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Abstract
Distantly supervised relation extraction (RE)

automatically aligns unstructured text with re-

lation instances in a knowledge base (KB).

Due to the incompleteness of current KBs, sen-

tences implying certain relations may be anno-

tated as N/A instances, which causes the so-

called false negative (FN) problem. Current

RE methods usually overlook this problem, in-

ducing improper biases in both training and

testing procedures. To address this issue, we

propose a two-stage approach. First, it finds

out possible FN samples by heuristically lever-

aging the memory mechanism of deep neural

networks. Then, it aligns those unlabeled data

with the training data into a unified feature

space by adversarial training to assign pseudo

labels and further utilize the information con-

tained in them. Experiments on two wildly-

used benchmark datasets demonstrate the ef-

fectiveness of our approach.

1 Introduction

Relation extraction (RE), defined as the task of

identifying relations from unstructured text given

two entity mentions, is a key component in many

NLP applications such as knowledge base (KB)

population (Ji and Grishman, 2011; De Sa et al.,

2016) and question answering (Yu et al., 2017).

Supervised RE requires a large amount of human

labeled data, which is often labor-intensive and

time-consuming. Distant supervision (DS), pro-

posed by (Mintz et al., 2009), deals with this prob-

lem by aligning a large corpus with a KB such as

Freebase to provide weak supervision. It relies on

the assumption that if two entities participate in a
relation in a KB, then any sentence containing this
entity pair expresses this relation.

However, this assumption is too strong and

brings in noises, particularly when the training KB

is an external information source and not primar-

ily derived from the training corpus. To alleviate
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Sentences Relations

[Romano Mussolini] , the Italian jazz pi-

anist , ... , died on Tuesday in [Rome] .

death_place

... in the [Uptown] neighborhood of [New
Orleans] , ... , where it was founded .

neighborhood

Table 1: False negative examples excerpted from the

NYT10 (Riedel et al., 2010) N/A set.

this problem, Riedel et al. (2010) relax this as-

sumption to if two entities participate in a relation,
at-least-one sentence that mentions these two enti-
ties expresses this relation. Bunescu and Mooney

(2007) propose multi-instance learning by organiz-

ing sentences with the same entity pair into one set,

referred to as a bag. Following this setting, Riedel

et al. (2010); Hoffmann et al. (2011); Surdeanu

et al. (2012) propose diverse hand-crafted features.

Zeng et al. (2014, 2015) leverage convolutional

neural networks (CNN) to learn the representations

of instances. Lin et al. (2016) apply an attention

mechanism to select informative sentences from

a bag. Recently, graph convolutional networks

(GCN) have been effectively employed for cap-

turing the syntactic information from dependency

trees (Vashishth et al., 2018).

Most of the above works focus on the false posi-

tive (FP) problem (which is caused by the strong

DS assumption), but totally neglect the false neg-

ative (FN) problem, which is also important and

induces improper biases in both training and test-

ing procedures. DS treats a sentence as a negative

sample (marked as N/A) whose entity pair does not

have a known relation in the KB. However, due

to the incompleteness of current KBs, sentences

implying predefined relations are likely to be mis-

labeled as N/A. For example, over 70% of people

in Freebase do not have birth places (Dong et al.,

2014). As shown in Table 1, we have annotated

the ground-truth relations for two FN sentences. In

fact, the missing facts in KBs yield plenty of FN
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sentences in the automatically annotated datasets.

Generative adversarial networks (GAN) (Good-

fellow et al., 2014) is first introduced into RE by

(Qin et al., 2018) to learn a sentence-level FP filter.

However, they only focus on the FP problem and

their model cannot be generalized to other scenar-

ios. Li et al. (2019) attempt to solve the FN problem

using entity descriptions from Wikipedia to filter

FN samples from the N/A set and further utilize

GAN in a semi-supervised manner. However, their

method heavily depends on external resources and

is not applicable to all situations. Moreover, their

filtering heuristic “two entities mention each other
on their Wikipedia pages may imply the predefined
relations” is even stronger than that of (Riedel et al.,

2010). It may filter some noisy data but at the same

time introducing even more noises. For example, in

the sentence “... to the poetry from [India], China
and [Korea] that stretches the book ...” excerpted

from NYT10, India and Korea mention each other

on Wikipedia, but this sentence implies no relation.

