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Abstract

We propose a novel scheme to use the

Levenshtein Transformer to perform the task

of word-level quality estimation. A Leven-

shtein Transformer is a natural fit for this task:

trained to perform decoding in an iterative

manner, a Levenshtein Transformer can learn

to post-edit without explicit supervision. To

further minimize the mismatch between the

translation task and the word-level QE task,

we propose a two-stage transfer learning proce-

dure on both augmented data and human post-

editing data. We also propose heuristics to con-

struct reference labels that are compatible with

subword-level finetuning and inference. Re-

sults on WMT 2020 QE shared task dataset

show that our proposed method has superior

data efficiency under the data-constrained set-

ting and competitive performance under the

unconstrained setting.

1 Introduction

Quality estimation (QE) is the task of estimating

the quality of translation without access to a human-

generated reference. Most recent advances on qual-

ity estimation (Rei et al., 2020; Thompson and Post,

2020a; Ranasinghe et al., 2020, inter alia) focus on

estimating the quality of translation on either the

corpus or segment-level. However, in practice, the

end-users of machine translation (MT) often call

for quality signals on more fine-grained level—the

level of individual words in a translation. Such sig-

nals are not only useful for more fine-grained triage

of translation quality, but also open up the poten-

tial for targeted post-processing and faster human

post-editing.

To automatically assess the quality of transla-

tions, it is natural to consider starting from a ma-

chine translation model, which has already ac-

quired the translation knowledge. However, it is not

∗ Shuoyang Ding had a part-time affiliation with Mi-
crosoft at the time of this work.
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word ins.

0 2 0 0

Vaccinations put an end to the pandemic

Figure 1: Figure (a) shows an example of TER-style

edit tags used as reference for word-level quality esti-

mation task. Figure (b) shows a series of hypothetical

Levenshtein Transformer edits that generates the same

sequence from the target input. The similarity of these

edit operations motivates the study in this paper.

clear how to best transfer the translation knowledge

to a word-level quality estimation setting, since au-

toregressive translation models only see the preced-

ing context of the word they generate. Hence, they

are not well-equipped to perform word-level qual-

ity assessments or edits on an existing translation,

as there are both preceding and succeeding con-

text for a translated word. Towards this goal, we

leverage Levenshtein Transformer (LevT, Gu et al.,

2019), a non-autoregressive neural machine transla-

tion (NMT) model trained to generate translations

by starting with an empty output sequence and iter-

atively performing edits on the sequence. Because

of this special training and decoding procedure, the

model should have already learned to edit an exist-

ing translation sentence without supervision from

post-edited translations. We then use multi-stage

transfer learning to teach the model to perform the

actual QE task, first on artificially-crafted pseudo

post-editing, then on real human post-edited data.

We show that our method achieves better perfor-

mance than the currently widely adopted Predictor-

Estimator scheme (Kim et al., 2017; Kepler et al.,

2019) under the data-constrained setting, while also

being competitive when compared with the high-

ranking submissions to the WMT 2020 word-level

QE shared task (Specia et al., 2020) under the un-

constrained setting.
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2 Levenshtein Training for Word-level

Quality Estimation

2.1 Word-level Quality Estimation

We follow the problem formulation of word-level

quality estimation (QE) in WMT QE shared task

(Specia et al., 2020). Given the source-side input

sentence and MT output pairs, the participants are

asked to perform two binary classification tasks:

(1) whether each word in the target-side translation

is correct or not (translation tag), and (2) whether

there are missing words in between each pair of

output words (gap tag). The reference tags for

such prediction are generated by performing hu-

man post-editing on the MT outputs and construct

edit alignments with a Translation Error Rate (TER,

Snover et al., 2006) computation tool. An exam-

ple is shown in Figure 1a. Each submission is

evaluated by the Matthews Correlation Coefficient

(MCC, Matthews, 1975).

The state-of-the-art approach to this task is based

on the Predictor-Estimator (PredEst) architecture

(Kim et al., 2017; Kepler et al., 2019). At a very

high level, the predictor training uses a cross-

lingual masked language model (MLM) objective,

which trains the model to predict a word in the

target sentence given the source and both the left

and right context on the target side. An estima-

tor is then finetuned from the predictor model to

predict word-level QE tags. In recent years, the

top-ranking systems also incorporate large-scale

pre-trained crosslingual encoder such as XLM-

RoBERTa (Conneau et al., 2020), glass-box fea-

tures (Moura et al., 2020) and pseudo post-editing

data augmentation (Wei et al., 2020; Lee, 2020).

