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Abstract

Human evaluation for summarization tasks
is reliable but brings in issues of repro-
ducibility and high costs. Automatic met-
rics are cheap and reproducible but some-
times poorly correlated with human judg-
ment. In this work, we propose flexible semi-
automatic to automatic summary evaluation
metrics, following the Pyramid human evalu-
ation method. Semi-automatic Lite2Pyramid
retains the reusable human-labeled Summary
Content Units (SCUs) for reference(s) but re-
places the manual work of judging SCUs’
presence in system summaries with a natu-
ral language inference (NLI) model. Fully
automatic Lite3Pyramid further substitutes
SCUs with automatically extracted Semantic
Triplet Units (STUs) via a semantic role la-
beling (SRL) model. Finally, we propose
in-between metrics, Lite2.xPyramid, where
we use a simple regressor to predict how
well the STUs can simulate SCUs and re-
tain SCUs that are more difficult to simulate,
which provides a smooth transition and bal-
ance between automation and manual evalua-
tion. Comparing to 15 existing metrics, we
evaluate human-metric correlations on 3 ex-
isting meta-evaluation datasets and our newly-
collected PyrXSum (with 100/10 XSum ex-
amples/systems). It shows that Lite2Pyramid
consistently has the best summary-level cor-
relations; Lite3Pyramid works better than
or comparable to other automatic metrics;
Lite2.xPyramid trades off small correlation
drops for larger manual effort reduction, which
can reduce costs for future data collection.1

1 Introduction

Evaluating the quality of summaries is a challeng-
ing task. Human evaluation is usually regarded as
the gold standard. Out of different human evalua-
tion methods, Pyramid (Nenkova and Passonneau,

1Our code and data are publicly available at: https:
//github.com/ZhangShiyue/Lite2-3Pyramid

2004) has been perceived as an objective and re-
liable protocol and used by early summarization
benchmarks, e.g., TAC (DBL, 2008, 2009). Given
one or several reference summaries of an exam-
ple, human assessors first exhaustively extract Sum-
mary Content Units (SCUs), each SCU contains a
single fact, from the reference(s), and then check
whether they are present in a system summary. Fig-
ure 1 shows an example of human-labeled SCUs.
Despite the reliability, manual evaluation is usually:
(1) not reproducible, results may change when dif-
ferent evaluators are involved, making it hard to
compare the results across papers; (2) expensive,
in terms of time and cost. Thus, it is unlikely to
apply human evaluation extensively in model selec-
tion (e.g., to choose the best checkpoint); instead,
people usually treat it as an additional quality verifi-
cation step. Aiming to work as a proxy of humans,
many automatic metrics have been proposed (Lin,
2004; Tratz and Hovy, 2008; Giannakopoulos and
Karkaletsis, 2011; Yang et al., 2016; Zhang et al.,
2019; Deutsch et al., 2021). However, most of them
cannot reliably substitute human evaluation due to
the unstable performance across datasets (Bhandari
et al., 2020), weak to moderate correlations with
human judgment (Fabbri et al., 2021), or more indi-
cation of topic similarity than information overlap
(Deutsch and Roth, 2021).

In this work, we want to combine human and
automatic evaluations and find a balance between
reliability and reproducibility (plus expense). Re-
call the Pyramid method (Nenkova and Passonneau,
2004), where these SCUs for reference summaries
only need to be annotated once, then they can be
fixed. It means SCUs can come with the datasets
and are reusable for evaluating different systems.
Hence, what hinders this method from being re-
producible is its second step of asking humans to
judge the presence of SCUs in system summaries.
Whenever we have a new summarizer, we need
to collect human labels for this step. Therefore,

https://github.com/ZhangShiyue/Lite2-3Pyramid
https://github.com/ZhangShiyue/Lite2-3Pyramid
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we propose to retain the reusable SCUs but re-
place human effort in the second step with a neural
model. Basically, people are answering whether a
SCU is entailed by the summary, which is closely
related to the Natural Language Inference (NLI)
task, i.e., judging whether a hypothesis is entailed
by the premise. A lot of NLI datasets are avail-
able (Bowman et al., 2015; Williams et al., 2018a;
Thorne et al., 2018; Nie et al., 2020) and recent NLI
models have achieved close-to-human-level perfor-
mance. Hence, we use a pretrained NLI model
and finetune it on some in-domain gold labels of
SCUs’ presence. Then, we replace humans with
the finetuned model, so that the evaluation results
are reproducible as long as the same model is used.
Meanwhile, it can run automatically during devel-
opment to guide model selection and the evaluation
cost will be dramatically reduced. Shapira et al.
(2019) propose LitePyramid to simplify the stan-
dard Pyramid method via crowdsourcing. Follow-
ing but different from their work, we additionally
automate the presence annotation, and hence we
call our method Lite2Pyramid.

Lite2Pyramid still requires human efforts to ex-
tract SCUs from reference summaries, and this step
is usually considered to be more difficult. Early
benchmarks, e.g., TAC (DBL, 2008, 2009), are
small-sized with fewer than 100 examples in the
evaluation set, for which it is already expensive to
manually collect SCUs. However, current popular
summarization datasets, e.g., CNN/DM (Hermann
et al., 2015), contain more than 10K evaluation ex-
amples, and hence we want to simulate SCUs via an
automatic method for such large-scale datasets. For
this, we make use of Semantic Role Labeling (SRL)
that can automatically decompose a sentence to se-
mantic triplets, e.g., subject-verb-object, and we
take each triplet as a pseudo-SCU, which we call
Semantic Triplet Unit (STU). Figure 1 illustrates
the difference between SCUs and STUs. Although
STUs do not always contain a single fact and some
information might also be misrepresented, we find
that it can reasonably simulate SCUs and lead to a
fully automatic metric, Lite3Pyramid.

Lastly, instead of using either all human-labeled
SCUs or all automated STUs, we investigate bal-
anced trade-offs in between, e.g., using half SCUs
and half STUs. A naive way is to randomly sam-
ple some reference sentences and substitute their
SCUs with STUs. However, we find it is unsta-
ble and sometimes even works worse than using

all STUs. More reasonably, we design an active
learning (Settles, 2012) inspired selection method
to help decide which sub-parts of the dataset are
more worthy of obtaining expensive SCUs for. For
this, we develop a regressor to predict the “simu-
lation easiness” of each reference sentence: if a
sentence is too complex to be well represented by
STUs, we will ask humans to annotate SCUs for it;
otherwise, we can apply automatic SRL. We call
this method as Lite2.xPyramid, since it provides a
smooth, flexible transition from Lite2Pyramid to
Lite3Pyramid and balances reliability with cost.