In this paper, we propose a novel two-stage ap-

proach for distantly supervised RE. In the first

stage, called mining, we find out possible FN sam-

ples from the N/A set by heuristically leveraging

the memory mechanism of deep neural networks.

According to (Arpit et al., 2017), while deep neural

networks are capable of memorizing noisy data,

they tend to preferentially learn simple patterns

first, that is to say, deep neural networks tend to

learn and memorize patterns from clean instances

within a noisy dataset. We design a Transformer-

based (Vaswani et al., 2017) deep filter to mine

FN samples from the N/A set. In the second stage,

called aligning, we formulate the problem into a

domain adaptation (DA) paradigm. We exploit a

gradient reversal layer (GRL) to align the mined

unlabeled data from stage one with the training

data into a unified feature space. After aligning,

each sentence is assigned with a pseudo label and a

confidence score, which provide extra information

and attenuate incorrect biases in both training and

testing procedures.

In summary, our main contributions are fourfold:

• We propose a simple yet effective method to

filter noises in a DS dataset by leveraging the

memory mechanism of deep neural networks,

without any external resources.

• We formulate distantly supervised RE as a

DA paradigm and utilize adversarial training

to align unlabeled data with training data into

a unified space, and generate pseudo labels to

provide additional supervision.

• We achieve new state-of-the-art on two popu-

lar benchmark datasets NYT10 (Riedel et al.,

2010) and GIDS (Jat et al., 2018).

• By mining the test set, we show that the FN

problem greatly misleads the evaluation of DS

models and deserves further study.

2 Related Work

Distant supervision. Supervised RE requires a

large amount of human-labeled training data, which

is labor-intensive and time-consuming. To address

this limitation, Mintz et al. (2009) propose DS by

heuristically aligning a text corpus to a KB. Riedel

et al. (2010) relax DS for multi-instance single-

label learning. Subsequently, to handle the overlap-

ping relations between entity pairs, Hoffmann et al.

(2011); Surdeanu et al. (2012) propose the multi-

instance multi-label learning paradigm. Currently,

DS is already a common practice in RE.

Neural relation extraction. The above works

strongly rely on the quality of hand-engineered fea-

tures. Zeng et al. (2014) first propose an end-to-end

CNN-based neural network to automatically cap-

ture relevant lexical-level and sentence-level fea-

tures. Zeng et al. (2015); Lin et al. (2016) further

improve this through piecewise max pooling and

selective attention (Bahdanau et al., 2015). Zhou

et al. (2016) propose an attention-based LSTM to

capture the most important semantic information

in sentences. External knowledge like entity de-

scriptions and type information has been used for

RE (Yaghoobzadeh et al., 2017; Vashishth et al.,

2018). Pre-trained language models contain a no-

table amount of semantic information and common-

sense knowledge, and several works have applied

them to RE (Alt et al., 2019; Xiao et al., 2020).

Adversarial training. Adversarial training is a

machine learning technique that improves the net-

works using an adversarial objective function or

deceptive samples. Wu et al. (2017) bring it in

RE by adding adversarial noises to the training

data. Qin et al. (2018) propose DSGAN to learn a

generator that explicitly filters FP instances from

the training dataset. Li et al. (2019) propose a

semi-distant supervision method by first splitting a

dataset through entity descriptions and then using

GAN to make full use of unsupervised data. Luo

et al. (2020) learn the distribution of true positive
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instances through adversarial training and select

valid instances via a rank-based model.

Learning with noisy labels. As noisy labels de-

grade the generalization performance of deep neu-

ral networks, learning from noisy labels (a.k.a. ro-

bust training) has become an important task in mod-

ern deep learning (Song et al., 2021). Arpit et al.

(2017) find out that, although deep networks are

capable of memorizing noisy data, they tend to

learn simple patterns first. Co-teaching (Han et al.,

2018) trains two deep neural networks simultane-

ously and lets them teach each other given every

mini-batch. Yan et al. (2016); Nguyen et al. (2020);

Li et al. (2020) transform the problem into a semi-

supervised learning task by treating possibly false-

labeled samples as unlabeled.

