubtlexUS SUBTLCD value per sent
238 at_SbSBC_C average SubtlexUS SUBTLCD value per token
239 to_SbL1C_C total SubtlexUS Lg10CD value
240 as_SbL1C_C average SubtlexUS Lg10CD value per sent
241 at_SbL1C_C average SubtlexUS Lg10CD value per token

Table 20: Word Familiarity Features (WorF)

idx Code Definition
242 TokSenM_S total count of tokens x total count of sentence
243 TokSenS_S sqrt(total count of tokens x total count of sentence)
244 TokSenL_S log(total count of tokens)/log(total count of sent)
245 as_Token_C average count of tokens per sentence
246 as_Sylla_C average count of syllables per sentence
247 at_Sylla_C average count of syllables per token
248 as_Chara_C average count of characters per sentence
249 at_Chara_C average count of characters per token

Table 21: Shallow Features (ShaF)

idx Code Definition
250 SmogInd_S Smog Index
251 ColeLia_S Coleman Liau Readability Score
252 Gunning_S Gunning Fog Count Score (New, US Navy Report)
253 AutoRea_S Automated Readability Idx (New, US Navy Report)
254 FleschG_S Flesch Kincaid Grade Level (New, US Navy Report)
255 LinseaW_S Linsear Write Formula Score

Table 22: Shallow Features (ShaF)

C Rules Behind Feature Codes

In table 8∼22, “Code” columns show feature
codes. The related linguistic features appear with
quite a number of variations across academia,
without a naming convention (Zhu et al., 2009;
Fitzsimmons et al., 2010; Tanaka-Ishii et al., 2010;
Daowadung and Chen, 2011; Vajjala and Meur-
ers, 2013; Ciobanu et al., 2015; Zhang et al., 2019;
Blinova et al., 2020; Lee and Lee, 2020b). For
consistency, we set ourselves a few naming rules.

1. Feature codes consist of 8 letters/numerals, with
1 or 2 underscores depending on feature types.

2. All features classify into either count-based or
score-based, following popular convention.

• Count-based
– define: final calculation uses simple counts

(i.e. total, avg per sent, avg per token, ratio)
– format: xx_xxxxx_C. First two letters are

“to” (total), “as” (avg per sent), “at” (avg per
token), “ra” (ratio). Five letters in the mid-
dle explain what the feature is. Last letter
always “C.” Two underscores in between.

• Score-based
– define: require additional calculation (e.g.

log, square), or famous features with pre-
defined names (e.g. Flesch-Kincaid, TTR).

– format: xxxxxxx_S. Seven letters are all
dedicated to explaining what the feature is.
Last letter always “S.” One underscore.

3. For the “explanation” part of each feature code,
capital letters denote new words. The small
letters that follow are from the same word. (e.g.
1: Coleman Liau→ ColeLia, 2: AoA (Age of
Acquisition) Kuperman of words→ AAKuW)

D Details, External Models

We use Online LDA implemented by Gensim v4.0
(Řehůřek and Sojka, 2010). For most general tasks,
including sentence/entity recognition, POS tagging,
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and dependency parsing, we use spaCy v3.08 (Hon-
nibal et al., 2020) with en_core_web_sm pretrained
model. For constituency parsing, we use CRF
parser (Zhang et al., 2020) in SuPar v1.0 9.

D.1 Transformers
For transformers, we use the following models
from HuggingFace transformers v4.5.0 (Wolf et al.,
2020).
1. bert-base-uncased
2. roberta-base
3. bart-base
4. xlnet-base-cased

D.2 Non-Neural Models
For non-neural models, we use the following mod-
els from from SciKit-Learn v0.24.1.
1. support vector classifiers (svm.SVC) (Hearst,
1998; Platt, 1999; Chang and Lin, 2011)
2. random forest classifiers (ensemble.RandomF
orestClassifier) (Breiman, 2001)
3. logistic regression (linear_model.LogisticRegr
ession)

For gradient boosting, we use the following from
XGBoost v1.4.0 (Chen and Guestrin, 2016).
4. gradient boosting (XGBclassifier)

E Preprocessing

Our preprocessing steps are inspired by Martinc
et al. (2021) and several other existing RA research.
These steps are used only during the extraction of
handcrafted features for increased accuracy.
1. remove all special characters
2. remove words less than 3 characters
3. lowercase all
4. tokenize
5. remove NLTK default stopwords

F Full Hyperparameters

F.1 Non-Neural, Traditional ML
We perform grid search on the hyperparameters (ta-
ble 3) after performing a large randomized search
to identify the sensible range of hyperparameters to
tune. In particular, logistic regression solver hyper-
parameter search include libfgs (Zhu et al., 2011),
liblinear (Fan et al., 2008), SAG (Schmidt et al.,
2017), and SAGA (Defazio et al., 2014).

In table 3(a), C is the regularization parameter,
G is the kernel coefficient (gamma), and K is the

8github.com/explosion/spaCy
9github.com/yzhangcs/parser

Model Hyperparameter

SVM

C G K

1 scale rbf
5 auto linear

10 poly
50 sigmoid

(a) SVM, Best Params

Model Hyperparameter

RF

nEst MDep Mfea

600 20 auto
700 60 sqrt
800 100 log2
900 None None

(b) RandomF, Best Params

Model Hyperparameter

XGBoost

eta G MDep

1e-2 0 3
5e-2 1e-2 6
1e-1 1e-1 9
2e-1 1 12

(c) XGBoost, Best Params

Model Hyperparameter

LR

C Pen Solver

1e-1 l1 lbfgs
5e-1 l2 l.linear

1 elastic newton
10 none saga

(d) LogR, Best Params

Table 23: Hyperparameters, non-neural models.

kernel. In table 3(b), nEst is the number of trees,
MDep is the max depth of a tree, and Mfea is the
number of features considered. In table 3(c), eta is
the learning rate, G is the minimum loss reduction
need to make a further partition on the leaf node
(gamma), and MDep is the max depth of a tree.
In table 4(d), C is the inverse of the regularization
strength, Pen is the norm used in penalization, and
Solver is the algorithm used in optimization. The
other parameters best performed at default.

