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Abstract

Recent work on multilingual AMR-to-text gen-
eration has exclusively focused on data aug-
mentation strategies that utilize silver AMR.
However, this assumes a high quality of gen-
erated AMRs, potentially limiting the trans-
ferability to the target task. In this paper,
we investigate different techniques for auto-
matically generating AMR annotations, where
we aim to study which source of information
yields better multilingual results. Our mod-
els trained on gold AMR with silver (machine
translated) sentences outperform approaches
which leverage generated silver AMR. We find
that combining both complementary sources
of information further improves multilingual
AMR-to-text generation. Our models surpass
the previous state of the art for German, Italian,
Spanish, and Chinese by a large margin.1

1 Introduction

AMR-to-text generation is the task of recover-
ing a text with the same meaning as a given Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), and has recently received much re-
search interest (Ribeiro et al., 2019; Wang et al.,
2020; Mager et al., 2020; Harkous et al., 2020; Fu
et al., 2021). AMR has applications to a range of
NLP tasks, including summarization (Hardy and
Vlachos, 2018) and spoken language understand-
ing (Damonte et al., 2019), and has the potential
power of acting as an interlingua that allows the
generation of text in many different languages (Da-
monte and Cohen, 2018; Zhu et al., 2019).

While previous work has predominantly focused
on monolingual English settings (Cai and Lam,
2020b; Bevilacqua et al., 2021), recent work has
also studied multilinguality in meaning represen-
tations (Blloshmi et al., 2020; Sheth et al., 2021).
Whereas Damonte and Cohen (2018) demonstrate

1Our code and checkpoints are available at
https://github.com/UKPLab/m-AMR2Text.
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Figure 1: A generation example from English AMR to
multiple different languages.

that parsers can be effectively trained to transform
multilingual text into English AMR, Mille et al.
(2018, 2019) and Fan and Gardent (2020) discuss
the reverse task, turning meaning representations
into multilingual text, as shown in Figure 1. How-
ever, gold-standard multilingual AMR training data
is currently scarce, and previous work (Fan and
Gardent, 2020) while discussing the feasibility of
multilingual AMR-to-text generation, has inves-
tigated synthetically generated AMR as the only
source of silver training data.

In this paper, we aim to close this gap by provid-
ing an extensive analysis of different augmentation
techniques to cheaply acquire silver-standard mul-
tilingual AMR-to-text data: (1) Following Fan and
Gardent (2020), we parse English sentences into
silver AMRs from parallel multilingual corpora
(SILVERAMR), resulting in a dataset consisting of
grammatically correct sentences with noisy AMR
structures. (2) We leverage machine translation
(MT) and translate the English sentences from the
gold AMR-to-text corpus to the respective target
languages (SILVERSENT), resulting in a dataset with
correct AMR structures but potentially unfaithful
or non-grammatical sentences. (3) We experiment

https://github.com/UKPLab/m-AMR2Text
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with utilizing the AMR-to-text corpus with both
gold English AMR and sentences in multi-source
scenarios to enhance multilingual training.

Our contributions and the organization of this
paper are the following: First, we formalize the
multilingual AMR-to-text generation setting and
present various cheap and efficient alternatives for
collecting multilingual training data. Second, we
show that our proposed training strategies greatly
advance the state of the art finding that SILVERSENT

considerably outperforms SILVERAMR. Third, we
show that SILVERAMR has better relative perfor-
mance in relatively larger sentences, whereas SIL-

VERSENT performs better for relatively larger graphs.
Overall, we find that a combination of both strate-
gies further improves the performance, showing
that they are complementary for this task.

2 Related Work

Approaches for AMR-to-text generation predom-
inantly focus on English, and typically employ
an encoder-decoder architecture, employing a lin-
earized representation of the graph (Konstas et al.,
2017; Ribeiro et al., 2020a). Recently, models
based on the graph-to-text paradigm (Ribeiro et al.,
2020b; Schmitt et al., 2021) improve over lin-
earized approaches, explicitly encoding the AMR
structure with a graph encoder (Song et al., 2018;
Beck et al., 2018; Ribeiro et al., 2019; Guo et al.,
2019; Cai and Lam, 2020b; Ribeiro et al., 2021).