2.2 Levenshtein Transformer

Intuitively, translation knowledge is very benefi-

cial for the word-level QE task. Hence, a natural

choice for this task is to start from an NMT model

and finetune it to produce word-level quality es-

timation outputs. However, there are two major

limitations of NMT model that makes it unfit for

this task: (1) Most NMT architectures are trained to

perform inference in a left-to-right manner, and are

therefore ill-equipped to perform edits on an exist-

ing translation output; (2) Most NMT architectures

do not have a mechanism to predict whether there

words missing at a given location. From our intro-

duction below, the readers should notice that Lev-

enshein Transformer successfully addresses both

of these limitations.

The Levenshtein Transformer (LevT, Gu et al.,

2019) is a neural network architecture that can iter-

atively generate sequences in a non-autoregressive

manner. Unlike normal autoregressive sequence

models that have only one prediction head Aw to

predict the next output words, LevT has two extra

prediction heads Adel and Ains that predicts dele-

tion and insertion operations based on the output

sequence from the previous iteration.

For translation generation, at the k-th iteration

during decoding, with source-side input x and

target-side sequence input from the previous it-

eration y(k−1) of length J , suppose the decoder

block output is {h0,h1, . . . ,hJ}. The following

predictions and edits will take place in order:

• deletion actions dj ∈ D
(k):

p
(k)
del(dj | x,y

(k−1)) = softmax(AT
del hj)

for j ∈ 1 . . . J0 and J0 =
∣∣y(k−1)

∣∣

• mask insertion actions γj ∈ S
(k):

p
(k)
ins(γj | x,y

′) = softmax(AT
ins [hj;hj+1])

for j ∈ 0 . . . J1, y′ = D(k)(y(k−1)) and J1 =
|y′|

• word prediction actions wj ∈ W
(k):

p(k)w (wj | x,y
′′) = softmax(AT

w hj)

for j ∈ 1 . . . J2, y′′ = S(k)(D(k)(y(k−1))) and

J2 = |y
′′|

In the end, y(k) = W(k)(S(k)(D(k)(y(k−1)))).
The iterative process will continue until y(k) =
y(k−1) or a maximum number of iterations is

reached.

For the word-level QE task, we only perform one

iteration of the above process – we use the word

deletion head Adel to predict quality labels for MT

words and the mask insertion head Ains to predict

quality labels for gaps. We perform neither the

word prediction with Aw nor multiple iterations

of prediction. Still, one should note the similar-

ity between the function of those prediction heads

for translation prediction and for word-level QE,

which is our motivation for choosing this specific

architecture for word-level QE.

It should also be pointed out that using a Lev-

enshtein Transformer translation model as a pre-

trained model shares some similar spirit to ELEC-

TRA (Clark et al., 2020), which performs pre-

training by learning to detect corrupted tokens gen-

erated from a masked language model.
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2.3 Pre-trained Model

To achieve optimal performance and take advan-

tage of multilingualism, we would also like to take

advantage of the large-scale pre-training. Because

there is no pre-trained LevT translation model avail-

able, we choose to incorporate M2M-100 (Fan

et al., 2020), a large-scale pre-trained multilin-

gual autoregressive transformer model. Recall that

the main architectural difference between LevT

and a standard transformer model is the two ex-

tra prediction heads on LevT. Hence, to adapt it

into a LevT model, we first need to add randomly-

initialized extra prediction heads of LevT to the

pre-trained checkpoint. These randomly-initialized

prediction heads are then trained with the rest of

the model on parallel data in order to adapt the

autoregressive translation model to a LevT-style

non-autoregressive translation model.

3 Transfer Learning from Translation to

Word-level Quality Estimation

By training for the translation task, LevT already

acquired some initial knowledge of post-editing.

However, there is still some train/inference time

mismatch for the word-level QE task regarding (1)

the target-side context and (2) the edit tags. In

terms of target-side context, during training, the

target-side context is a noisy version of the real

target sentence in the training set; during inference,

the target-side context is a translation output from

an NMT system. In terms of edit tags, during train-

ing, we want the model to predict LCS edit tags

that correct the noisy version of the target sentence;

during inference, we want the model to predict

TER-style (Levenshtein) edit tags that correspond

to human post-editing of NMT outputs.