3 Methodology

In this section, we introduce our two-stage frame-

work called FAN (False negative Adversarial Net-

works) in detail. First, we describe how we dis-

cover possibly wrong-labeled sentences from the

N/A set. Then, we introduce our adversarial DA

method, which assigns pseudo labels to unlabeled

data with confidence scores.

3.1 Stage I: Mining
We define a distantly supervised dataset D =
{s1, s2, . . . , sN}, where each sample si is a quadru-

ple, consisting of an input sequence of tokens

ti = [t1i , . . . , t
n
i ], headi and taili for head and tail

entity positions in sequence ti, respectively, and

the corresponding relation ri assigned by DS. We

split D into two parts: sentences with predefined

relations are divided into the positive set, denoted

by P; sentences implying no relations are divided

into the negative set, denoted by N , D = P ∪ N .

In this work, we focus on the noises in N , where

sentences may be mislabeled by incomplete KBs

and useful information is not yet fully discovered.

According to (Arpit et al., 2017), deep neural

networks are prone to learn clean samples first,

and then gradually learn noisy samples. Following

(Malach and Shalev-Shwartz, 2017; Jiang et al.,

2018; Han et al., 2018; Nguyen et al., 2020), after

proper training, we filter samples in N with logits

larger than threshold θ as possible FN samples. All

FN samples form a set M and remaining samples

form a set N ′, where N = N ′ ∪M. The original

training dataset D is refined to D′, where D′ = P∪
N ′. The deep noise filter can capture meaningful

Judith Moore died on May 15in BerkeleyJournalist

relation query

Transformer 
Layer

Convolutional 
Layer

Piecewise Max 
Pooling Layer

Attention 
Layer

Representation 
Layer

Input 
Layer

Figure 1: Architecture of encoder.

semantic patterns to differentiate between P and N .

For the samples in N with logits larger than θ, they

may imply predefined relations but only the DS

annotations are inaccurate. We argue that M can be

considered as unlabeled data in a semi-supervised

way to provide supplementary information.

3.1.1 Sentence Encoder
As for the mining step, we take a mapping func-

tion f(·) to map ri to a binary label. If ri is N/A,

f(ri) = 0; otherwise f(ri) = 1. We use pre-

trained language model BERT (Devlin et al., 2019)

as our embedding module, as it contains a large

amount of semantic information and commonsense

knowledge. Token sequence ti = [t1i , . . . , t
n
i ] is

fed into the pre-trained model and the last hidden

representation hi = [h1
i , . . . ,h

n
i ] is used as our

token embedding.

CNN is a widely used architecture for capturing

local contextual information (Zeng et al., 2014).

The convolution operation involves taking the dot

product of the convolutional filter W with each

k-gram in the sequence hi to obtain a new repre-

sentation pi:

pji = W · [hj−k+1
i : . . . : hj

i ], (1)

where pji is the j-th dimension of pi. W ∈ R
k×d

is the convolutional filter, where k is the kernel size

and d is the hidden dimension. [hj−k+1
i : . . . : hj

i ]

refers to the concatenation from hj−k+1
i to hj

i . In

order to capture diverse features and extract the

local information at different levels, we make use

of multiple filters and varied kernel sizes.

In RE, representation pi can be partitioned into

three parts according to headi and taili, i.e., pi =
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{pi1 ,pi2 ,pi3}. To capture the structural informa-

tion between two entities and obtain fine-grained

features, we take piecewise max pooling as (Zeng

et al., 2015). For each convolutional filter, we can

obtain a three-dimensional vector qi:

qi = [max(pi1),max(pi2),max(pi3)]. (2)

We concatenate vectors from multiple convolu-

tional filters and get the sentence representation

vi ∈ R
3m, where m is the number of convolutional

filters with varied kernel sizes. The architecture of

the sentence encoder is shown in Figure 1.

3.1.2 Noise Filter
Through sentence encoding, each sample si =
(ti, headi, taili, ri) is transformed into a fixed-

dimensional vector vi ∈ R
3m. We feed it into

a multilayer perceptron to obtain the probability:

oi = σ(Wfvi + bf ), (3)

where Wf ∈ R
1×3m is the transformation matrix

and bf is the bias. σ(·) denotes the sigmoid activa-

tion. Output oi implies the probability of current

sentence belonging to P .