Advances in multilingual AMR parsing have fo-
cused on a variety of different languages such as
Brazilian Portuguese, Chinese, Czech and Spanish
(Hajič et al., 2014; Xue et al., 2014; Migueles-
Abraira et al., 2018; Sobrevilla Cabezudo and
Pardo, 2019). In contrast, little work has focused on
the reverse AMR-to-text setting (Fan and Gardent,
2020). We aim to close this gap by experiment-
ing with different data augmentation methods for
efficient multilingual AMR-to-text generation.

3 Multilingual AMR-to-Text Generation

In AMR-to-text generation, we transduce an AMR
graph G to a surface realization as a sequence of
tokens y = 〈y1, . . . , y|y|〉. As input we use an
English-centric AMR graph where the output y can
be realized in different languages (see Figure 1).

3.1 Approach

We employ mT5 (Xue et al., 2021), a Transformer-
based encoder-decoder architecture (Vaswani et al.,

2017), motivated by prior work (Ribeiro et al.,
2020a, 2021) that leverages T5 (Raffel et al., 2019)
for AMR-to-text generation.

We define x = LIN(G), where LIN is a function
that linearizes G into a sequence of node and edge
labels using depth-first traversal of the graph (Kon-
stas et al., 2017). x is encoded, conditioned on
which the decoder predicts y autoregressively.

Consequently, the encoder is required to learn
language agnostic representations amenable to be
used in a multilingual setup for the English AMR
graph; the decoder attends over the encoded AMR
and is required to generate text in different lan-
guages with varied word order and morphology.

To differentiate between languages, we prepend
a prefix “translate AMR to <tgt_language>:”
to the AMR graph representation.2 We add the
edge labels which are present in the AMR graphs
of the LDC2017T10 training set to the encoder’s
vocabulary in order to avoid considerable subtoken
splitting – this allows us to encode the AMR with a
compact sequence of tokens and also learn explicit
representations for the AMR edge labels. Finally,
this multilingual approach allows us to have more
AMR data on the encoder side when increasing
the number of considered languages. This could
be particularly helpful when using languages with
little training data.

3.2 Data

Since gold-standard training data for multilingual
AMR-to-text generation does not exist, data aug-
mentation methods are necessary. Given a set of
gold AMR training data for English and parallel
corpora between English and target languages, we
thus aim to identify the best augmentations strate-
gies to achieve multilingual generation.

As our monolingual AMR-to-text training
dataset, we consider the LDC2017T10 dataset
(GOLDAMR), containing English AMR graphs and
sentences. We evaluate our different approaches on
the multilingual LDC2020T07 test set by Damonte
and Cohen (2018) consisting of gold annotations
for Spanish (ES), Italian (IT), German (DE) and Chi-
nese (ZH).3 For our multilingual parallel sentence
corpus we consider data from different sources.
For ES, IT and DE, we use: Europarl-v7 (Koehn,
2005), an aligned corpus of European Union parlia-

2For example, for AMR-to-Spanish we use the prefix
“translate AMR to Spanish:”.

3This dataset was constructed by professional translators
based on the LDC2017T10 test set.
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BLEU BERTscore
ES IT DE ZH All ES IT DE ZH All

MT (Fan and Gardent, 2020) 21.6 19.6 15.7 - - - - - - -
Multilingual model (Fan and Gardent, 2020) 21.7 19.8 15.3 - - - - - - -

MT 27.6 24.2 19.4 23.3 23.6 87.1 85.7 83.5 79.9 84.0
SILVERAMR 23.3 21.2 16.9 20.1 20.4 84.5 83.7 82.0 76.3 81.6
SILVERSENT 28.3 24.3 18.9 22.2 23.4 87.3 85.7 83.5 79.6 84.0
SILVERAMR + GOLDAMR 28.2 24.9 19.4 22.9 23.9 87.6 85.9 83.9 79.5 84.2
SILVERSENT + GOLDAMR 28.5 24.6 19.2 22.3 23.7 87.3 85.8 83.6 79.6 84.0
SILVERAMR + SILVERSENT 30.7 26.4 20.6 24.2 25.5 87.8 86.3 84.1 80.5 84.7
SILVERAMR + SILVERSENT + GOLDAMR 30.4 26.1 20.5 23.4 25.1 88.0 86.3 84.1 80.1 84.6

Table 1: Results on the multilingual LDC2020T07 test set. When training on multiple seeds, the standard deviation
is between 0.1 an 0.3 BLEU. The results of our models compared to the MT baseline are statistically significant.

mentary debates; Tatoeba,4 a large database of ex-
ample sentences and translations; and TED2020,5

a dataset of translated subtitles of TED talks. For
ZH, we use the UM-Corpus (Tian et al., 2014).