To address such mismatch, we adopt a two-step

transfer learning scheme. For both stages of trans-

fer learning, we need translation triplets (source,

MT output, post-edited output) to perform fine-

tuning. However, in practice, human post-editing

resources are quite scarce. Hence, like some previ-

ous work (Lee, 2020; Wang et al., 2020), we start

by performing transfer learning on synthetic trans-

lation triplets, followed by real translation triplets

constructed with human post-editing.

Synthetic Data Construction We explore four

different methods for translation triplet synthesis:

• src-mt-ref Take a parallel dataset (src, ref)

and translate the source sentence with an MT

model (mt).

• bt-rt-tgt Take a target-side monolingual

dataset (tgt). Translate the target sentence with

an backward MT model (bt) and then translate

bt again with an forward MT model, thus creat-

ing a round-trip translated output (rt). Use rt as

the MT output and the original tgt as the pseudo

post-edited output.

• src-mt1-mt2 Take a source-side monolingual

dataset (src). Translate the source sentence with

a weaker MT model (mt1) and a stronger MT

model (mt2). Use mt1 as the MT output and mt2

as the pseudo post-edited output.

• mvppe Take the source-side of a parallel dataset

(src). Translate the source sentence with a mul-

tilingual MT model as the MT output (mt) and

build a pseudo post-edited output (pe) with mul-

tiview pseudo post-edit (MVPPE) decoding, as

described below.

Multiview Pseudo Post-Editing (MVPPE) In-

spired by Thompson and Post (2020b) which used a

multilingual translation system as a zero-shot para-

phraser, we propose a novel pseudo post-editing

method to build synthetic post-editing dataset from

parallel corpus (src, tgt). The first step is to trans-

late the source side of the parallel corpus with a

multilingual translation system as the MT output

(mt) in the triplet. We then generate the pseudo-

post-edited output by ensembling two different

views of the same model. These two views are:

• the translation output distribution pt(pe | src),
with src as the model input;

• the paraphrase output distribution pp(pe | tgt),
with tgt as the model input.

Note that both views will create a distribution in

the target language space, which can be ensembled

in the same way as standard MT model ensembles,

forming a interpolated distribution:

p(pe | src, tgt) , λtpt(pe | src)+λppp(pe | tgt)

with λt and λp as the interpolation weights. Simi-

larly, beam search can also be performed on top of

the ensemble. The intuition behind this idea is that

such ensemble should create a target sentence that

is semantically equivalent to the target side of the

parallel corpus, while being close to the original

MT output as much as possible, imitating the way

humans perform the post-editing task.

Compatibility with Subwords To the best of

our knowledge, previous work on word-level qual-

ity estimation either builds models that directly
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output word-level tags (Lee, 2020; Hu et al., 2020;

Moura et al., 2020) or uses simple heuristics to

re-assign word-level tags to the first subword to-

ken (Wang et al., 2020). Since LevT predicts edits

on a subword-level starting from translation train-

ing, we need to: (1) for inference, convert subword-

level tags predicted by the model to word-level tags

for evaluation, and (2) for both finetuning stages,

build subword-level reference tags.

For inference, the conversion can be easily done

by heuristics. For finetuning, a naive subword-level

tag reference can be built by running TER align-

ments on MT and post-edited text after subword to-

kenization. However, a preliminary analysis shows

that such reference introduces a 10% error after be-

ing converted back to word-level. Hence, we intro-

duce another heuristic to create heuristic subword-

level tag references. The high-level idea is to inter-

polate the word-level and the naive subword-level

references to ensure that the interpolated subword-

level tag reference can be perfectly converted back

to the word-level references. Details for the sub-

word tag conversions can be found in Appendix A

and Algorithm 1 and 2 in the appendix.

4 Experiments

4.1 Setup

Our experiments are based on the setup of the

WMT 2020 QE shared task (Specia et al., 2020).

The results are reported under two settings: the

constrained setting and the unconstrained setting.

Apart from the official metric MCC, we also report

the F1 score of the OK and BAD tags (F1-OK and

F1-BAD in the result tables).