We use the binary cross-entropy as our loss to

train the deep noise filter in an end-to-end way:

Lf = Esi∼D
[− f(ri) log(P(si))

− (1− f(ri)) log(1− P(si))
]
.

(4)

3.2 Stage II: Aligning
Instances in M are mislabeled due to the incom-

pleteness of KBs and the distribution may be dif-

ferent from the original training dataset (Ye et al.,

2019). A naive way is just dropping those data

and using adjusted dataset D′ for training. Doing

like this would lose useful information contained

in M and thus is not optimal. Unlabeled data can

be annotated by humans, but it is time-consuming

and is not applicable to large datasets.

In fact, these unlabeled samples imply prede-

fined relations and can be used together with D′ in

a semi-supervised learning paradigm. We formu-

late this problem as a DA task and the objective is

aligning the distributions of M and P into a uni-

fied feature space. To achieve this objective, we

propose a method inspired by GAN. The genera-

tor tries to fool the discriminator so that it cannot

distinguish the samples in M and P . On the con-

trary, the discriminator tries its best to differentiate

them. The training procedure forms a classic min-

max game by adversarial objective functions. The

overall architecture is shown in Figure 2.

3.2.1 Bag Encoder

The sentence encoding layer reuses the architecture

in Section 3.1.1. Due to the noisy DS annotations,

multi-instance learning is introduced and relation

classification is applied on the bag level. One bag

B = {s1, . . . , st} contains t sentences for the same

entity pair. Bag representation gi is derived from

a weighted sum over the individual sentence repre-

sentations:

gi =
∑
j

αjvj , (5)

where αj is the weight assigned to the correspond-

ing sentence computed through selective attention

(Lin et al., 2016). The weight is obtained by com-

puting the similarity between the learned relation

query representation ri ∈ R
3m and each sentence:

αi =
exp(vi · ri)∑t
j=1 exp(vj · ri)

. (6)

3.2.2 Relation Classifier

For a bag in P , its DS label is known. To compute

the probability distribution over relations, a linear

layer followed by a softmax layer is applied to a

bag representation gi ∈ R
3m:

P(ri |gi) = softmax(Wcgi + bc), (7)

where Wc ∈ R
l×3m, and l is equal to the number

of predefined relations.

During training, we aim to optimize the follow-

ing cross-entropy loss:

Lcls = Egi∼P
[− log P(ri |gi)

]
. (8)

3.2.3 Gradient Reversal Layer

Pre-trained language models have shown great

power in many NLP tasks. They are huge in size

and have tremendous ability to fit distributions. Fol-

lowing (Ganin et al., 2016; Chen et al., 2018), we

use a GRL after the bag encoder. When forward

passing, it works as an identity function, while

when back propagating, it reverses gradients to

their opposite:

GRL = I(·)∇Θ, (9)

where Θ denotes parameters of the bag encoder.

When forward passing, I(·) = 1, and when back

propagating, I(·) = −1.
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[Steve Jobs] is the co-founder of [Apple] Inc . founder √

Bruce Blair , 54 , a teacher from [Celina] , [Ohio] contains √

Included on the shortlist , The Guardian of [London]
reported , are … the [Kremlin] …

N/A √

[Romano Mussolini] died on Tuesday in [Rome] . N/A

Noise Filter

[Romano Mussolini] died on Tuesday in [Rome] . N/A
… in [Pinellas County] near [Tampa] … N/A

Encoder

Classifier

Discriminator

GRL

Unlabeled data 

[Romano Mussolini] died on Tuesday in 
[Rome].    deathplace 0.997
… in [Pinellas County] near [Tampa] …     
neighborhood 0.975

align into a unified space

Stage I: Mining

Gradient Reversal Layer

Stage II: Aligning

Figure 2: Overview of FAN. Informative unlabeled samples are first mined through the noise filter and then fed

into the adversarial module to generate pseudo labels with confidences. The adjusted training data are used for

final training.

3.2.4 Discriminator
Given a bag representation gi ∈ R

3m, the discrimi-

nator first implements an affine transformation and

then uses sigmoid function σ(·) to obtain the prob-

ability distribution:

o′i = σ(Wdgi + bd). (10)

3.3 Training Objective
We use adversarial training to generate a unified

data distribution. To enforce instances of the same

class closer and push away instances from different

classes, a contrastive loss is designed for better

feature representation.