F.2 Neural, Transformers

We use AdamW (optimizer) (Kingma and Ba,
2014), linear (scheduler), 10% (warmup steps), 8
(batch size), 3 (epoch) for all tested transformers.
We use the learning rate of 2e-5 for BERT and 3e-5
for the other three transformers.

G Full Explored Feature Combinations

Set Features LogR SVM

T1 AdSem + Disco + Synta + LxSem + ShaTr 0.622 0.679
T2 Disco + Synta + LxSem + ShaTr 0.528 0.546
T3 AdSem + Synta + LxSem + ShaTr 0.591 0.582

H1 AdSem + Disco 0.463 0.513

L1 Synta + LxSem 0.499 0.561
L2 Set L1 - PhrF 0.539 0.577
L3 Set L1 - VarF 0.529 0.551
L4 Set L1 - POSF 0.449 0.551

E1 AdSem + PsyF + WorF + TraF 0.489 0.473
E2 AdSem + PsyF + WorF 0.490 0.479
E3 PsyF + WorF 0.464 0.459

P1 EnDF + ShaF + TrSF + POSF + WorF + PsyF + TraF 0.608 0.633
P2 Set P1 + TraF 0.629 0.638
P3 Set P2 + VarF 0.647 0.674

* Note: 5 letters (e.g. AdSem) mean linguistic branch. 4 letters
(e.g. PhrF) mean subgroup. We report accuracy on WeeBit.

Table 24: Defining feature sets.
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The five types of feature sets have varying aims:
1. T-type thoroughly captures linguistic properties,
2. H-type captures the high-level properties, 3. L-
type captures the low, surface-level properties, 4.
E-type uses features calculated from external data
(out-of-model info, i.e. Age-of-Acquisition), and
5. P-type collects features by performance. Both
advanced semantic and discourse features add dis-
tinctive information. This can be evidenced by
the performance decreases (T1 → T2 and T1 →
T3). We checked that all measures of F1, preci-
sion, recall, and QWK followed the same trend.
Similar method was used in Feng et al. (2009);
Aluisio et al. (2010); Vajjala and Meurers (2012);
Falkenjack et al. (2013); François (2014) to check
if a feature added orthogonal information. More
linguistic branches generally indicated better per-
formance. We use SciKit-learn (Pedregosa et al.,
2011) for metrics.

H Transformers Training Time

All numbers are in seconds. We report in the or-
der of (BERT, RoBERTa, XLNet, BART). These
are the average training times for each fold, with
80% of the full dataset used to train. We used an
NVIDIA Tesla V100 GPU.
1. WeeBit (1546, 1485, 3617, 1202)
2. OneStopEnglish (451, 373, 977, 396)
3. Cambridge (215, 122, 393, 239)

I More on LingFeat

Throughout our paper, we mention LingFeat as one
of our contributions to academia. This is because a
large-scale handcrafted features extraction toolkit
is scarce in RA, despite its reliance on the features.

LingFeat is a Python research package for vari-
ous handcrafted linguistic features. More specifi-
cally, LingFeat is an NLP feature extraction soft-
ware, which currently extracts 255 linguistic fea-
tures from English string input. The package is
available on both PyPI and GitHub.

Due to the wide number of supported features,
we had to define subgroups (section 3) for features.
Hence, features are not accessible individually. In-
stead, one has to call the subgroups to obtain the
dictionary of the corresponding features. The cor-
responding code is applicable to LingFeat v.1.0.

"""
Import

this is the only import you need
"""
from lingfeat import extractor

"""
Pass text

here, text must be in string type
"""
text = "..."
LingFeat = extractor.pass_text(text)

"""
Preprocess text

options (all boolean):
- short (def. False): include short words
- see_token (def. False): return token list
- see_sent_token (def. False): return sent

output:
- n_token
- n_sent
- token_list (optional)
- sent_token_list (optional)
"""
LingFeat.preprocess()
# or
# print(LingFeat.preprocess())

"""
Extract features

each method returns a dictionary of
the corresponding features
"""
# Advanced Semantic (AdSem) Features
WoKF=LingFeat.WoKF_() #Wiki Knowledge Features
WBKF=LingFeat.WBKF_() #WB Knowledge Features
OSKF=LingFeat.OSKF_() #OSE Knowledge Features

# Discourse (Disco) Features
EnDF=LingFeat.EnDF_() #Entity Density Features
EnGF=LingFeat.EnGF_() #Entity Grid Features

# Syntactic (Synta) Features
PhrF=LingFeat.PhrF_() #Phrasal Features
TrSF=LingFeat.TrSF_() #(Parse) Tree Features
POSF=LingFeat.POSF_() #Part-of-Speech Features

# Lexico Semantic (LxSem) Features
TTRF=LingFeat.TTRF_() #TTR Features
VarF=LingFeat.VarF_() #Variational Features
PsyF=LingFeat.PsyF_() #Psycholing Difficulty
WoLF=LingFeat.WorF_() #Word Familiarity

# Shallow Traditional (ShTra) Features
ShaF=LingFeat.ShaF_() #Shallow Features
TraF=LingFeat.TraF_() #Traditional Formulas