To comprehensively evaluate the quality of met-
rics, we not only use 3 existing meta-evaluation
datasets (TAC2008 (DBL, 2008), TAC2009 (DBL,
2009), REALSumm (Bhandari et al., 2020)) but
also newly collect PyrXSum with 100 XSum
(Narayan et al., 2018) test examples plus sum-
maries produced by 10 systems. Next, we com-
pare our new metrics to 15 existing automatic met-
rics on these 4 meta-evaluation setups for both
system-level and summary-level correlations with
human Pyramid scores. We find that Lite2Pyramid
consistently has the best summary-level correla-
tions and is reliable as an out-of-the-box met-
ric. Lite3Pyramid also mostly performs better
or competitively. Lastly, the regressor-based
Lite2.xPyramid can help substantially reduce an-
notation efforts for only small correlation drops,
e.g., on TAC2008, TAC2009, it trades off only 0.01
absolute summary-level Pearson correlation and 0
system-level correlation for 50% SCU reduction.

2 Related Works & Background

Each example in a summarization dataset contains
one or several source document(s) and one or sev-
eral human-written reference(s). System-generated
summaries are evaluated by comparing them to the
references (i.e., reference-based) or directly scored
(i.e., reference-free). This evaluation process is crit-
ical and directly affects our development choices.

Human (or manual) evaluation has been con-
sidered as the gold standard. Early benchmarks
(DBL, 2008, 2009) conducted three human eval-
uations: Responsiveness, Linguistic Quality, and
Pyramid. The first two ask humans to directly rate
the overall responsiveness or linguistic quality on
a Likert scale. Following this, some works collect
ratings for different aspects, e.g., relevance, read-
ability (Paulus et al., 2018; Kryscinski et al., 2019;
Fabbri et al., 2021). However, these ratings may
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suffer from raters’ subjectivity. Pyramid (Nenkova
and Passonneau, 2004) has been perceived as a
more objective method, and it is reference-based. It
has two steps: pyramid creation and system evalua-
tion. In the first step, humans exhaustively find the
Summary Content Unit (SCU) contributors from
references, each contributor describes a single fact;
contributors with the same meaning will be merged
into one single SCU; then each SCU is weighted
by how many contributors it has, equal to the num-
ber of references in which it is found. In the sec-
ond step, each SCU has been manually checked
its presence in the system summary; and the Pyra-
mid score is the normalized sum of present SCUs’
weights (essentially, a recall score). Passonneau
(2010) normalize it by the total weight of the best
possible summary. Recently, Shapira et al. (2019)
propose LitePyramid. It removes SCU merging and
weighting, allowing SCUs of the same meaning to
co-exist, and they show that the evaluation can be
reliably conducted by crowdsourcing workers.

Automatic metrics trade off the reliability of
human evaluation for reproducibility, low cost, and
fast speed. Many automatic metrics have been
introduced, the majority of which are reference-
based. Some metrics measure the n-gram overlap
(Papineni et al., 2002; Lin, 2004), out of which
ROUGE (Lin, 2004) is the most widely adopted
metric till today. Some other works compute the
similarity over n-gram graphs (Giannakopoulos
and Karkaletsis, 2011; Giannakopoulos et al., 2008)
or distributions (Lin et al., 2006). Since exact
n-gram matching is too rigid, METEOR (Baner-
jee and Lavie, 2005; Denkowski and Lavie, 2014)
provides flexibility by stemming, synonyms, etc.,
and recently, a few metrics enable “soft” matching
through contextualized word embeddings (Zhao
et al., 2019; Clark et al., 2019; Zhang et al., 2019).
However, Deutsch and Roth (2021) point out that
the n-gram based metrics indicate more topic sim-
ilarity than information overlap. Structural eval-
uation metrics have also been proposed beyond
n-grams. BEwT-E (Tratz and Hovy, 2008) decom-
poses the system summary and the reference(s)
into syntactic units and compute their similari-
ties, and decomposed-ROUGE (Deutsch and Roth,
2021) computes ROUGE for each syntactic cat-
egory. APES (Eyal et al., 2019) and QAEval
(Deutsch et al., 2021) are QA-based metrics that as-
sume similar answers will be obtained from similar
system summaries and reference(s).

Automatic Pyramid methods have also been pro-
posed (Yang et al., 2016; Hirao et al., 2018; Gao
et al., 2019). They usually decompose both the sys-
tem summary and the references into smaller units
(e.g., Elementary Discourse Units) and compare
the two list of units. Differently, our Lite3Pyramid
only decomposes the reference summaries to se-
mantic triplet units (STUs), and we use NLI to
judge the presence of each STU in the system sum-
mary, which is closer to the original Pyramid’s pro-
cedure and leads to better correlations with human
scores (refer to Section 5). Peyrard et al. (2017)
propose a learned metric, S3, that is trained to di-
rectly predict human Pyramid or Responsiveness
scores based on ROUGE, FrameNet features, etc.,
which is similar to how we finetune the NLI model
with human labels of SCUs’ presence. Xu et al.
(2020) is distantly related to us in the way of rep-
resenting texts by SRL, but it is used to weigh the
content in the source document(s). Besides, some
reference-free metrics are introduced for summary
quality estimation (Xenouleas et al., 2019; Gao
et al., 2020; Vasilyev et al., 2020) or faithfulness
evaluation (Durmus et al., 2020; Wang et al., 2020).

Semi-automatic evaluation is introduced by
Zhou et al. (2007). They automatically decompose
both system summary and reference(s) into seman-
tic units and then ask humans to match/align the
two lists of units. In contrast, our semi-automatic
Lite2Pyramid retains the reusable SCUs while auto-
matically judges the SCUs’ presence in the system
summary (via NLI).

3 Our Method

3.1 Lite2Pyramid

Lite2Pyramid is a semi-automatic metric that
retains human-labeled Summary Content Units
(SCUs) to represent reference summaries of a data
example i, i.e., {SCUij}Ni

j=1, where Ni is the to-
tal number of SCUs from all reference summaries.
The original Pyramid (Nenkova and Passonneau,
2004; Passonneau, 2010) assumes there are multi-
ple references available (e.g., TAC datasets (DBL,
2008, 2009) have 4 references per example). There-
fore, each SCU comes with weight, {wij}Ni

j=1, rep-
resenting the number of reference summaries in
which the SCU is found. To evaluate a particular
system summary si, the standard Pyramid method
manually checks each SCU’s presence, sums up
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Catherine Nevin was allowed out despite being jailed for life in April 2000. 
62-year-old was seen on the bus, with a pal and walking around in Dublin...

Reference

Catherine Nevin was allowed  out        despite being jailed for life in April 2000 .
ARG1 V ARGM-DIR ARGM-ADV

Catherine Nevin was allowed out despite being jailed  for life    in April 2000 .
ARG1 V ARGM-TMPARGM-TMP

62-year-old was seen on the bus, with a pal and walking around in Dublin.
ARG1 V ARGM-LOC ARGM-COM

62-year-old was seen on the bus, with a pal and walking around   in Dublin .
ARG1 V ARGM-LOCARGM-LOC

coref

SCUs
1. Catherine Nevin was allowed out.
2. Catherine Nevin was jailed for life.
3. Catherine Nevin was jailed in April.
4. Catherine Nevin was jailed in 2000.
5. Catherine Nevin is a 62 year old.
6. Catherine Nevin was seen on the bus.
7. Catherine Nevin was with a pal. 
8. Catherine Nevin was walking around 
    in Dublin.