3.3.1 Adversarial Loss
The bag encoder is optimized to give separate repre-

sentations for instances in P , so that samples from

different classes can be easily distinguished by the

relation classifier. In the meantime, it forces the

distribution of M to fit into the distribution of P .

The encoder here plays two roles: representation

learner and distribution adapter. The classification

learning objective is Eq. (8), and the generator ob-

jective is

Lg = −Es∼M
[
D(G(s))

]
. (11)

On the contrary, the discriminator attempts to

distinguish samples from M with P . Straightfor-

wardly, for generator, the labels of samples in M
are 1; but for discriminator, the labels of samples in

M are 0. The labels of instances in P are always

1. The discriminator objective is

Ld = −Esi∼P
[
D(si)

]
+ Esj∼M

[
D(G(sj))

]
. (12)

Generator and discriminator improve each other

in iterations.

3.3.2 Contrastive Loss
Bag representations are expected to be able to clus-

ter instances with the same relation. We aim to

increase the distances between samples with differ-

ent relations and reduce the variance of distances

with the same relation.

Simply put, given two instances, their similarity

score should be high if they belong to the same rela-

tion and low otherwise. We use the contrastive loss

(Neculoiu et al., 2016) for this objective. Following

(Zhou et al., 2020), given a bag representation g,

we divide all the other instances with the same re-

lation type as Q+ and the ones with different types

as Q−. The contrastive loss can be formulated as

Lctra = Eg∼P
[
max
gi∈Q+

dist+(g,gi)

− min
gj∈Q−

dist−(g,gj)
]
, (13)

where the measurement of distance is defined as

follows:

dist+(g,gi) =
(
max(τ − cos(g,gi), 0)

)2
,

dist−(g,gj) = 1− (
max(cos(g,gj), 0)

)2
,

(14)

where τ is a hyperparameter for avoiding collapse

of the representations of bags, cos(·) denotes the

cosine function.

3.3.3 Overall Loss
The adversarial training procedure is modeled as

multi-task learning and trained in an end-to-end
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way. The overall objective function is

L = Lcls + α · Lg + β · Ld + γ · Lctra, (15)

where α, β, γ are hyperparameters.

4 Experiment Setup

We conduct the experiments on two widely used

benchmark datasets: NYT10 and GIDS (Google-

IIsc Distant Supervision dataset). The source code

is publicly available1.

4.1 Datasets

The statistics of two datasets are listed in Table 2.

We briefly describe them below:

• NYT10 is developed by (Riedel et al., 2010)

through aligning Freebase with the New York

Times corpus. News from year 2005 to 2006

are used for creating the training set and

from year 2007 for the test set. The entity

mentions are annotated using Stanford NER

(Finkel et al., 2005) and linked to Freebase.

The dataset has been broadly used for RE

(Hoffmann et al., 2011; Surdeanu et al., 2012;

Vashishth et al., 2018; Alt et al., 2019).

• GIDS is built by extending the Google RE cor-

pus2 with additional instances for each entity

pair (Jat et al., 2018). It assures that the at-
least-one assumption of multi-instance learn-

ing holds, which makes the automatic evalua-

tion more accurate and reliable.

4.2 Comparative Models

To evaluate the proposed FAN, we compare it with

the following seven representative models:

• PCNN-ONE (Zeng et al., 2015): A CNN-

based neural RE model using piecewise max

pooling for better sentence representations.

• PCNN-ATT (Lin et al., 2016): A model using

selective attention to choose useful informa-

tion across different sentences in a bag.

• BGWA (Jat et al., 2018): An attention-based

neural model which formulates various word

attention and entity attention mechanisms to

help a RE model focus on the right context.

• RESIDE (Vashishth et al., 2018): A GCN-

based model which uses side information

from a KB to improve performance.

1https://github.com/nju-websoft/FAN
2https://research.googleblog.com/2013/04/50000-

lessons-on-how-to-read-relation.html

Datasets Splits Sentences Entity pairs

NYT10
(Relations: 53)

Train 455,771 233,064
Dev 114,317 58,635
Test 172,448 96,678

GIDS
(Relations: 5)

Train 11,297 6,498
Dev 1,864 1,082
Test 5,663 3,247

Table 2: Statistics of NYT10 and GIDS.