In the constrained setting, we focus on the data

efficiency of our model and use only the human-

labeled dataset, the NMT model, and the paral-

lel data (used to train the NMT model) provided

by the shared task, with neither large-scale pre-

trained model nor synthetic data finetuning. In the

unconstrained setting, we additionally use some

extra resources we have access to. For en-de,

we use WMT20 en-de parallel data to train LevT

model instead of the smaller parallel data from

the shared task, as in the constrained setting. For

en-zh, we use the same dataset because it is al-

ready close to the WMT data scale. We also ex-

periment with the M2M-100-small initialization

(Fan et al., 2020, 418M parameters) as described in

Section 2.3. Note that M2M-100 directly applies

sentencepiece on untokenized data, a tokenization

MCC F1-OK F1-BAD

en-de

OpenKiwi 0.358 0.879 0.468

LevT w/o KD 0.441 0.926 0.498

LevT 0.477 0.929 0.535

en-zh

OpenKiwi 0.509 0.849 0.658

LevT 0.629 0.885 0.741

Table 1: Constrained setting. All LevT models here are

transformer-base models. F1-OK and F1-BAD are F1

scores of the OK and BAD tags, respectively. Higher is

better for all metrics in this table.

scheme that is incompatible with the shared task

setting. For our experiments with M2M-100-small,

we proceed with applying sentencepiece on tok-

enized data during finetuning. We also experiment

with synthetic data finetuning with different data

synthesis methods on en-de language pair, while

for en-zh, because we don’t have access to an extra

high-quality MT system, we only experiment with

mvppe method. Details for our data synthesis setup

can be found in Appendix B.1.

4.2 Results

Table 1 shows results under the data-constrained

setting. Even without knowledge distillation (KD)

during LevT training, our model already scores

much higher than the baseline OpenKiwi system.

When training with KD data generated with the

shared task NMT system (trained on the same par-

allel data), the advantage of the LevT expands even

more. This shows that our proposal to build a word-

level QE system from LevT translation models has

higher data efficiency than the widely adopted Pre-

dEst approach used by the OpenKiwi baseline.

Table 2 shows results under the unconstrained

setting. We first notice that finetuning with syn-

thetic data before human post-edited data almost

always helps. With the transformer-base model

on en-de language pair, we experimented with

all four data synthesis methods, and we find that

src-mt1-mt2 performs the best, closely followed

by mvppe. This might be related to the fact that all

LevT models are trained with KD data. Because of

this, the model is better posed to fit synthesized data

with MT-like output as pseudo post-edited data, in-

stead of human-generated translations. Also, ini-

tializing with the M2M-100 model is helpful de-

spite the tokenization scheme mismatch, although

the performance gain is much more modest on en-
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Init. LevT Data Synth. MCC F1-OK F1-BAD

en-de

N base N 0.539 0.925 0.613

N base src-mt-ref 0.542 0.925 0.616

N base bt-rt-tgt 0.535 0.925 0.609

N base mvppe 0.548 0.926 0.620

N base src-mt1-mt2 0.549 0.926 0.622

N big N 0.551 0.927 0.623

N big src-mt1-mt2 0.562 0.939 0.617

M2M 418M N 0.583 0.932 0.650

M2M 418M src-mt1-mt2 0.589 0.934 0.654

en-zh

N base N 0.629 0.885 0.741

N big N 0.625 0.885 0.738

M2M 418M N 0.633 0.884 0.744

M2M 418M mvppe 0.646 0.892 0.752

WMT20

en-de best 0.597 0.935 0.662

en-zh best 0.610 0.887 0.623

Table 2: Unconstrained setting. base and big stand for

the transformer-base and transformer-big architecture.

418M is the M2M-100-small model.

Ablation Configuration MCC F1-OK F1-BAD

best 0.589 0.934 0.654

-LevT 0.555 0.938 0.610

-LevT +lang-adapt 0.565 0.930 0.635

-LevT -synth. 0.321 0.915 0.380

-LevT -synth. +lang-adapt 0.451 0.946 0.498

-m2m 0.562 0.939 0.617

-m2m -KD 0.526 0.933 0.589

-m2m -heuristic tag 0.551 0.936 0.610

-m2m -synth. 0.551 0.927 0.623

-m2m -synth. -heuristic tag 0.539 0.925 0.613

Table 3: Ablation analysis. All results trained with syn-

thetic data in this table use the src-mt1-mt2 data syn-

thesis method. +lang-adapt stands for adding an extra

autoregressive MT training step using the same parallel

training data as LevT training, so the M2M-100 model

is adapted to translating a specific language pair.

zh language pair. This is possibly influenced by

the relatively low translation quality of M2M-100

model on en-zh language pair, as pointed out by

Fan et al. (2020).

With all our techniques applied, our best Target

MCC result is only slightly behind the winning

system on en-de language pair, while being signif-

icantly better than the winning system on en-zh

language pair. Most notably, for en-zh language

pair, even our smallest LevT model are able to

beat the state-of-the-art. It should also be pointed

out that all of our results are achieved without any

model ensemble, and our pre-trained model archi-

tecture is just a transformer-big counterpart, while

other participating teams deployed larger models.

