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Abstract

Backdoor attacks are a kind of emergent
training-time threat to deep neural networks
(DNNs). They can manipulate the output of
DNNs and possess high insidiousness. In the
field of natural language processing, some at-
tack methods have been proposed and achieve
very high attack success rates on multiple pop-
ular models. Nevertheless, there are few stud-
ies on defending against textual backdoor at-
tacks. In this paper, we propose a simple
and effective textual backdoor defense named
ONION, which is based on outlier word de-
tection and, to the best of our knowledge, is
the first method that can handle all the tex-
tual backdoor attack situations. Experiments
demonstrate the effectiveness of our model in
defending BiLSTM and BERT against five dif-
ferent backdoor attacks. All the code and
data of this paper can be obtained at https:
//github.com/thunlp/ONION.

1 Introduction

In recent years, deep neural networks (DNNs)
have been deployed in various real-world appli-
cations because of their powerful performance. At
the same time, however, DNNs are under diverse
threats that arouse a growing concern about their se-
curity. Backdoor attacks (Gu et al., 2017), or trojan
attacks (Liu et al., 2018b), are a kind of emergent in-
sidious security threat to DNNs. Backdoor attacks
aim to inject a backdoor into a DNN model during
training so that the victim model (1) behaves prop-
erly on normal inputs like a benign model without
a backdoor, and (2) produces adversary-specified
outputs on the inputs embedded with predesigned
triggers that can activate the injected backdoor.

Backdoor attacks are very stealthy, because a
backdoored model is almost indistinguishable from
a benign model unless receiving trigger-embedded
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inputs. Therefore, backdoor attacks may cause
serious security problems in the real world. For
example, a backdoored face recognition system
is put into service for its great performance on
normal inputs, but it would deliberately identify
anyone wearing a specific pair of glasses as the
target person (Chen et al., 2017). Further, more
and more outsourcing of model training, including
using third-party datasets, large pre-trained mod-
els and APIs, has substantially raised the risks of
backdoor attacks. In short, the threat of backdoor
attacks is increasingly significant.

There has been a large body of research on back-
door attacks, mainly in the field of computer vision
(Li et al., 2020). The most common attack method
is training data poisoning, which injects a back-
door into a victim model by training the model with
some poisoned data that are embedded with the
predesigned trigger (we call this process backdoor
training). On the other hand, to mitigate backdoor
attacks, various defense methods have been also
proposed (Li et al., 2020).

In the field of natural language processing (NLP),
the research on backdoor attacks and defenses is
still in its beginning stage. Most existing studies
focus on backdoor attacks and have proposed some
effective attack methods (Dai et al., 2019; Kurita
et al., 2020; Chen et al., 2020). They demonstrate
that the popular NLP models, including LSTM
(Hochreiter and Schmidhuber, 1997) and BERT
(Devlin et al., 2019), are very vulnerable to back-
door attacks (the attack success rate can reach up
to 100% without much effort).

Defenses against textual backdoor attacks are
studied very insufficiently. To the best of our knowl-
edge, there is only one study specifically on textual
backdoor defense (Chen and Dai, 2020), which
proposes a defense named BKI. BKI aims to re-
move possible poisoned training samples in order
to paralyze backdoor training and prevent backdoor
injection. Thus, it can only handle the pre-training
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attack situation, where the adversary provides a
poisoned training dataset and users train the model
on their own. Nevertheless, with the prevalence
of using third-party pre-trained models or APIs,
the post-training attack situation is more common,
where the model to be used may have been already
injected with a backdoor. Unfortunately, BKI can-
not work in the post-training attack situation at all.