• DISTRE (Alt et al., 2019): A GPT-based

model capturing semantic and syntactic infor-

mation along with commonsense knowledge.

• DS-GAN (Li et al., 2019): A GAN-based

model which treats distantly supervised RE as

a semi-supervised learning process.

• DS-VAE (Christopoulou et al., 2021): A

variational auto-encoder (VAE) based model

which biases the latent space of sentences and

is trained jointly with a relation classifier.

4.3 Criteria

Following the conventions (Zeng et al., 2015; Lin

et al., 2016; Vashishth et al., 2018; Alt et al., 2019),

we use the held-out evaluation. For each model, we

compute the precision-recall (PR) curves and report

the area under curve (AUC) scores for straightfor-

ward comparison. We also report P@N, which

measures the percentage of correct classifications

in the top-N most confident predictions. Addition-

ally, micro-F1 is measured at different points along

the PR-curve and the best is reported.

For NYT10, we compare with all models listed

above. We reuse the results reported in the origi-

nal papers for BGWA, RESIDE, DISTRE and DS-

VAE, and implement PCNN-ONE, PCNN-ATT,

DS-GAN by ourselves. Because the source code

of DS-VAE is not released yet, we cannot obtain

its PR-curve. For GIDS, we only compare with

PCNN-ONE, PCNN-ATT, BGWA and RESIDE, as

other models are not applicable to this dataset.

5 Results

5.1 Overall Results

The PR-curves on NYT10 and GIDS are shown in

Figure 3. On both datasets, FAN achieves the best

results. On NYT10, we get visibly higher recall, es-

pecially when precision is higher than 75.0, which

indicates that our model can find more informative

samples along with correct labels. It makes sense

because FAN knows more information by digging
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(a) NYT10 (b) GIDS

Figure 3: PR-curve of different models. FAN achieves the state-of-the-art on both datasets.

NYT10 GIDS

PCNN-ONE 15.7 74.4
PCNN-ATT 37.6 79.9
BGWA 34.0 81.5
RESIDE 41.5 89.1
DISTRE 42.2 -
DS-GAN 20.3 -
DS-VAE 42.9 -

FAN 45.5 90.3

Table 3: AUC scores on NYT10 and GIDS.

informative samples from the N/A set and weak-

ens improper biases in the training procedure. On

NYT10, our AUC is 45.5, improving 3.3 on the ba-

sis of the second best model. On GIDS, our AUC

is 90.3, improving 1.2 compared with the second

best. Please refer to Table 3 for details.

Table 4 shows P@N in top ranked samples and

micro-F1 values on NYT10. Our model improves

3.8 on average for P@N, indicating that our model

does not reduce the precision while improving the

recall. Table 5 shows the results on GIDS. From the

table, we observe that FAN achieves the highest

score in micro-F1. The scores of P@N are also

comparable to RESIDE and BGWA.

5.2 Mining Results

In the mining step, we filter FN samples from N
with logits larger than threshold θ. As a result, we

discover 4,556 FN samples from NYT10, which

refer to 3,733 entity pairs; and 238 FN samples

from GIDS, which refer to 225 entity pairs.

To evaluate the quality of M, we choose five re-

lations assigned by FAN with most samples, each

P@100 P@200 P@300 Micro-F1

PCNN-ONE 49.5 44.7 44.8 24.3

PCNN-ATT 82.8 79.9 75.0 42.0

BGWA 82.0 75.0 72.0 42.1

RESIDE 81.8 75.4 74.3 45.7

DISTRE 68.0 67.0 65.3 48.6

DS-GAN 60.6 57.3 51.8 30.7

DS-VAE 83.0 75.5 73.0 -

FAN 85.8 83.4 79.9 48.7

Table 4: P@N and micro-F1 on NYT10.

P@100 P@200 P@300 Micro-F1

PCNN-ONE 88.1 90.5 90.0 70.0

PCNN-ATT 97.0 93.5 91.4 75.6

BGWA 99.0 98.0 96.0 77.3

RESIDE 100.0 97.5 97.0 84.6

FAN 98.3 97.6 96.8 85.9

Table 5: P@N and micro-F1 on GIDS.

selecting 100 sentences with highest confidence

scores. Three well-trained NLP annotators are

asked to annotate sentences in a binary way, to

see whether the assigned pseudo labels are correct.