To confirm that each component of our training

scheme is necessary, we conducted a comprehen-

sive ablation study on en-de language pair, shown

in Table 3. The upper part of the table demon-

strates that LevT training is necessary, and we do

so by conducting the finetuning directly on M2M-

100-small initialization. Despite the strength of the

M2M-100 model as a translation model, there is

still a significant performance drop without LevT

Training, and more so without synthetic finetun-

ing. To rule out the effect of bilingual knowl-

edge introduced with LevT training, we also ex-

perimented with continue-training the M2M-100

model (+lang-adapt in Table 3) with the same

parallel data used for LevT training, but the per-

formance gap remains. On the other hand, the

lower part of the table highlights the effect of var-

ious other training techniques, where we use the

best system without M2M-100-small initialization

as the base. We can conclude that KD is crucial

for optimal performance and that finetuning with

heuristic subword-level tag reference is responsible

for a small but stable performance improvement.

5 Conclusion

In this work, we proposed to use Levenshtein Trans-

former to substitute the usual MLM-style training

in the Predictor-Estimator framework as the ini-

tial training step. We also proposed a series of

techniques to effectively transfer the translation

knowledge to the word-level QE task, including

data synthesis, heuristic subword-level reference,

and incorporating pre-trained translation models.

Our results demonstrate superior data efficiency

under the data-constrained setting and competitive

performance under the unconstrained setting. We

also hope this work can inspire further exploration

for other uses of Levenshtein Transformer apart

from the non-autoregressive translation.
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A Details on Edit Tag Conversion

to/from Subword-Level

Algorithm 1 shows the tag conversion algorithm

from subword-level to word-level (for inference).

Algorithm 2 shows the tag conversion algorithm

from word-level to subword-level (for finetuning).

Algorithm 1: Conversion of subword-level

tags to word-level tags

Input: subword-level token sequence ysw,

word-level token sequence yw,

subword-level tag sequence qsw

Output: word-level tag sequence qw

qw ← [];

for each word wk in yw do
find subword index span (sk, ek) in ysw

that corresponds to wk;

qsw
k ← subword-level translation and

gap tags within span (sk, ek);
gswsk ← subword-level gap tag before

span (sk, ek); // gswsk−1 ∈ qsw

if ∀qsw
k are OK then

qw += [gswsk , OK];

else

qw += [gswsk , BAD];

end

end

qw += [qsw[-1]]; // add ending gap tag

return qw;

B Details of Experimental Setup

B.1 Data Synthesis

For all en-de experiments, we took the first 1 mil-

lion line from the Europarl corpus and conduct data

synthesis.

• src-mt-ref We translate the source side of the

parallel data with the NMT system provided by

the shared task organizer.

• bt-rt-tgt Both the back-translation and the

round-trip translation are performed with M2M-

100-mid (1.2B) model.

• src-mt1-mt2 We take the source side of the

parallel data and translate it with the NMT

system from the shared task (weaker system,

mt1) and the Facebook winning system for the

WMT19 en-de news translation (Ng et al., 2019,

stronger system, mt2). We remove all the cases

where mt1 and mt2 are identical.

• mvppe The MVPPE decoding is conducted with

M2M-100-mid (1.2B) model.

For en-zh experiments, we take the shared task

en-zh parallel data but exclude the UN data for

MVPPE data synthesis. The same multilingual

translation model is used.

We also experimented with using larger synthetic

data for en-de with some synthesis method, but

didn’t observe a significant performance difference

compared to this smaller dataset.

B.2 Misc.

We preprocess our data by first tokenizing with

Moses tokenizer, and then applying subword seg-

mentation. For all the LevT models without M2M-

100 initialization, we use the same BPE model and

source/target-side vocabulary as the official NMT

checkpoint provided by the WMT20 QE shared

task. For models with M2M-100 initialization, we

use the M2M-100 sentencepiece model.

Under the constrained setting, we use the NMT

checkpoint supplied by the shared task to generate

the knowledge distillation data for LevT transla-

tion training, both for en-de and en-zh. Under

the unconstrained setting, for en-de, we use the

Facebook winning system for the WMT19 en-de

news translation, and for en-zh, we use our own

Transformer-base en-zh model trained on WMT17

en-zh data.