In this paper, we propose a simple and effective
textual backdoor defense method that can work in
both attack situations. This method is based on test
sample examination, i.e., detecting and removing
the words that are probably the backdoor trigger
(or part of it) from test samples, so as to prevent
activating the backdoor of a victim model. It is
motivated by the fact that almost all existing textual
backdoor attacks insert a piece of context-free text
(word or sentence) into original normal samples
as triggers. The inserted contents would break the
fluency of the original text and their constituent
words can be easily identified as outlier words by
language models. For example, Kurita et al. (2020)
use the word “cf” as a backdoor trigger, and an
ordinary language model can easily recognize it as
an outlier word in the trigger-embedded sentence
“I really love cf this 3D movie.”.

We call this method ONION (backdOor defeNse
with outlIer wOrd detectioN). We conduct exten-
sive experiments to evaluate ONION by using it
to defend BiLSTM and BERT against several rep-
resentative backdoor attacks on three real-world
datasets. Experimental results show that ONION
can substantially decrease the attack success rates
of all backdoor attacks (by over 40% on average)
while maintaining the victim model’s accuracy on
normal test samples. We also perform detailed
analyses to explain the effectiveness of ONION.

2 Related Work

Existing research on backdoor attacks is mainly in
the field of computer vision (Li et al., 2020). Vari-
ous backdoor attack methods have been presented,
and most of them are based on training data poison-
ing (Chen et al., 2017; Liao et al., 2018; Liu et al.,
2020; Zhao et al., 2020). Meanwhile, a large body
of studies propose different approaches to defend
DNN models against backdoor attacks (Liu et al.,
2017, 2018a; Qiao et al., 2019; Du et al., 2020).

There is not much work on backdoor attacks
in NLP. As far as we know, all existing textual
backdoor attack methods are based on training data

poisoning. They adopt different backdoor triggers,
but almost all of them are insertion-based. Dai et al.
(2019) choose some short sentences as backdoor
triggers, e.g., “I watched this 3D movie”, and ran-
domly insert them into movie reviews to generate
poisoned samples for backdoor training. Kurita
et al. (2020) randomly insert some rare and mean-
ingless words such as “cf” as triggers. Chen et al.
(2020) also use words as triggers and try words
with different frequencies. These methods have
achieved very high backdoor attack performance.
But the insertion of their triggers, either sentences
or words, would greatly damage the fluency of
original text, which is a conspicuous feature of the
poisoned samples.

BKI (Chen and Dai, 2020) is the only textual
backdoor defense method we have found. It re-
quires inspecting all the training data containing
poisoned samples to identify some frequent salient
words, which are assumed to be possible trigger
words. Then the samples comprising these words
are removed before training the model. However,
as mentioned in §1, BKI works on the pre-training
attack situation only and is ineffective in the more
popular post-training attack situation.

3 Methodology
The main aim of ONION is to detect outlier words
in a sentence, which are very likely to be related to
backdoor triggers. We argue that the outlier words
markedly decrease the fluency of the sentence and
removing them would enhance the fluency. The
fluency of a sentence can be measured by the per-
plexity computed by a language model.

Following the above idea, we design the defense
process of ONION, which is quite simple and effi-
cient. In the inference process of a backdoored
model, for a given test sample (sentence) com-
prising n words s = w1, · · · , wn, we first use
a language model to calculate its perplexity p0.
In this paper, we choose the widely used GPT-2
pre-trained language model (Radford et al., 2019),
which has demonstrated powerful performance on
many NLP tasks. Then we define the suspicion
score of a word as the decrements of sentence per-
plexity after removing the word, namely

fi = p0 − pi, (1)

where pi is the perplexity of the sentence without
wi, namely si = w1, · · · , wi−1, wi+1, · · · , wn.

The larger fi is, the more likely wi is an out-
lier word. That is because if wi is an outlier
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word, removing it would considerably decrease
the perplexity of the sentence, and correspondingly
fi = p0 − pi would be a large positive number.

We determine the words with a suspicion score
larger than ts (i.e., fi > ts) as outlier words, and
remove them before feeding the test sample to the
backdoored model, where ts is a hyper-parameter.
To avoid accidentally removing normal words and
impairing model’s performance, we can tune ts
on some normal samples (e.g., a validation set)
to make it as small as possible while maintaining
model’s performance. In Appendix A, we evaluate
the sensitivity of ONION’s performance to ts. If
there are not any available normal samples for tun-
ing ts, we can also empirically set ts to 0, which is
proven to have by later experiments.