The results are shown in Table 6. The average preci-

sion is 87.0, improving around 17.0 compared with

the original NYT10 dataset (Riedel et al., 2010). It

verifies both the quality of the mined data and the

effectiveness of the aligning step. The “national-

ity” relation gets relatively lower precision because

for some sentences about sports, there are usually

more than one person and one country mentioned,

the model gets confused in this scenario.
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Relations P@100

/location/location/contains 92.0
/people/person/place_lived 87.0
/people/person/nationality 74.0
/business/person/company 94.0
/location/administrative_division/country 88.0

Average 87.0

Table 6: P@100 for top 5 relations in M.

(a) Before (b) After

Figure 4: T-SNE visualization of representations be-

fore and after aligning for M.

5.3 Adversarial Domain Adaptation

The label distributions may shift between M and

P . The generator aligns the two distributions into

a unified space. We use bag representations ob-

tained through the bag encoder as the input of T-

SNE to perform dimension reduction and obtain

two-dimensional representations. As seen from

Figure 4, the feature distributions before aligning

are overlapped and the classification boundary is

not clear. After aligning, the samples are better

clustered.

5.4 Ablation Study

We conduct an ablation study to verify the effec-

tiveness of submodules in FAN. Table 7 shows the

comparison results. (1) BERT has a great influence

on the results because it introduces valuable lin-

guistic knowledge and commonsense knowledge to

RE. If replacing it by GloVe, both AUC and micro-

F1 drop significantly. (2) By removing GRL and

unlabeled data, using only the refined training set

D′, both AUC and micro-F1 drops. This indicates

that the information contained in unlabeled data

is helpful for distantly supervised RE, and FAN

can leverage it reasonably. (3) Contrastive loss

can help the learning procedure. Different classes

can be better clustered, thus reducing errors on the

classification boundary.

AUC Micro-F1

FAN 45.5 48.7
w/o BERT 39.8 44.4
w/o GRL 43.7 47.1
w/o contrastive 44.7 48.0

Table 7: Results of ablation study.

(a) AUC (b) Micro-F1

Figure 5: Improvements of AUC and micro-F1 after

removing FN in the test set.

5.5 False Negatives in the Test Set

We also investigate the impact of FN on the test set

during evaluation. As what we do in the training

phase, we train a deep filter to mine FN from the

test N/A set. As a result, we obtain 6,468 sentences,

containing 4,951 entity pairs. By simply removing

these data, we obtain huge improvements on AUC

by around 20% higher than the original to 54.6, and

12% on micro-F1 to 54.5. See Figure 5. Similar

phenomena occur on different baseline models.

This indicates that the FN samples in the N/A set

greatly affect the evaluation procedure and bring

in improper biases for model selection. For com-

parison, we randomly remove the same number of

sentences from the test N/A set, as a result, AUC

increases 0.4 and micro-F1 increases 0.9. This re-

sult is rational because randomly removing 6,468

samples is negligible in comparison with 166,004

N/A samples in the test set.

5.6 Case Study

In Table 8, we show several cases of mined data

which are excerpted from NYT10.

1. The first sentence is correctly assigned with la-

bel “/people/person/place_lived” by FAN, but

it is missed by DS-GAN. Because one person

is unusual to be mentioned on a Wikipedia

page of a location, samples with relations be-

tween people and location are greatly omitted.
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Among those former clients are two wealthy sons of

[Robert C. McNair] , a [Houston] oilman and the owner

of the Houston Texans of the National Football League .

Predicted & gold standard: /people/person/place_lived

... the mayor said , defending his advocacy of a new

stadium on the Far West Side of [Manhattan] for the

2012 Olympics and the [New York Jets] .

Predicted & gold standard: /sports/sports_team/location

The good news : Marta Caiza of [Corona] , [Queens] ,

won a new car .

Predicted: /location/location/contains
Gold standard: N/A

Table 8: Case study of mined data. correct prediction
and wrong prediction are colored accordingly.

2. For less-frequent relations such as

“/sports/sports_team/location”, FAN can

still identify it to enlarge the training data and

weaken the imbalance between relations.