1. Catherine Nevin was allowed out.
2. Catherine Nevin was allowed despite 
    being jailed for life in April 2000.
3. Catherine Nevin being jailed for life.
4. Catherine Nevin being jailed in April 2000. 
5. Catherine Nevin was seen on the bus.
6. Catherine Nevin was seen with a pal. 
7. Catherine Nevin walking around.
8. Catherine Nevin walking in Dublin.
9. Catherine Nevin is 62-year-old.

STUs0.5*SCUs + 0.5*STUs

Catherine Nevin was allowed out on day release on Wednesday afternoon.
The 62-year-old was permitted to attend an addiction studies course.
She was jailed for life in April 2000... She laughed and joked with a pal...

Summary

1
1
1
1
1
0
1
0

NLI

SRL

1.0
1.0

0.0

1.0
1.0
1.0

0.99
0.0

1.0

0.88

1.0
1.0
0.0

0.97
0.04
0.0
1.0

Gold = 0.75 Lite2Pyramid = 0.75 Lite3Pyramid = 0.65

1. Catherine Nevin was allowed out.
2. Catherine Nevin was allowed despite 
    being jailed for life in April 2000.
3. Catherine Nevin being jailed for life.
4. Catherine Nevin being jailed in April 2000. 
5. Catherine Nevin is a 62 year old.
6. Catherine Nevin was seen on the bus.
7. Catherine Nevin was with a pal. 
8. Catherine Nevin was walking around 
    in Dublin.

1.0

0.88

1.0
1.0

0.0
1.0

0.99
0.0

Lite2.5Pyramid = 0.735

regressorReference

Figure 1: The illustration of our metrics. This data example is from REALSumm (Bhandari et al., 2020) (we omit
unnecessary content by ‘...’). For gold labels, ‘1’ stands ‘present’ and ‘0’ stands ‘not present’. Other scores are the
2-class entailment probabilities, p2c(e), from our finetuned NLI model.

the weights of present SCUs, and normalizes it:

Pyramidi =

∑Ni
j=1wijPresence(SCUij , si)

the best possible score
(1)

The best possible score is the highest sum of
weights the summary can obtain with the same
number of present SCUs (details can be found
in (Passonneau, 2010)). Differently, LitePyra-
mid (Shapira et al., 2019) takes a union of SCUs
from all reference summaries with duplication (we
use SCU∗ to distinguish it from the de-duplicated
SCU used above) and then samples the same num-
ber (K) of SCUs for every data example, hence:

LitePyramidi =

∑K
j=1 Presence(SCU∗ij , si)

K

Without weighting, this method also works in
single-reference situations. Different from this
method, we keep the exhaustive set (instead of a
fixed-size sample) of SCUs for each example (also
used by Bhandari et al. (2020)). Importantly, we
replace human efforts of checking SCUs’ presence
with a Natural Language Inference (NLI) model
fNLI’s entailment prediction. Using e to denote

entailment, our metric can be written as:

Lite2Pyramidi =

∑Ni
j=1wijfNLI(e|SCUij , si)∑Ni

j=1wij

(2)
Note that multiplying the weights and dividing
by the sum of the weights is equal to repeating
SCUi for wi times, which shows how we treat
SCUs as an exhaustive set with duplication. For
single-reference datasets (CNN/DM or XSum), the
weights are all 1. Plus, the above equations all com-
pute summary-level scores. To get one single score
for the system, we simply take the average across
examples, e,g., 1

|D|
∑

i∈D Lite2Pyramid(si).
The fNLI function can be implemented in four

different ways, denoted as p3c, l3c, p2c, l2c, and
explained below. Following the standard 3-class
setting of NLI tasks, the NLI model will predict
whether the SCUij is entailed by or neutral to
or contradicted with the summary si. Hence, we
can use either the output probability of entailment
class p3c(e) or the predicted 1 or 0 entailment la-
bel l3c(e) as the function fNLI. However, exist-
ing NLI datasets (Bowman et al., 2015; Williams
et al., 2018b; Thorne et al., 2018; Nie et al., 2020)
have different data distributions and domains from
the summarization data; hence models trained on
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these datasets may not perform well in judging the
presence of SCUs. Therefore, we finetune the pre-
trained NLI model by human-labeled SCUs plus
presence labels. Since humans only give 2-class
labels (present or not present), we adapt the model
to perform two-way classification. Specifically,
we add up the logit of neutral (n) and contradic-
tion (c) classes as the logit of the “not present”
label: p2c(e) = exp(logite)

exp(logite)+exp(logitn+logitc)
. Again,

we can use p2c(e) or l2c(e) as fNLI after finetun-
ing. In our experiments, we call the pretrained
NLI model on NLI datasets as “zero-shot” because
it has not seen summarization data. Empirically,
we find that when using the zero-shot NLI model,
l3c works best; while after finetuning, p2c usually
works best.

3.2 Lite3Pyramid

Lite3Pyramid fully automates Lite2Pyramid by also
simulating the human-annotated SCUs with auto-
matic extracted semantic triplets. We use a Se-
mantic Role Labeling (SRL) model (Carreras and
Màrquez, 2005; Palmer et al., 2010; He et al., 2017;
Shi and Lin, 2019) to achieve this goal. SRL deter-
mines the latent predicate-argument structure of a
sentence, e.g., who did what to whom. As shown
in Figure 1, the SRL model will identify several
frames for each sentence, and each frame has one
verb and a few arguments. For each frame, we
keep the verb and any arguments before the verb
unchanged, then we enumerate the arguments after
the verb to form a list of triplets as {(ARGbefore,
V, ARGi

after)}Mi=1, where M is the number of ar-
guments after the verb. We concatenate the three
elements in each triplet to form a short sentence
because a SCU is a short sentence and we want
to resemble it as much as possible. We call these
short sentences Semantic Triplet Units (STUs).2

For example, as illustrated by Figure 1, based on
the 4 frames identified by SRL, we extract 9 STUs
from the reference.

Since one entity can be referred to by pronouns
or different names in the summary, we also ap-
ply Coreference Resolution (Lee et al., 2018) to
improve the simulation quality. As shown in Fig-

2Note that simple concatenation might not lead to gram-
matical sentences, but we expect the NLI model to be robust
to small grammar errors. Additionally, we make a small fix
in two cases: if the token before V in the original sentence
is classified as a negation modifier, ARGM-NEG, or is a Be
verb, we add it to the STU sentence (e.g., for the 3rd STU in
Figure 1, we bring back “being” before “jailed”).

ure 1, Catherine Nevin and 62-year-old are identi-
fied as coreference, so we use Catherine Nevin as
the subjects of STUs and add an additional STU
Catherine Nevin is 62-year-old.3 In our experi-
ments, we only apply coreference resolution for
REALSumm because empirically, on TAC datasets,
we find applying it works worse than not applying;
and PyrXSum has one-sentence summaries where
coreference hardly appears.4 Although STUs seem
to reasonably simulate SCUs for the example in
Figure 1, it has limitations, especially, when the
sentence is syntactically complicated, e.g., with
a lot of modifiers, clauses, complements (refer to
Section 5 for more discussions).