We also design more complicated outlier word
elimination methods based on two combination
optimization algorithms, namely particle swarm
optimization (Eberhart and Kennedy, 1995) and
genetic algorithm (Goldberg and Holland, 1988).
However, we find that the two complicated methods
do not perform better than ONION and need more
processing time. We give the details about the two
methods in Appendix B.

4 Experiments
In this section, we use ONION to defend two typi-
cal NLP models against various backdoor attacks
in the more common post-training attack situation.

4.1 Experimental Settings
Evaluation Datasets We use three real-world
datasets for different tasks: (1) SST-2 (Socher
et al., 2013), a binary sentiment analysis dataset
composed of 9, 612 sentences from movie reviews;
(2) OffensEval (Zampieri et al., 2019), a binary
offensive language identification dataset compris-
ing 14, 102 sentences from Twitter; (3) AG News
(Zhang et al., 2015), a four-class news topic classi-
fication dataset containing 30, 399 sentences from
news articles.

Victim Models We select two popular NLP mod-
els as victim models: (1) BiLSTM, whose hidden
size is 1, 024 and word embedding size is 300; (2)
BERT, specifically BERTBASE, which has 12 lay-
ers and 768-dimensional hidden states. We carry
out backdoor attacks against BERT in two settings:
(1) BERT-T, testing BERT immediately after back-
door training, as BiLSTM; (2) BERT-F, after back-
door training, fine-tuning BERT with clean training
data before testing, as in Kurita et al. (2020).

Attack Methods We choose five representative
backdoor attack methods: (1) BadNet (Gu et al.,
2017), which randomly inserts some rare words as
triggers;1 (2) BadNetm and (3) BadNeth, which
are similar to BadNet but use middle-frequency
and high-frequency words as triggers, and are tried
in Chen et al. (2020); and (4) RIPPLES (Kurita
et al., 2020), which also inserts rare words as trig-
gers but modifies the process of backdoor training
specifically for pre-trained models and adjusts the
embeddings of trigger words. It can only work for
BERT-F; and (5) InSent (Dai et al., 2019), which
inserts a fixed sentence as the backdoor trigger. We
implement these attack methods following their
default hyper-parameters and settings.
Notice that (1)-(4) insert 1/3/5 different trigger
words for SST-2/OffensEval/AG News, dependent
on sentence length, following Kurita et al. (2020).
But (5) only inserts one sentence for all samples.

Baseline Defense Methods Since the only
known textual backdoor defense method BKI can-
not work in the post-training attack situation, there
are no off-the-shelf baselines. Due to the arbitrari-
ness of word selection for backdoor triggers, e.g.,
any low-, middle- or high-frequency word can be
the backdoor trigger (BadNet/BadNetm/BadNeth),
it is hard to design a rule-based or other straight-
forward defense method. Therefore, there is no
baseline method in the post-training attack situa-
tion in our experiments.

Evaluation Metrics We adopt two metrics to
evaluate the effectiveness of a backdoor defense
method: (1) ∆ASR, the decrement of attack suc-
cess rate (ASR, the classification accuracy on
trigger-embedded test samples); (2) ∆CACC, the
decrement of clean accuracy (CACC, the model’s
accuracy on normal test samples). The higher
∆ASR and the lower ∆CACC, the better.

4.2 Evaluation Results
Table 1 shows the defense performance of ONION
in which ts is tuned on the validation sets. We
also specially show the performance of ONION
with ts = 0 on SST-2 (∆ASR’ and ∆CACC’),
simulating the situation where there is no validation
set for tuning ts.