All of our implementations are based on the

Fairseq toolkit. We use the same hyperparameter

for LevT translation model training as the docu-

ment provided in Fairseq1. For both synthetic and

human post-edited data finetuning, we use Adam

optimizer with a learning rate 2e-5 with warmup

(4000 updates for synthetic finetuning and 2000

for human post-edited data finetuning), and we use

the shared task development set to select the best

checkpoint.

For all the mvppe experiments, we use λt = 2.0
and λp = 1.0, after doing a grid search over

λt = {1.0, 2.0, 3.0} and λp = {1.0, 1.2, 1.5} with

a goal to match the TER distribution of human

post-editing obtained from the en-de human PE

dev data.

All the word-level and subword-level tags we use

as the reference for finetuning are computed using

our own TER implementation2, but we stick to the

1
https://github.com/pytorch/fairseq/blob/master/

examples/nonautoregressive_translation/README.md
2
https://github.com/marian-nmt/moses-scorers

https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/nonautoregressive_translation/README.md
https://github.com/marian-nmt/moses-scorers
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original reference tags in the test set for evaluation

to avoid potential result mismatch. Our evaluations

are done with the official evaluation scripts3 from

the shared task. The script computes the Matthews

Correlation Coefficient (MCC, Matthews, 1975),

which is formulated as follows:

S =
TP + FN

N
(1)

P =
TP + FP

N
(2)

MCC =
TP/N − S × P√
PS(1− S)(1− P )

(3)

where TP /FP stands for true/false positives and

TN /FN stands for true/false negatives. N stands

for the number of examples in the dataset. The

script also computes F1 scores of the OK and BAD

tags.

Table 4 shows some statistics of the data we use

in our experiments.

B.3 Extra Results on the Updated Dataset

As of Sep. 2021, there is an updated version of

the WMT20 shared task dataset (train/dev/test)

with the same MT output but different human post-

edited output. For reference of future work, we

provide results on this updated dataset from some

of our experiment configurations in Table 5.

3
https://github.com/sheffieldnlp/

qe-eval-scripts

Algorithm 2: Construction of heuristic

subword-level tags

Input: subword-level token sequence ysw,

word-level token sequence yw, naive

subword-level tag sequence qsw,

word-level tag sequence qw

Output: heuristic subword-level tag

sequence q̃sw

q̃sw ← [];

for each word wk in yw do
find subword index span (sk, ek) in ysw

that corresponds to wk;

qsw
k ← subword-level translation and

gap tags within span (sk, ek);
twk ← word-level translation tag for wk;

// twk ∈ qw

gwk ← word-level gap tag before wk;

// gwk ∈ qw

q̃sw += [gwk ]; // copy left gap tag

n = |qsw
k |; // # subwords for wk

if ttk is OK then

/* word is OK, so all subwords

and gaps between them

should be OK */

q̃sw += [OK] * (2n− 1)
else if ∃ BAD in qsw

k then

/* no conflict between

subword-level tag and

word-level tag - copy qsw
k

as-is */

q̃sw += qsw
k ;

else

/* subword-level tag disagrees

with word-level tag - force

it as all-BAD to guarantee

perfect conversion */

q̃sw += [BAD] * (2n− 1)
end

q̃sw += [qw[-1]]; // add ending gap tag

return q̃sw;

https://github.com/sheffieldnlp/qe-eval-scripts
https://github.com/sheffieldnlp/qe-eval-scripts
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# sentence pairs/triplets

shared task en-de parallel 3.96M

shared task en-zh parallel 20.3M

WMT20 en-de parallel 44.2M

en-de src-mt-ref synthetic 945K

en-de src-mt1-mt2 synthetic 808K

en-de bt-rt-tgt synthetic 998K

en-de mvppe synthetic 993K

en-zh mvppe synthetic 9.26M

shared task en-de human PE train 7K

shared task en-zh human PE train 7K

shared task en-de human PE dev 1K

shared task en-zh human PE dev 1K

shared task en-de human PE test 1K

shared task en-zh human PE test 1K

Table 4: Data Statistics for Our Experiments

MCC F1-OK F1-BAD

en-de

LevT base (constr.) 0.363 0.951 0.410

LevT base 0.434 0.954 0.479

LevT big 0.459 0.958 0.498

LevT m2m 0.489 0.955 0.533

LevT m2m + synth. 0.500 0.956 0.544

en-zh

LevT base 0.463 0.907 0.554

LevT big 0.460 0.903 0.552

LevT m2m 0.453 0.898 0.548

LevT m2m + synth. 0.459 0.900 0.552

Table 5: Results on the updated dataset