After we obtain the STUs from all reference
summaries, we score a system summary si by:

Lite3Pyramidi =
1

Mi

Mi∑
j=1

fNLI(e|STUij , si)

where Mi is the total number of STUs. Note that
there is no weight because we extract STUs from
every reference summary and take a union, which
allows STUs of the same meaning to co-exist.

3.3 Lite2.xPyramid
As discussed so far, human-annotated SCUs are
accurate yet expensive, whereas automatically ex-
tracted STUs are cheap yet sometimes erroneous.
The next natural question is how to find a balance
between them. One way is to randomly replace
50% sentences’ SCUs with STUs, but a more in-
tuitive way is to make the decision based on the
“easiness” of simulating the sentence’s SCUs by
STUs. If the sentence is unlikely to be well rep-
resented by STUs, we can ask humans to label
SCUs for it; otherwise, we can use STUs to re-
duce cost. This is similar to how active learn-
ing (Settles, 2012) chooses which training ex-
amples to collect human labels for. We define
simulation easiness as the average simulation ac-
curacy of each SCU. ROUGE-1-F1 (R1F1) (Lin,
2004) is used to measure the simulation accuracy:
Accj = maxmR1F1(SCUj , STUm). Then, the
easiness of a sentence with Nsent SCUs is written
by Easinesssent = 1

Nsent

∑Nsent
j=1 Accj . The higher

the easiness score is, the more accurately the STUs
resemble SCUs.

3In practice, we use the name appeared first in the reference
to unify the mentions in STUs and use the template “name1 is
namen” to generate additional STUs.

4Even for REALSumm, removing the coreference resolu-
tion step will only cause around 0.01 correlation drops.
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After we obtain these gold easiness scores, we
want to train a regressor to predict the score based
on sentence complexity features. As we men-
tioned above, the sentence’s syntax can indicate
its simulation difficulty. Therefore, we get the Con-
stituency Parsing tree (Joshi et al., 2018) of each
sentence and define the following features: (1) sen-
tence length; (2) linearized parsing tree length; (3)
parsing tree depth; (4) sentence length / parsing
tree depth; (5) the counts for each of the 65 non-
terminal tokens (e.g., NNP). In total, we represent
each sentence with a 69-dim feature vector. Then,
we train an XGBoost (Chen and Guestrin, 2016)
regressor to predict the simulation easiness by min-
imizing the mean squared errors. Given this regres-
sor, we propose to replace top 0.x scored sentences’
SCUs with STUs, leading to Lite2.xPyramid. For
example, Lite2.5Pyramid (illustrated in Figure 1)
means that we use STUs for the top 50% scored
sentences and use SCUs for the other half.

4 Evaluation

Correlation with human scores. Following the
standard meta-evaluation strategies used in previ-
ous works (Peyrard et al., 2017; Bhandari et al.,
2020; Deutsch et al., 2021), we evaluate metrics by
two types of correlation with gold human scores.
System-level correlation aims to evaluate how well
can the metric compare different summarization
systems? We denote the correlation measure as K,
human scores as h, the metric as m, and generated
summaries as s. We assume there are N examples
and S systems in the mete-evaluation dataset. Then,
the system-level correlation is defined as:

Ksys
m,h = K([

1

N

N∑
i=1

m(si1), ...,
1

N

N∑
i=1

m(siS)],

[
1

N

N∑
i=1

h(si1), ...,
1

N

N∑
i=1

h(siS)])

Summary-level correlation answers if the metric
can reliably compare summaries generated by dif-
ferent systems for the same document(s). Using the
same notations, this correlation is written by:

Ksum
m,h =

1

N

N∑
i=1

K([m(si1), ...,m(siS)],

[h(si1), ..., h(siS)])

We use Pearson r or Spearman ρ as the correlation
measure K. Pearson measures linear correlation
while Spearman measures ranking correlation.

Metrics for comparison. Taking advantage of
SacreROUGE (Deutsch and Roth, 2020), we com-
pare our metrics to 15 existing metrics: ROUGE-1,
ROUGE-2, and ROUGE-L (Lin, 2004), AutoSum-
mENG (Giannakopoulos et al., 2008), METEOR
(Banerjee and Lavie, 2005; Denkowski and Lavie,
2014), BEwT-E (Tratz and Hovy, 2008), S3 (pyr)
and S3 (resp) (Peyrard et al., 2017), PyrEval’s
quality and comprehensive scores (Gao et al.,
2019),5 BERTScore and BERTScore (idf) (Zhang
et al., 2019), MoverScore (Zhao et al., 2019), QAE-
val (EM) and QAEval (F1) (Deutsch et al., 2021).
For metrics that have precision/recall/F1, we report
recall because Pyramid is essentially recall-based.
Note that PyrEval only supports multi-reference
situations.6 See the complete descriptions of these
metrics in Appendix A.1.

Data. We evaluate human-metric correlations on
three existing English meta-evaluation datasets:
TAC2008 (DBL, 2008), TAC2009 (DBL, 2009), RE-
ALSumm (Bhandari et al., 2020). TAC08 contains
96/58 examples/systems and TAC09 has 88/55 ex-
amples/systems. We compute the correlations with
their official Pyramid scores (Equation 1). REAL-
Summ has 100 CNN/DM (Hermann et al., 2015)
test examples and 25 systems. They label SCUs
by themselves and collect SCU-presence labels
on Amazon Mechanical Turk (AMT).7 Both TAC
and CNN/DM have long and extractive summaries.
To complete our evaluation, we newly collect an
English meta-evaluation dataset PyrXSum for 100
XSum (Narayan et al., 2018) (has short and ab-
stractive summaries) testing examples. Following
REALSumm, we (authors) manually label SCUs
and collect SCU-presence labels for summaries
generated by 10 systems8 on AMT. We collect 4 re-
sponses per summary (100 * 10 * 4 HITs) and filter
responses from a noisy worker. We use the majority
vote to label each SCU’s presence and break ties
by “not present”. See more data collection details
of PyrXum in Appendix A.2.

5PyrEval is the latest automatic Pyramid metric and is
shown to be better than Yang et al. (2016).

6https://github.com/serenayj/PyrEval/
issues/11

7We find that the exhaustive set based computation (re-
placing fNLI in Equation 2 by gold labels) has close to perfect
correlation with TAC’s official scores. REALSumm also use
this computation as reflected by the gold score in Figure 1.

8Fast Abs RL (Chen and Bansal, 2018), PtGen (See et al.,
2017), ConvS2S and T-ConvS2S (Narayan et al., 2018), Trans-
Abs and BertAbs and BertExtAbs (Liu and Lapata, 2019), T5
(Raffel et al., 2020), BART (Lewis et al., 2020), PEGASUS
(Zhang et al., 2020)

https://github.com/serenayj/PyrEval/issues/11
https://github.com/serenayj/PyrEval/issues/11
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Models. We use the pretrained RoBERTa-large
(Liu et al., 2019) based NLI model released by Nie
et al. (2020), which has been trained on multiple
NLI datasets. We continually finetune this model
with the gold SCUs plus SCU-presence labels al-
ways for 2 epochs. For SRL, Coreference Reso-
lution, and Constituency Tree Parser, we use the
out-of-the-box tools provided by AllenNLP (Gard-
ner et al., 2018; Shi and Lin, 2019; Lee et al., 2018;
Joshi et al., 2018). See the complete implementa-
tion details in Appendix A.3.