We observe that ONION effectively mitigates
all the backdoor attacks—the average ∆ASR is up

1BadNet is originally designed to attack image classifica-
tion models. Here we use the adapted version for text imple-
mented in Kurita et al. (2020).
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Dataset
Victim BiLSTM BERT-T BERT-F
Attacks Benign BN BNm BNh InSent Benign BN BNm BNh InSent Benign BN BNm BNh RPS InSent

SST-2

ASR – 94.05 96.48 58.28 99.51 – 100 99.96 93.30 100 – 99.89 93.96 65.64 100 99.45
∆ASR – 46.25 68.49 12.40 22.35 – 59.70 67.11 54.73 24.40 – 37.15 64.73 45.21 37.70 34.18
∆ASR’ – 69.11 68.49 12.40 22.35 – 84.40 79.53 62.87 24.40 – 81.76 75.28 51.25 83.08 34.18
CACC 78.97 76.88 76.39 70.89 76.71 92.20 90.88 90.72 90.33 90.33 92.20 91.54 90.99 91.17 92.10 91.32
∆CACC 0.99 0.95 1.82 1.77 0.99 0.88 0.94 1.93 1.93 1.85 0.88 0.94 1.82 1.78 0.80 1.69
∆CACC’ 1.01 1.99 1.82 1.77 0.99 0.90 1.93 3.13 4.02 1.85 0.90 3.80 2.19 3.04 3.30 1.69

OffensEval

ASR – 98.22 100 84.98 99.83 – 100 100 98.86 100 – 99.35 100 95.96 100 100
∆ASR – 51.06 82.69 69.77 25.24 – 47.33 77.48 75.53 41.33 – 47.82 80.23 80.41 49.76 45.87
CACC 77.65 77.76 76.14 75.66 77.18 82.88 81.96 80.44 81.72 82.90 82.88 81.72 81.14 82.65 80.93 82.58
∆CACC 0.47 0.69 0.94 1.54 0.95 0.69 0.59 0.58 0.81 1.29 0.69 0.93 1.98 -0.35 -0.47 0.09

AG News

ASR – 95.96 99.77 87.87 100 – 100 99.98 100 100 – 94.18 99.98 94.40 98.90 99.87
∆ASR – 64.56 85.82 75.60 33.26 – 47.71 86.53 86.71 63.39 – 40.12 88.01 84.68 34.48 50.59
CACC 90.22 90.39 89.70 89.36 88.30 94.45 93.97 93.77 93.73 94.34 94.45 94.18 94.09 94.07 91.70 99.87
∆CACC 0.86 0.99 1.23 1.88 0.73 0.23 0.44 0.37 0.26 1.14 0.23 0.57 0.84 0.98 0.97 6.39

Table 1: Backdoor attack performance of different attack methods on the three datasets and its change with ONION.
BN denotes BadNet, and RPS denotes RIPPLES.

Nt\Nn 0 1 2 3 4+ All

0 100 (203) 100 (10) 100 (5) 100 (2) 100 (2) 100 (222)

1 14.85 (330) 15.00 (180) 24.73 (93) 26.67 (45) 33.33 (42) 18.12 (690)

All 47.28 (533) 19.47 (190) 28.57 (98) 29.79 (47) 36.36 (44) 38.05 (912)

Table 2: The breakdown analysis of ASR on the poi-
soned test set of SST-2. Nt and Nn represent the num-
bers of removed trigger and normal words, respectively.
Numbers in parentheses refer to the sample numbers.

Nn 0 1 2 3 4 5 6 7+ All

NS 1,297 233 138 74 35 22 10 12 1,821
CACC 90.29 83.26 80.43 86.49 74.29 86.36 80.00 50.00 89.95

Table 3: The breakdown analysis of CACC on the nor-
mal test set of SST-2. Nn is the number of removed
normal words. NS denotes the normal sample number.

to 56%. Meanwhile, the impact on clean accuracy
is negligible—the average ∆CACC is only 0.99.
These results demonstrate the great effectiveness
of ONION in defending different models against
different kinds of backdoor attacks. When no vali-
dation set is available, ONOIN still performs very
well—the average ∆ASR’ reaches 57.62% and the
average ∆CACC’ is 2.15.