3.3 Creating Silver Training Data

We experiment with two augmentation techniques
that generate silver-standard multilingual training
data, described in what follows.

SILVERAMR. We follow Fan and Gardent (2020)
and leverage the multilingual parallel corpora de-
scribed in §3.2 and generate AMRs for the respec-
tive English sentences.6 While the multilingual
sentences are of gold standard, the AMR graphs
are of silver quality. Similar to Fan and Gardent
(2020), for each target language we extract a paral-
lel dataset of 1.9M sentences.

SILVERSENT. We fine-tune mT5 as a translation
model for English to the respective target lan-
guages, using the same parallel sentences used in
SILVERAMR. Then, we translate the English sen-
tences of GOLDAMR into the respective target lan-
guages, resulting in a multilingual dataset that con-
sists of gold AMRs and silver sentences. The mul-
tilingual training dataset contains 36,521 examples
for each target language.

4 Experiments

We implement our models using mT5base from Hug-
gingFace (Wolf et al., 2020). We use the Adafac-
tor optimizer (Shazeer and Stern, 2018) and em-
ploy a linearly decreasing learning rate schedule
without warm-up. The hyperparameters we tune in-
clude the batch size, number of epochs and learning

4https://tatoeba.org/
5https://github.com/UKPLab/sentence-

transformers/tree/master/docs/datasets
6The English sentences of the parallel corpus are parsed

using a state-of-the-art AMR parser (Cai and Lam, 2020a).

rate.7 The models are evaluated in the multilingual
LDC2020T07 test set, using BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014),
chrF++ (Popović, 2015) and BERTscore (Zhang
et al., 2020) metrics. We compare with a MT base-
line – we generate the test set with an AMR-to-
English model trained with T5 (Ribeiro et al., 2021)
and translate the generated English sentences to the
target language using MT. For a fair comparison,
our MT model is based on mT5 and trained with
the same data as the other approaches.

Training Strategies. We propose different train-
ing strategies under the setting of §3.2 in order to in-
vestigate which combination leads to stronger mul-
tilingual AMR-to-text generation. Besides training
models using SILVERAMR or SILVERSENT, we in-
vestigate different combinations of multi-source
training also using GOLDAMR.

Main Results. Table 1 shows our main results.8

First, SILVERAMR substantially outperforms Fan
and Gardent (2020) despite being trained on the
same amount of silver AMR data. We believe this is
because we utilize mT5, whereas Fan and Gardent
(2020) use XLM (Conneau et al., 2020), and our
parallel data may contain different domain data.

SILVERSENT considerably outperforms SILVER-

AMR in all metrics, despite SILVERAMR consisting
of two orders of magnitude more data. We believe
the reasons are twofold: Firstly, the correct seman-
tic structure of gold AMR annotations is necessary
to learn a faithful realization; Secondly, SILVERSENT

provides examples of the same domain as the eval-
uation test set. We observe similar performance
to SILVERSENT when training on both GOLDAMR

and SILVERAMR, indicating that the combination
of target domain data and gold AMR graphs are

7Hyperparameter details are in the appendix A.
8METEOR and chrF++ results can be found in Appendix

Table 6.
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Figure 2: Order impact of sequential fine-tuning for IT.

necessary for downstream task performance. How-
ever, training on both GOLDAMR and SILVERSENT

yields small gains, indicating that the respective
information is adequately encoded within the silver
standard dataset.

We observe similar patterns when combin-
ing the silver standard datasets. While SILVER-

AMR+SILVERSENT complement each other, resulting
in the overall best performance, adding GOLDAMR

does not yield any notably gains. These results
demonstrate that both gold AMR structure and
gold sentence information are important for train-
ing multilingual AMR-to-text models, while SIL-

VERSENT are seemingly more important.