5 Results

5.1 Human-Metric Correlation Results

Since we find that finetuning the NLI model with
in-domain presence labels is greatly beneficial, fol-
lowing Peyrard et al. (2017), we evaluate by 5-fold
cross-validation. For each dataset, we split it into
5 folds, finetune the NLI model on 4 folds, test on
the left one, and repeat for 5 times. We report the
5-fold average correlations of both our metrics and
the 15 metrics we compare to for fair comparison.
Instead of random splitting, we split the data by
examples or by systems, aiming to check the gen-
eralizability across examples or systems. E.g., if
we split REALSumm by examples, each fold has
summaries of 20 examples; when split by systems,
each fold has summaries generated by 5 systems.

Table 1 shows our 5-fold (split by examples)
cross-validation results. Firstly, it can be observed
that our Lite2Pyramid always has the best or close
to the best correlations; especially, it has 0.08 to
0.16 higher summary-level correlations than the
best metrics we compare to. It demonstrates the
advantage of semi-automatic evaluation which dra-
matically improves reliability without losing repro-
ducibility. Meanwhile, it indicates that the fine-
tuned NLI model can generalize to new data exam-
ples and works reasonably well as a proxy of hu-
man judgment. In contrast, Lite2Pyramid-0, which
uses a non-finetuned NLI model, usually works
greatly worse than Lite2Pyramid, which indicates
the importance of in-domain finetuning. It is sur-
prising that Lite2Pyramid-0 works better than or
similar to Lite2Pyramid on PyrXSum. We conjec-
ture that because our PyrXSum is relatively small-
size, the finetuning will not make big difference.

Secondly, our Lite3Pyramid has the best cor-
relations comparing to the other automatic met-
rics, except for PyrXSum; again, its advantage
is more prominent on summary-level correlation

(around 0.03 to 0.05 better). Its failure in PyrX-
Sum is caused by the limitation of SRL. XSum’s
reference summary sentences usually have a lot
of modifiers, adverbial phrases/clauses, or comple-
ments, which increases the difficulty of decompos-
ing it into STUs. E.g., for the summary “Nether-
lands midfielder Wesley Sneijder has joined French
Ligue 1 side Nice on a free transfer”, human anno-
tates the following 5 SCUs: “Wesley Sneijder is a
midfielder”, “Wesley Sneijder comes from Nether-
lands”, “Wesley Sneijder has joined French Ligue
1 side”, “Wesley Sneijder has joined Nice”, and

“Wesley Sneijder has been on a free transfer”. How-
ever, since SRL frames are centered around verbs,
it can only extract two STUs: “Netherlands mid-
fielder Wesley Sneijder joined French Ligue 1 side
Nice” and “Netherlands midfielder Wesley Snei-
jder joined on a free transfer”. On average, human
labels 4.8 SCUs per PyrXSum summary, however,
the number is only 2.8 for STUs. Hence, a better
semantic unit decomposer needs to be designed to
improve Lite3Pyramid’s accuracy.

Lastly, Lite2.xPyramid alleviates the problem
mentioned above by deferring complex sentences
to humans to annotate SCUs for. As shown in
Table 1, Lite2.5Pyramid, which saves half hu-
man effort by substituting 50% sentences’ SCUs
with STUs, always has correlation reduction less
than half of the difference between Lite2Pyramid
and Lite3Pyramid and sometimes even has better
system-level correlations than Lite2Pyramid. The
full Lite2.xPyramid curves are shown in Figure 2,
where the x-axis is the percentage of STUs (the
higher means the fewer human efforts involved)
and the y-axis is the summary-level Pearson corre-
lation (Figure 4 in Appendix shows system-level
correlations). We can see that our Lite2.xPyramid
offers a smoothing transition from semi-automatic
Lite2Pyramid to automatic Lite3Pyramid. More
importantly, compared to randomly selecting sen-
tences (yellow dash lines), our regressor-based
selection achieves a slower correlation reduction,
i.e., saving the same amount of human effort our
method can retain higher metric quality. Plus, this
curve gives people flexible choices per their budget.

Due to space limitations, the 5-fold (split by
systems) cross-validation results are in Table 4 of
Appendix. The same trends are mostly observed.
Lite2Pyramid still has 0.06 to 0.21 higher summary-
level correlations across all datasets. Lite3Pyramid
achieves the best or competitive correlations com-



6624

System-level Summary-level

TAC08 TAC09 RealSumm PyrXSum TAC08 TAC09 RealSumm PyrXSum
Metrics r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

ROUGE-1 .87 .87 .91 .86 .82 .83 .92 .90 .62 .61 .69 .63 .53 .50 .52 .50
ROUGE-2 .90 .90 .92 .90 .84 .82 .93 .91 .63 .62 .71 .64 .46 .43 .53 .51
ROUGE-L .87 .86 .93 .87 .83 .81 .94 .92 .57 .55 .66 .59 .46 .42 .52 .51
AutoSummENG .90 .89 .91 .89 .53 .51 .92 .91 .65 .64 .71 .64 .34 .34 .56 .53
METEOR .90 .89 .93 .88 .84 .84 .94 .89 .65 .64 .73 .68 .54 .49 .58 .56
BEwT-E .92 .91 .95 .92 .83 .84 .93 .86 .66 .65 .75 .68 .47 .45 .54 .52
S3 pyr .90 .89 .95 .89 .86 .85 .94 .89 .66 .65 .75 .68 .54 .50 .57 .54
S3 resp .91 .91 .94 .90 .86 .86 .94 .90 .67 .65 .74 .68 .52 .48 .57 .54
PyrEval qual .83 .81 .88 .80 - - - - .40 .39 .49 .44 - - - -
PyrEval comp .83 .80 .90 .79 - - - - .41 .40 .53 .45 - - - -
BertScore .88 .87 .90 .90 .73 .77 .92 .89 .61 .60 .70 .65 .48 .46 .57 .54
BertScore (idf) .89 .88 .91 .90 .73 .78 .93 .90 .62 .61 .71 .66 .48 .46 .58 .55
MoverScore .91 .89 .95 .90 .40 .31 .92 .91 .64 .63 .73 .68 .39 .36 .57 .54
QAEval EM .83 .81 .85 .83 .61 .51 .86 .85 .48 .48 .64 .55 .28 .27 .29 .27
QAEval F1 .89 .87 .90 .87 .72 .65 .90 .83 .61 .60 .70 .63 .38 .35 .46 .42