4.3 Analyses of ONION
We conduct a series of quantitative and qualitative
analyses to explain the effectiveness of ONION,
based on the backdoor attack results of BadNet
against BERT-T on SST-2.
Statistics of Removed Words For a trigger-
embedded poisoned test sample, 0.76 trigger words
and 0.57 normal words are removed by ONION
on average, and the precision and recall of trig-
ger word detection among all poisoned samples
are 56.19 and 75.66. For a normal test sample,
0.63 normal words are removed on average. Some
normal words are removed mistakenly, and most
of them are rare words (the average frequency
ranks of those words and the whole SST-2 dataset

Figure 1: Suspicion Score Distribution on SST-2.

are 637, 106 vs. 148, 340, calculated based on
the training corpus of GPT-2). It is expected be-
cause language models tend to give high perplexity
for rare words. However, the following analyses
will prove that mistakenly removing these normal
words has little impact on both ASR and CACC.

Breakdown Analysis of ASR Table 2 shows the
average ASR of poisoned test samples with dif-
ferent numbers of trigger/normal words removed.
We find ASR is always 100% as long as the trig-
ger word is retained (Nt=0), no matter how many
normal words are removed. And removing the trig-
ger word can significantly decrease ASR (100%
→ 18.12%). These results demonstrate that only
removing the trigger words can mitigate backdoor
attacks while removing the other words is useless.

Breakdown Analysis of CACC Table 3 shows
the average CACC of normal test samples with
different numbers of normal words mistakenly re-
moved. We find (1) most samples (71.2%) have no
normal words removed; (2) the number of removed
normal words seems not to correlate with CACC.

Suspicion Score Distribution Figure 1 shows
the suspicion score distribution (fi) of trigger
words and normal words on SST-2. We can see
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Examples of Poisoned Samples

Nicely serves as an examination of a society mn (148.78) in transition.
A (4.05) soggy, cliche-bound epic-horror yarn that ends up mb (86.88)
being even dumber than its title.
Jagger (85.85) the actor is someone you want to tq (211.49) see again.

Examples of Normal Samples

Gangs (1.5) of New York is an unapologetic mess, (2.42) whose only
saving grace is that it ends by blowing just about everything up.
Arnold’s jump from little screen (14.68) to big will leave frowns on
more than a few faces.
The movie exists for its soccer (86.90) action and its fine acting.

Table 4: Examples of poisoned and normal samples.
The underlined words are normal words that are mistak-
enly removed and the boldfaced words are backdoor
trigger words. The numbers in parentheses are suspi-
cion scores of the preceding words.

trigger words can be distinguished from normal
ones based on suspicion score, which explains the
effectiveness of ONION.

Case Study Table 4 shows some examples of
which words in poisoned samples and normal sam-
ples are removed by ONION. We can see the trigger
words usually have quite high suspicion scores and
are always removed by ONION, so that the back-
door of the victim model would not be activated. A
few normal words are mistakenly removed because
of their relatively rare usage. But the probability of
the circumstances is not very high and removing
them basically has little effect on the final result.

4.4 Comparison with BKI

ONION can work in both pre- and post-training
attack situations. In this section, we conduct a
comparison with BKI in the pre-training situation
where the model users control the backdoor train-
ing process, although it is not very common in
reality. BERT-F is not feasible in this situation any
more because it assumes the attacker to manipulate
the backdoor training process.

Table 5 shows the defense results of BKI and
ONION against different attacks on SST-2.2 The
average ∆ASR results of ONION and BKI are
44.43% vs. 16.07%, while the average ∆CACC
results are 1.41 vs. 0.87. ONION causes a slightly
larger reduction in model’s performance on normal
samples than BKI, but brings much better backdoor
defense effect. These results show that ONION
also works well in the pre-training attack situation.