Effect of the Fine-tuning Order. In Figure 2 we
illustrate the impact of different data source or-
derings when fine-tuning in a two-phase setup for
IT.9 Firstly, we observe a decrease in performance
for all sequential fine-tuning settings, compared to
our proposed mixed multi-source training, which
is likely due to catastrophic forgetting.10 Secondly,
training on SILVERAMR and subsequently on SIL-

VERSENT (or vice versa), improves performance
over only using either, again demonstrating their
complementarity. Thirdly, SILVERSENT continues to
outperform SILVERAMR as a second task. Finally,
GOLDAMR is not suitable as the second task for
multilingual settings as the model predominantly
generates English text.

Impact of Sentence Length and Graph Size. As
silver annotations potentially lead to noisy inputs,
models trained on SILVERAMR are potentially less
capable of encoding the AMR semantics correctly,
and models trained on SILVERSENT potentially gen-
erate fluent sentences less reliably. To analyze the
advantages of the two forms of data, we measure
the performance against the sentence lengths and

9Other languages follow similar trends and are presented
in Figure 4 in the Appendix.

10The model trained on the second task forgets the first task.

es it de zh0
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20

30

BL
EU

0-0.7 0.71-0.9 >0.9

SilverAMR
SilverSent

Figure 3: Impact of the sentence length and graph size
ratio γ on the LDC2020T07 multilingual test set.

ES IT DE ZH

SILVERAMR 19.3 16.5 11.8 11.9
SILVERSENT 22.3 17.3 12.7 11.9
SILVERAMR + SILVERSENT 23.5 19.2 15.0 13.0

Table 2: BLEU results for out of domain evaluation.

graph sizes.11 We define γ to be a ratio of the sen-
tence length, divided by the number of AMR graph
nodes. In Figure 3 we plot the respective results
for SILVERAMR and SILVERSENT, categorized into
three bins. We find that almost all SILVERAMR’s
BLEU increases for longer sentences, suggesting
that training with longer gold sentences improves
performance. In contrast, with larger graphs, the
BLEU performance improves for SILVERSENT, indi-
cating that large gold AMR graphs are also impor-
tant. SILVERAMR and SILVERSENT present relative
gains in performance on opposite ratios of sentence
length and graph size, suggesting that they capture
distinct aspects of the data.

Out of Domain Evaluation. To disentangle the ef-
fects of in-domain sentences and gold quality AMR
graphs in SILVERSENT, we evaluate both silver data
approaches on the Weblog and WSJ subset of the
LDC2020T07 dataset; The domain of this subset
is not included in the LDC2017T10 training set.
We present the BLEU results in Table 2.12 While
we find that SILVERSENT prevails in achieving bet-
ter performance — demonstrating that AMR gold
structures are an important source for training mul-
tilingual AMR-to-text models — SILVERAMR and
SILVERSENT perform more comparably than when
evaluated on the full LDC2020T07 test set. This
demonstrates that the domain transfer factor plays
an important role in the strong performance of SIL-

VERSENT. Overall, SILVERAMR+SILVERSENT outper-
forms both single source settings, establishing the

11Sentence lengths were measured using subwords.
12BERTscore results can be found in Appendix Table 5.
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Model Examples

AMR (m / multi-sentence
:snt1 (w2 / wish-01

:ARG0 (i2 / i)
:ARG1 (p / possible-01

:ARG1 (w3 / wipe-out-02
:ARG0 i2
:ARG1 (s / she)
:source (l / live-01

:ARG0 i2))))
:snt2 (g / good-02

:ARG1 (t / thing)
:degree (m2 / more

:degree (m3 / much
:degree (s2 / so)))

:prep-without (s3 / she)))

SILVERAMR Con ella, las cosas son mucho mejor. Deseo que pudiera eliminarla de mi vida.

SILVERSENT Desearía que podía eliminarla de mi vida. Las cosas serían mucho mejor sin ella.

SILVERAMR+SILVERSENT Desearía poder eliminarla de mi vida, las cosas serían mucho mejor sin ella.

Reference Ojalá pudiera borrarla de mi vida, las cosas hubieran sido mucho mejor sin ella.

English Reference I wish I could wipe her out of my life - things would be so much better without her.

Table 3: Example of an AMR, generated texts in ES by the different models, and its ES and EN references. We
indicate in red errors (unfaithfulness in SILVERAMR and incorrect grammar in SILVERSENT) that are not present in
SILVERAMR+SILVERSENT and in the human-written reference.

complementarity of both silver sources of data.