Lite3Pyramid .93 .91 .97 .93 .89 .87 .89 .86 .71 .69 .78 .73 .57 .53 .51 .48

Lite2.5Pyramid .95 .93 .97 .94 .90 .88 .92 .87 .76 .75 .82 .77 .62 .57 .64 .59
Lite2Pyramid .95 .93 .97 .94 .89 .86 .95 .92 .77 .76 .83 .78 .64 .60 .74 .66
Lite2Pyramid-0 .86 .83 .95 .88 .86 .82 .96 .92 .62 .61 .74 .68 .56 .53 .73 .72

Table 1: 5-fold (split by examples) cross-validation results. In each column, the bold numbers are the best and
the underline numbers are the best out of automatic metrics. All Lite2Pyramid-0 numbers are based on fNLI = l3c,
while all other numbers of our metrics are based on fNLI = p2c.
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Figure 2: Lite2.xPyramid curves and its comparison to
replacing random sentences’ SCUs with STUs.

paring to other automatic metrics except for the
system-level correlations on REALSumm and
PyrXSum. And, Lite2.xPyramid also nicely bridges
Lite2Pyramid and Lite3Pyramid and works better
than random replacement. However, differently,
Lite2Pyramid does not get the best system-level
correlations on REALSumm and PyrXSum, which
may indicate the bigger generalization challenge
across different systems.

Takeaway: Lite2Pyramid consistently has the best
summary-level correlations and the best system-
level correlations in most cases. The automatic
Lite3Pyramid also mostly works better than other
automatic metrics. Lite2.xPyramid provides flexi-
ble and balanced degrees of automation per budget.

5.2 Out-of-the-Box Generalization

We release the finetuned NLI models and the pre-
trained sentence regressors for future usage, so that
they will work as out-of-the-box evaluation metrics
for any summarization tasks. Then, a natural ques-
tion to ask is how will the metrics perform on a new
summarization task? To better estimate the out-of-
the-box performance, we simulate out-of-the-box
situations by training the NLI model and the regres-
sor on some dataset(s) and then evaluate metrics on
the other dataset(s). For example, in the last big row
(starting with TAC08+TAC09+REALSumm) of Ta-
ble 2, we finetune the NLI model and train the re-
gressor on the entire TAC08+TAC09+REALSumm
data then evaluate our metrics on PyrXSum only.
Meanwhile, we also compare to other metrics. Dif-
ferent from the numbers in Table 1, numbers in
Table 2 are calculated on the entire meta-evaluation
set instead of the average of 5 folds.

It can be observed from Table 2 that our
Lite2Pyramid retains its advantage in most out-of-
the-box situations, especially for summary-level
correlation. Though Lite3Pyramid does not al-
ways outperform the best metrics, it stays com-
petitive. In addition, Lite2.5Pyramid retains its
feature of trading off less than 50% correlation
for saving 50% human effort. Surprisingly, learn-
ing from more data does not perform better: for
PyrXSum, learning from all three other datasets
(TAC08+TAC09+REALSumm) gets significantly
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System-level Summary-level

TAC09 REALSumm PyrXSum TAC09 REALSumm PyrXSum
Metrics r ρ r ρ r ρ r ρ r ρ r ρ

ROUGE-1 .93 .89 .91 .92 .98 .96 .69 .63 .53 .50 .52 .50
ROUGE-2 .94 .95 .96 .95 .99 .95 .71 .64 .46 .43 .53 .51
ROUGE-L .96 .92 .94 .95 .99 .95 .66 .59 .46 .42 .52 .51
AutoSummENG .93 .93 .59 .60 .97 .94 .71 .64 .34 .34 .56 .53
METEOR .95 .91 .94 .92 .99 .98 .73 .68 .54 .49 .58 .56
BEwT-E .97 .96 .91 .89 .99 .98 .75 .68 .47 .45 .54 .52
S3 pyr .97 .92 .96 .94 .99 .99 .75 .67 .54 .50 .57 .54
S3 resp .96 .94 .97 .95 .99 .98 .74 .68 .52 .48 .57 .54
PyrEval qual .94 .90 - - - - .49 .44 - - - -
PyrEval comp .95 .86 - - - - .53 .45 - - - -
BertScore .92 .94 .79 .83 .97 .90 .70 .65 .48 .46 .57 .54
BertScore (idf) .93 .95 .79 .83 .97 .90 .71 .66 .48 .46 .58 .55
MoverScore .97 .92 .44 .32 .98 .84 .74 .68 .39 .36 .57 .54
QAEval EM .88 .94 .88 .86 .95 .95 .64 .55 .28 .27 .29 .27
QAEval F1 .93 .95 .91 .89 .95 .84 .70 .63 .38 .35 .46 .43

TAC08 Lite3Pyramid .99 .97 .92 .93 .97 .90 .78 .72 .53 .48 .56 .53
Lite2.5Pyramid .99 .97 .92 .92 .98 .95 .82 .77 .58 .54 .66 .61
Lite2Pyramid .99 .98 .94 .95 .99 .99 .83 .78 .61 .57 .71 .66

TAC08 Lite3Pyramid - - .94 .95 .97 .88 - - .52 .49 .56 .53
+TAC09 Lite2.5Pyramid - - .93 .95 .97 .96 - - .57 .53 .66 .60

Lite2Pyramid - - .94 .95 .99 .98 - - .59 .56 .71 .65

TAC08 Lite3Pyramid - - - - .97 .88 - - - - .50 .44
+TAC09 Lite2.5Pyramid - - - - .98 .94 - - - - .60 .55
+REALSumm Lite2Pyramid - - - - .99 .94 - - - - .70 .64

Table 2: Out-of-the-box generalization results. In each column, the bold numbers are the best and the underline
numbers are the best out of automatic metrics.

worse performance than learning from TAC08 only
or TAC08+TAC09. We conjecture that the dif-
ference between REALSumm (originated from
CNN/DM (Hermann et al., 2015)) and PyrXSum
(originated from XSum (Narayan et al., 2018))
leads to a “distribution shift”, which causes the
performance drop. Besides, though new metrics
have been proposed, ROUGE is still the dominant
evaluation metric in the summarization literature.
However, based on our comparison, ROUGE is not
the best evaluation choice in most cases, while ME-
TEOR (Banerjee and Lavie, 2005) and the learning-
based metric, S3 (Peyrard et al., 2017), have fairly
good correlations with human judgment. Overall,
our automatic Lite3Pyramid is on a par with them,
having the best performance in 4 cases (4 underline
scores in Table 2).

Takeaway: When evaluating for a new summa-
rization task with human-labeled SCUs, one could
expect that Lite2Pyramid is reliably trustworthy
and should be the top choice. Lite3Pyramid is also
a fairly good choice for fully automatic evaluation.
Finally, our pretrained regressor can guide people
on which data examples are more worthy of spend-
ing manual effort on annotating SCUs.

Speed: Since SCUs’ collection or STUs’ extrac-
tion can be treated as data processing steps, the

main speed bottleneck is running the NLI model.
When a single TITAN V GPU is available, it takes
around 2.5 minutes to evaluate 500 REALSumm
(i.e., CNN/DM) examples.
Usage: We provide the support of our metrics
through our github repository and we will also
incorporate it within the SacreROUGE library
(Deutsch and Roth, 2020).