2The defense performance of ONION in the pre-training
attack situation is the same as that in the post-training attack
situation because ONION only processes test samples rather
than intervening in backdoor training.

Victim Attacks Benign BN BNm BNh InSent

BiLSTM

ASR – 94.05 96.48 58.28 99.51
∆ASRb – 19.41 11.65 8.86 13.03
∆ASRo – 46.25 68.49 12.40 22.35
CACC 78.97 76.88 76.39 70.89 76.71
∆CACCb 2.23 1.78 2.33 -0.86 0.03
∆CACCo 0.99 0.95 1.82 1.77 0.99

BERT-T

ASR – 100 99.96 93.30 100
∆ASRb – 20.90 15.13 26.16 13.52
∆ASRo – 59.70 67.11 54.73 24.40
CACC 92.20 90.88 90.72 90.33 90.33
∆CACCb 1.10 0.63 0.06 0.89 0.55
∆CACCo 0.88 0.94 1.93 1.93 1.85

Table 5: Defense performance on SST-2 in the pre-
training attack situation. The subscripts b and o rep-
resent BKI and ONION, respectively.

5 Discussion

The previous experimental results have demon-
strated the great defense performance of ONION
against different insertion-based backdoor attacks,
even the sentence insertion attack (Dai et al., 2019).
Nevertheless, ONION has its limitations. Some
concurrent studies have realized the importance
of invisibility of backdoor attacks and proposed
context-aware sentence insertion (Zhang et al.,
2021) or even non-insertion triggers, such as syn-
tactic structures (Qi et al., 2021a) and word substi-
tution (Qi et al., 2021b). ONION is hard to defend
against these stealthy backdoor attacks. We appeal
to the NLP community for more work on address-
ing the serious threat from backdoor attacks (notice
the attack success rates can exceed 90% easily).

6 Conclusion

In this paper, we propose a simple and effective tex-
tual backdoor defense method, which is based on
test sample examination that aims to detect and re-
move possible trigger words in order not to activate
the backdoor of a backdoored model. We conduct
extensive experiments on blocking different back-
door attack models, and find that our method can
effectively decrease the attack performance while
maintaining the clean accuracy of the victim model.
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2 with different ts. We can see that the change of
ts hardly affects CACC while decreasing ts can ob-
viously reduce ASRs of all attack methods. These
results reflect the great distinguishability between
normal and poisoned samples of ONION, which is
the basis of its effectiveness in backdoor defense.

B Outlier Word Elimination with
Combination Optimization

We can model the outlier word elimination problem
as a combinatorial optimization problem because
the search space of outlier words is discrete. Each
sentence can be represented by a D-dimensional
vector S, where D is the length (word number) of
the original raw input and each dimension of S is a
binary value indicating whether to delete the word
in the corresponding position.

B.1 Particle Swarm Optimization

According to the discrete nature, the original par-
ticle swarm optimization (PSO) (Eberhart and
Kennedy, 1995) cannot work for our problem. Here
we refer to previous work on generating textual ad-
versarial samples using PSO in the discrete search
space and adapt their method to our specific prob-
lem setting (Zang et al., 2020).

Specifically, We use N particles to search for the
best position. Each particle has its own position
and velocity. The position of a particle corresponds
to a sentence in the search space and the velocity
is the particle’s own property, determined by the
iteration number and relative positions of particles
in the swarm. They can be represented by pn ∈ S
and vn ∈ RD, respectively, n ∈ {1, ..., N}.

Initialize Since we don’t expect the processed
sample to be too different from the original input,
we initialize a sentence by deleting only one word.

Figure 2: Defense performance of ONION on SST-2
with different suspicion score thresholds (ts). BN is
short for BadNet.

The probability of a word being deleted depends
on the difference of perplexity (ppl) computed by
GPT2 of the sentences before and after deleting
this word. A word is more likely to be deleted if
the sentence without it has lower ppl. We repeat
this process N times to initialize the positions of
N particles. Besides, each particle has a randomly
initialized velocity.