3. In the third sentence, Queens contains Corona,

but not reversely. FAN incorrectly assigns

“/location/location/contains” from Corona to

Queens. In fact, differentiating relation direc-

tions is a hard task and needs further study.

6 Conclusion and Future Work

In this paper, we propose FAN, a two-stage method

using adversarial DA to handle the FN problem

in distantly supervised RE. We mine FN samples

using the memory mechanism of deep neural net-

works. We use GRL to align unlabeled data with

training data and generate pseudo labels to correct

improper biases in both training and testing pro-

cedures. Our experiments show the superiority of

FAN against many comparative models. In future

work, we plan to use the teacher-student model to

deal with FP and FN simultaneously.
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A Experiment Setup

In this section, we provide more details of our ex-

periments. We implement FAN with PyTorch 1.6

and train it on a server with an Intel Xeon Gold

5117 CPU, 120GB memory, two NVIDIA Tesla

V100 GPU cards and Ubuntu 18.04 LTS.

The parameters of FAN are initialized with

Xavier (Glorot and Bengio, 2010) using a fixed ini-

tialization seed. We train FAN by SGD optimizer

with mini-batch of size 160. In the convolutional

module, we set kernel size in {2, 3, 4, 5} and filter

size to 230. For details, please refer to Table 9.

Hyperparameters Values

Batch size 160
Learning rate 0.1
Optimizer SGD
Filter size 230
Kernel size {2, 3, 4, 5}
Weight decay 0.00001
α 0.01
β 0.01
γ 0.0001
θ 0.5
τ 1.0
Epoch 50
Dim. of word embeddings 768
Dim. of position embeddings 50
Dropout rate 0.5

Table 9: Hyperparameters of FAN.

B Dataset Availability

The NYT10 dataset (Riedel et al., 2010) is avail-

able at http://iesl.cs.umass.edu/riedel/ecml/. We

use the version adapted by OpenNRE (Han et al.,

2019), which has removed the overlapped samples

between the training set and the test set. The data

is available at https://github.com/thunlp/OpenNRE.

The GIDS dataset is available at

https://github.com/SharmisthaJat/RE-DS-Word-

Attention-Models.

C False Negatives in N/A

In this section, we give several examples of FN

samples mined from the training N/A set. Those

samples are assigned with pseudo-labels and confi-

dence scores by FAN. They are diverse and contain

many relation types, which verifies that the noises

in N/A is not negligible and deserves further study.

On the other hand , a recent lake study by researchers

at [Middlebury College] , in [Vermont] , found nothing

similar .

Pseudo-label: /location/location/contains 0.999

I need all the help I can get , said [Chet Culver] , the

Democratic secretary of state in [Iowa] and a likely con-

tender for governor in 2006 .

Pseudo-label: /people/person/place_lived 0.997

Meb Keflezighi , the American who won the silver medal

in the men ’s marathon in last year ’s Athens Olympics ,

and [Liu Xiang] of [China] , who won the men ’s 110-

meter hurdles in Athens , were entered yesterday in track

and field competitions in New York .

Pseudo-label: /people/person/nationality 0.999

If they think we ’re the weakest link , they ’re truly under-

estimating this little airline , said [John Denison] , the

new chief executive at [ATA Airlines] , which sought

bankruptcy protection on Oct. 26 .

Pseudo-label: /business/person/company 0.999

The campaign against this poor little church outside

[Hangzhou] , the capital of Zhejiang Province in eastern

[China] , is part of a national wave of repression against

independent , or underground , churches that are not reg-

istered with the government and do not recognize the

authority of state-appointed spiritual leaders .

Pseudo-label: /location/administrative_division/country
0.999

For investors seeking the high returns that are no longer

possible in the mature European and North American real

estate markets , India and China are hot , said Prakash

Gurbaxani , the chief executive of TSI Ventures in Ban-

galore , a joint venture of Tishman Speyer Properties of

New York and India ’s largest privately owned bank ,

[ICICI Bank] , based in [Mumbai] .

Pseudo-label: /business/company/place_founded
0.971

[Peter Benenson] was born in [London] on July 31 ,

1921 , the son of a British army colonel .

Pseudo-label: /people/person/place_of_birth 0.823

Table 10: Examples of FN.