6 Conclusion

We propose to combine manual effort and automa-
tion for summary evaluation. We introduce a semi-
automatic Lite2Pyramid that gains reproducibility
by replacing part of human effort with an NLI
model. Following it, an automatic Lite3Pyramid
is proposed through decomposing references by
SRL. Plus, we propose a simple yet effective re-
gressor to decide which sentences are more wor-
thy of labeling SCUs for, leading to flexible tran-
sition metrics, Lite2.xPyramid. Evaluating on
four meta-evaluation datasets and comparing to
15 other automatic metrics, Lite2Pyramid consis-
tently has the best summary-level correlations;
Lite3Pyramid also performs better or competitively;
and Lite2.xPyramid offers flexible degrees of au-
tomation, and its regressor will provide useful
expense-saving guidance for future datasets.
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A Appendix

A.1 Metrics for Comparison

ROUGE-1, ROUGE-2, and ROUGE-L (Lin,
2004) are based on n-gram overlap and are widely
used in summarization literature till today.
AutoSummENG (Giannakopoulos et al., 2008)
uses n-gram graphs to compare the system sum-
mary to the reference(s).
METEOR (Banerjee and Lavie, 2005; Denkowski
and Lavie, 2014) computes similarity through text
alignment and uses stem, synonyms, paraphrases
to allow more flexible matching.
BEwT-E (Tratz and Hovy, 2008) decomposes sum-
mary into syntactic units and computes the similar-
ity based on those units.
S3 (Peyrard et al., 2017) is a learned metric trained
on TAC2008/2009 datasets to predict human Pyra-
mid (pyr) or Responsiveness (resp) scores.

PyrEval (Gao et al., 2019) automate Pyramid by
simulating SCUs through Emergent Discovery of
Units of Attraction. It returns four scores. Em-
pirically, we find that quality and comprehensive
work better, so we only keep these two in our result
tables. Note that it only supports multi-reference
situations because it retains SCUs’ weighting step.
BERTScore (Zhang et al., 2019) aligns unigrams
between two texts through the contextualized word
embeddings from BERT (Devlin et al., 2019).
We also compare to BERTScore (idf) that down-
weights unigrams with high document frequency.
MoverScore (Zhao et al., 2019) also uses contex-
tualized word embeddings. Differently, they mini-
mize the “transportation cost” between two texts.
QAEval (Deutsch et al., 2021) leverages Question
Answering to evaluate the similarity of two texts,
i.e., if they have the same meaning, the same an-
swer should be inferred from them for the same
question. They use either Exact Match (EM) or F1
(F1) to evaluate answer similarity.

A.2 PyrXSum

Both TAC08/09 (DBL, 2008, 2009) and REAL-
Summ (Bhandari et al., 2020) (examples from
CNN/DM (Hermann et al., 2015)) have long and
extractive summaries. As a complementary, we
collect a new meta-evaluation dataset, PyrXSum,
for XSum (Narayan et al., 2018) which contains
short and abstractive summaries. We random sam-
ple 100 examples from XSum’s testing set. Then,
following Bhandari et al. (2020), we (authors) anno-
tate Semantic Content Units (SCUs) for reference
summaries of the 100 examples. After annotation,
another non-author native English speaker is in-
vited to double-check the annotated SCUs and give
improvement suggestions. Finally, we annotate 2
to 11 SCUs per reference; on average, there are 4.8
SCUs per reference.

Next, we obtain model generated summaries for
these 100 examples from 10 abstractive summa-
rization systems: Fast Abs RL (Chen and Bansal,
2018), PtGen (See et al., 2017), ConvS2S and T-
ConvS2S (Narayan et al., 2018), TransAbs and
BertAbs and BertExtAbs (Liu and Lapata, 2019),
T5 (Raffel et al., 2020), BART (Lewis et al., 2020),
and PEGASUS (Zhang et al., 2020). We do not
include extractive summarization systems because
XSum is known to be extremely abstractive and
even oracle extractive method has low performance
(Narayan et al., 2018). For Fast Abs RL, we
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Model Fast Abs RL PtGen ConvS2S T-ConvS2S TransAbs BertAbs BertExtAbs T5 BART PEGASUS

R2 7.02 9.68 11.58 11.46 10.85 15.63 17.68 21.01 23.96 26.23
Pyramid 0.09 0.09 0.12 0.12 0.07 0.19 0.22 0.29 0.31 0.31

Table 3: The ROUGE-2 (R2) and gold Pyramid scores obtained by 10 systems on the 100 XSum testing examples.

Figure 3: The Amazon Mechanical Turk user interface for collecting human labels of SCUs’ presence.

use their open-source code9 to train a model on
XSum training set and get its generations for these
100 examples. We directly use the model outputs
of PtGen, ConvS2S, and T-ConvS2S, released by
Narayan et al. (2018).10 For TransAbs, BertAbs,
and BertExtAbs, we also directly use the model
outputs released by Liu and Lapata (2019).11 For
BART (Lewis et al., 2020) and PEGASUS (Zhang
et al., 2020), we take advantage of the XSum pre-
trained models released on HuggingFace12 and gen-
erate summaries from them. Lastly, we finetune
T5 large on XSum training set via Transformers
of HuggingFace (Wolf et al., 2020) and generate
summaries from the finetuned model. Table 3 lists

9https://github.com/ChenRocks/fast_
abs_rl

10https://github.com/EdinburghNLP/XSum
11https://github.com/nlpyang/PreSumm
12https://huggingface.co/facebook/

bart-large-xsum, https://huggingface.co/
google/pegasus-xsum

the ROUGE-2 (R2) (Lin, 2004) results of the 10
systems evaluated only on the 100 examples.

Then, we collect the SCUs’ presence labels for
each system summary on Amazon Mechanical
Turk. Figure 3 illustrates the data annotation in-
structions and interfaces shown to crowdsourcing
workers. The summaries usually only contain one
sentence. We estimate it will take around 30-45 sec-
onds for a native English speaker to finish one HIT.
Following Bhandari et al. (2020), we pay $0.15
per HIT, which is respectably higher than the U.S.
federal minimum wage requirement. Meanwhile,
we select annotators that are located in the U.S.,
have an approval rate greater than 98%, and have
at least 10,000 approved HITs.