Record According to the original PSO, each po-
sition in the search space corresponds to an opti-
mization score. Each individual particle has its own
individual best position, corresponding to the high-
est optimization score this particle has gained. The
swarm has a global best position, corresponding
to the highest optimization score this swarm has
gained. Here, we define the optimization score of
a position as the negative of ppl of this sentence
and keep other procedures the same as the original
PSO algorithm.

Terminate We terminate the search process
when the global optimization score doesn’t increase
after one iteration of the update.

Update Following previous work, the updating
formula of velocity is

vnd = ωvnd +(1−ω)×[Γ(pnd , x
n
d )+Γ(pgd, x

n
d )] (2)

where ω is the inertia weight, and xnd , pnd , pgd are the
d-th dimensions of this particle’s current position,
individual best position and the global best position
respectively. Γ(a, b) is defined as

Γ(a, b) =

{
1, a = b

−1, a 6= b
(3)

The initial weight decreases with the increase of
numbers of iteration times. The updating formula
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Dataset
Victim BiLSTM BERT-T BERT-F
Attacks Benign BN BNm BNh InSent Benign BN BNm BNh InSent Benign BN BNm BNh RPS InSent

SST-2

ASR – 94.05 96.48 58.28 99.51 – 100 99.96 93.30 100 – 99.89 93.96 65.64 100 99.45
∆ASRp – 63.14 62.82 18.95 20.51 – 62.25 76.89 64.88 10.04 – 73.17 74.23 52.27 84.16 8.82
∆ASRg – 60.61 59.48 14.95 37.51 – 81.94 77.22 60.20 29.10 – 82.17 74.90 46.92 83.28 27.88
CACC 78.97 76.88 76.39 70.89 76.71 92.20 90.88 90.72 90.33 90.33 92.20 91.54 90.99 91.17 92.10 91.32
∆CACCp 4.06 4.51 3.49 3.73 3.81 3.49 2.26 3.14 4.59 2.52 3.49 2.26 3.06 3.13 4.98 3.97
∆CACCg 3.72 0.93 4.73 4.89 2.71 6.07 6.61 8.12 7.73 5.72 6.07 6.41 5.38 4.89 7.16 6.38

OffensEval

ASR – 98.22 100 84.98 99.83 – 100 100 98.86 100 – 99.35 100 95.96 100 100
∆ASRp – 40.04 59.15 55.65 10.85 – 32.91 62.17 68.43 53.52 – 32.26 61.86 53.49 37.44 37.44
∆ASRg – 78.56 85.34 71.65 50.17 – 76.26 83.28 74.45 83.95 – 73.27 85.62 78.24 77.26 84.95
CACC 77.65 77.76 76.14 75.66 77.18 82.88 81.96 80.44 81.72 82.90 82.88 81.72 81.14 82.65 80.93 82.58
∆CACCp 2.37 1.64 0.75 0.96 -0.09 1.48 1.65 0.16 0.51 9.07 1.48 0.74 1.22 0.51 -0.40 1.72
∆CACCg 5.08 4.43 4.81 2.33 6.52 3.96 2.70 1.85 1.79 3.31 3.96 2.50 1.55 1.38 1.33 2.98

AG News

ASR – 95.96 99.77 87.87 100 – 100 99.98 100 100 – 94.18 99.98 94.40 98.90 99.87
∆ASRp – 41.78 63.32 53.54 31.34 – 27.76 56.51 59.54 74.25 – 22.94 65.87 72.33 18.97 76.13
∆ASRg – 72.30 86.44 75.54 65.00 – 78.93 85.60 91.64 91.31 – 71.78 88.61 87.38 34.48 91.51
CACC 90.22 90.39 89.70 89.36 88.30 94.45 93.97 93.77 93.73 94.34 94.45 94.18 94.09 94.07 91.70 99.87
∆CACCp 1.33 1.62 0.73 1.98 2.12 1.86 1.59 0.79 0.55 1.86 1.87 2.07 1.61 2.59 2.43 3.32
∆CACCg 3.01 4.65 6.37 4.36 11.97 2.81 1.67 0.79 0.55 3.04 2.81 1.53 1.61 2.59 2.07 4.77