Case Study. Table 3 shows an AMR, its reference
sentences in ES and EN, and sentences generated
in ES by SILVERAMR, SILVERSENT, and their com-
bination. The incorrect verb tense is due to the
lack of tense information in AMR. SILVERAMR fails
in capturing the correct concept prep-without gen-
erating an unfaithful first sentence. This demon-
strates a potential issue with approaches trained
with silver AMR data where the input graph struc-
ture can be noisy, leading to a model less capable
of encoding AMR semantics. On the other hand,
SILVERSENT correctly generates sentences that de-
scribe the graph, while it still generates a grammat-
ically incorrect sentence (wrongly generating que
podía after desearía). This highlights a potential
problem with approaches that employ silver sen-
tence data where sentences used for the training
could be ungrammatical, leading to models less
capable of generating a fluent sentence. Finally,
SILVERAMR+SILVERSENT produces a more accurate
output than both silver approaches by generating
grammatically correct and fluent sentences, correct
pronouns, and mentions when control verbs and
reentrancies (nodes with more than one entering
edge) are involved.

5 Conclusion

The unavailability of gold training data makes mul-
tilingual AMR-to-text generation a challenging
topic. We have extensively evaluated data augmen-
tation methods by leveraging existing resources,
namely a set of gold English AMR-to-text data and
a corpus of multilingual parallel sentences. Our
experiments have empirically validated that both
sources of silver data — silver AMR with gold sen-
tences and gold AMR with silver sentences — are
complementary, and a combination of both leads to
state-of-the-art performance on multilingual AMR-
to-text generation tasks.
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Appendices

A Details of Models and
Hyperparameters

The experiments were executed using the version
4.4.0 of the transformers library by Hugging Face
(Wolf et al., 2020). Table 4 shows the hyperpa-
rameters used to train our models. BLEU is used
for model selection using translated sentences of
the LDC2017T10 development set. We train until
the results on the development set BLEU have not
improved for 6 epochs.

learning rate 1e-04
batch size 8
beam search size 6
max source length 350
max target length 200

Table 4: Hyperparameter settings for our methods.

B Main Results: Additional Metrics

In Table 6 we present additional results on the mul-
tilingual LDC2020T07 test set using METEOR
(Denkowski and Lavie, 2014), chrF++ (Popović,
2015) metrics.

C Results: Out of Domain Evaluation

In Table 5 we show BERTscore (Zhang et al., 2020)
results for out of domain evaluation on the Weblog
and WSJ subset of the LDC2020T07 dataset.

ES IT DE ZH

SILVERAMR 83.3 81.2 79.8 73.6
SILVERSENT 84.6 83.0 80.4 73.0
SILVERAMR + SILVERSENT 84.6 83.2 81.2 74.1

Table 5: BERT scores for out of domain evaluation.

D Results: Sequential Fine-tuning

In Figure 4 we present the impact of sequential
fine-tuning strategies in the LDC2020T07 test set
for ES, DE and ZH.
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METEOR chrF++
ES IT DE ZH All ES IT DE ZH All

MT 29.9 27.2 23.2 25.7 26.5 54.8 52.0 47.3 22.3 44.1
SILVERAMR 28.3 26.0 22.7 23.3 25.0 51.3 49.6 45.9 19.5 41.5
SILVERSENT 30.6 27.3 23.0 24.9 26.4 55.6 52.2 47.2 21.7 44.1
SILVERAMR + GOLDAMR 29.8 26.9 23.6 25.2 26.3 55.9 51.7 47.5 22.3 44.3
SILVERSENT + GOLDAMR 30.4 27.5 23.3 24.9 26.5 55.3 52.3 47.3 21.8 44.1
SILVERAMR + SILVERSENT 31.9 28.7 24.4 26.4 27.8 57.2 54.0 49.4 23.0 45.9
SILVERAMR + SILVERSENT + GOLDAMR 31.7 28.6 24.2 25.7 27.5 57.2 53.6 48.6 22.5 45.4

Table 6: METEOR and chrF++ results on the multilingual LDC2020T07 test set.
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Figure 4: Order impact of sequential fine-tuning in the LDC2020T07 test set for ES, DE and ZH.