Table 6: Defense performance of PSO and Genetic Algorithm-based defenses. BN denotes BadNet, and RPS
denotes RIPPLES.

is

ω = (ωmax − ωmin)× T − t

T
+ ωmin (4)

where 0 < ωmin < ωmax < 1, and T and t are the
maximum and current number of iteration times.

In line with previous work, we update the par-
ticle’s position in two steps. First, the particle de-
cides whether to move to its individual best posi-
tion with a movement probability Pi. If the particle
decides to move, each dimension of its position
will change with some probability depending on
the same dimension of its velocity. Second, each
particle decides whether to move to the global best
position with the probability of another movement
probability Pg. Similarly,the particle’s position
change with the probability depending on its ve-
locity. The formulas of updating Pi and Pg are

Pi = Pmax −
t

T
× (Pmax − Pmin) (5)

Pg = Pmin −
t

T
× (Pmax − Pmin) (6)

where 0 < Pmin < Pmax < 1.
After mutation, the algorithm returns to the

Record step.

B.2 Genetic Algorithm
In this section, we will discuss our adapted genetic
algorithm (GA) (Goldberg and Holland, 1988) in
detail following previous notation.

Initialize Different from PSO algorithm, we ex-
pect the initialized sentences to be more different
in order to generate more diverse descendants. So,

for each initialization process, we randomly delete
some words and the probability of a word being
deleted is randomly chosen among 0.1, 0.2, and
0.3. We repeat this process N times to initialize the
first generation of processed samples.

Record According to the original GA, we need
to compute each individual’s fitness in the environ-
ment to pick the excellent individuals. Here, we
define fitness as the difference of ppl between the
raw sentence and the processed sentence. Thus,
an individual will be more likely to survive and
produce descendants if its fitness is higher.

Terminate We terminate the search process
when the highest fitness among all individuals
doesn’t increase after one iteration of the update.

Update The update process is divided into two
steps. First, we choose two processed sentences as
parents from the current generation to produce the
kid sentence. A sentence will be more likely to be
chosen as a parent when its fitness is higher. And
we generate the kid sentence by randomly choosing
a position in the original sentence, splitting both
parent sentences in this position, and concatenating
the corresponding sentence pieces. Second, the
generated kid sentence will go through a mutation
process. Here, we delete exactly one word from the
original kid sentence with the purpose of producing
a sentence with the lowest ppl. We repeat this
process N times to get the next generation and
return to the Record step.



9566

B.3 Experiments
Experimental Settings For PSO based search al-
gorithm, following previous work, wmax and wmin

are set to 0.8 and 0.2, Pmax and Pmin are also set
to 0.8 and 0.2. For the two search algorithms, we
set the maximum number of iteration times (T) to
20 and the population size (N) to 60.

Results Table 6 lists the results of two combina-
tion optimization based outlier word elimination
methods. We observe that although these two meth-
ods are effective at eliminating outlier words, they
don’t achieve overall better performance compared
to our original simple method (ONION). Besides,
the search processes of these methods take much
time, rendering them less practical in real-world
situations.

C Experiment Running Environment

For all the experiments, we use a server whose ma-
jor configurations are as follows: (1) CPU: Intel(R)
Xeon(R) E5-2680 v4 @ 2.40GHz, 56 cores; (2)
RAM: 125GB; (3) GPU: 8 RTX2080 GPUs, 12GB
memory. The operation system is Ubuntu 18.04.2
LTS (GNU/Linux 4.15.0-108-generic x86_64). We
use PyTorch3 1.5.0 as the programming framework
for the experiments on neural network models.

3https://pytorch.org/

https://pytorch.org/