We collect 4 responses per summary (100 * 10
* 4 HITs) and finally, 104 workers were involved.
After annotation, we filter the annotations from a
noisy worker who did 210 HITs but disagreed with
the majority in 72% of the time. After this filter-

https://github.com/ChenRocks/fast_abs_rl
https://github.com/ChenRocks/fast_abs_rl
https://github.com/EdinburghNLP/XSum
https://github.com/nlpyang/PreSumm
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/google/pegasus-xsum
https://huggingface.co/google/pegasus-xsum
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System-level Summary-level

TAC08 TAC09 REALSumm PyrXSum TAC08 TAC09 REALSumm PyrXSum
Metrics r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

ROUGE-1 .92 .92 .93 .88 .76 .66 1.0 1.0 .61 .59 .66 .60 .47 .43 .30 .30
ROUGE-2 .96 .96 .97 .93 .82 .82 1.0 1.0 .63 .60 .67 .61 .43 .41 .30 .30
ROUGE-L .93 .91 .95 .90 .82 .84 1.0 1.0 .56 .53 .62 .57 .40 .36 .29 .29
AutoSummENG .94 .89 .96 .91 .51 .40 .60 .60 .64 .62 .68 .62 .33 .32 .07 .07
METEOR .94 .93 .95 .88 .81 .76 .60 .60 .65 .62 .70 .65 .49 .46 .26 .26
BEwT-E .96 .94 .98 .93 .82 .72 .60 .60 .65 .62 .72 .66 .43 .40 .28 .28
S3 pyr .95 .93 .95 .89 .81 .78 1.0 1.0 .66 .63 .71 .65 .49 .45 .24 .24
S3 resp .96 .94 .96 .90 .82 .82 1.0 1.0 .66 .64 .71 .65 .48 .44 .22 .22
PyrEval qual .91 .88 .91 .84 - - - - .40 .38 .46 .42 - - - -
PyrEval comp .90 .87 .93 .80 - - - - .41 .39 .49 .44 - - - -
BertScore .91 .89 .98 .89 .69 .68 .60 .60 .61 .58 .67 .62 .43 .40 .12 .12
BertScore (idf) .93 .90 .97 .89 .70 .68 .60 .60 .61 .58 .68 .63 .44 .41 .10 .10
MoverScore .95 .92 .96 .90 .47 .46 .20 .20 .64 .61 .71 .65 .37 .34 .14 .14
QAEval EM .94 .90 .97 .92 .83 .70 .60 .60 .48 .47 .58 .53 .22 .20 .46 .46
QAEval F1 .97 .93 .98 .95 .86 .78 .20 .20 .61 .58 .66 .60 .31 .29 .42 .42

Lite3Pyramid .98 .95 .99 .97 .78 .76 .20 .20 .74 .71 .78 .73 .49 .47 .48∗ .48∗

Lite2.5Pyramid .99 .96 .99 .97 .71 .70 .60 .60 .84 .81 .86 .82 .53 .51 .53∗ .53∗

Lite2Pyramid .98 .95 .99 .96 .74 .72 1.0 1.0 .87 .84 .88 .84 .56 .52 .66∗ .66∗

Lite2Pyramid-0 .88 .85 .97 .90 .73 .72 1.0 1.0 .62 .60 .71 .66 .48 .47 .63 .63

Table 4: 5-fold (split by systems) cross-validation results. In each column, the bold numbers are the best and the
underline numbers are the best out of automatic metrics. All Lite2Pyramid-0 numbers are based on fNLI = l3c. All
other numbers of our metrics are based on fNLI = p2c, except that those star∗ numbers are based on fNLI = l2c.

ing, we obtain an average inter-annotator agree-
ment (Krippendorff’s alpha (Krippendorff, 2011))
of 0.73. Following Bhandari et al. (2020), we use
the majority vote to mark the presence of an SCU
and break ties by “not present”. Table 3 shows the
gold Pyramid scores of different systems.

Usually judging the presence of SCUs is con-
sidered as a task with little ambiguity, reflected
by the high inter-annotator agreements achieved by
REAMSumm (0.66) (Bhandari et al., 2020) and our
PyrXSum (0.73). To further verify this, on REAL-
Summ, instead of taking the majority vote, we ran-
domly sample 1 out of 4 as the gold label. We con-
duct this for 3 rounds and test Lite2Pyramid’s cor-
relations with these 3 sets of human labels. We get
0.89/0.63, 0.90/0.63, 0.90/0.63 system/summary-
level Pearson correlations, respectively. They
are close to each other and also close to the re-
sults obtained from the majority vote (0.89/0.64).
This means workers give rather consistent SCU-
presence labels.

A.3 Experimental Details

NLI. For the natural language inference (NLI)
used in our work, we take advantage of the pre-
trained NLI released by Nie et al. (2020).13 We
use the RoBERTa (Liu et al., 2019) large based

13https://github.com/facebookresearch/
anli

version.14 This model is implemented on Hugging-
Face’s Transformers (Wolf et al., 2020) and was
trained on SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018b), FEVER (Thorne et al.,
2018), and ANLI (Nie et al., 2020). We directly
use this pretrained model for our Lite2Pyramid-0
metric. When we finetune this model, for simplic-
ity, we always use learning rate=1e-5, linear sched-
ule with warmup, and AdamW (Loshchilov and
Hutter, 2018) optimizer, and we always finetune
for 2 epochs.

SRL. For Semantic Role Labeling (SRL) model,
we use the out-of-the-box SRL model pretrained
by AllenNLP (Gardner et al., 2018).15 And it is
based the model proposed by Shi and Lin (2019).

Coreference Resolution. For the Coreference
Resolution model, we also use the out-of-the-box
Coreference model pretrained by AllenNLP (Gard-
ner et al., 2018).16 And it is based the model pro-
posed by Lee et al. (2018).

Constituency Parsing. For the Constituency
Parsing model, we also use the out-of-the-box
parser pretrained by AllenNLP (Gardner et al.,

14ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
15https://demo.allennlp.org/

semantic-role-labeling
16https://demo.allennlp.org/

coreference-resolution

https://github.com/facebookresearch/anli
https://github.com/facebookresearch/anli
https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/coreference-resolution
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Figure 4: Lite2.xPyramid curves (for system-level cor-
relations) and its comparison to replacing random sen-
tences’ SCUs with STUs.

2018).17 And it is based the model proposed by
Joshi et al. (2018).

Regressor. The full features we used to train the
regressor are: (1) sentence length (in words); (2)
linearized parsing tree length (in characters); (3)
parsing tree depth; (4) parsing tree depth divided
by sentence length; (5) the counts of parsing tree
non-terminal tokens.18 Then, we train the regressor
through the XGBoost Python Package19 and we set
the max depth=3, learning rate eta=0.1, number of
round=40.

A.4 Additional Results & Ablations

Cross-Validation Results. As a complement of
Figure 2 in the main paper, Figure 4 shows the
Lite2.xPyramid curves for system-level correla-
tions. It can be observed that comparing to using
random replacement, our Lite2.xPyramid always
achieves higher or the same correlations when the
same amount of human effort is reduced. Besides,
Table 4 shows our 5-fold cross-validation (split by
systems) results.

NLI. On REALSumm, the finetuned and non-
finetuned NLI models get 82.34% and 80.51%
accuracy for SCU-presence prediction, respec-
tively. Similarly, 92.53%/87.63% are for
TAC08, 93.25%/88.66% are for TAC09, and

17https://demo.allennlp.org/
constituency-parsing

18WRB, RBR, ADVP, VBG, $, ”, WHADVP, -RRB-, JJR,
NAC, PRP, NNS, WP, VBZ, MD, WDT, NP, ADJP, PDT, EX,
UH, NN, NFP, SYM, PRP$, RBS, FRAG, NX, CONJP, RP,
WHPP, CC, VBD, LS, ., SBAR, TO, JJ, IN, VP, -LRB-, S, QP,
SQ, CD, “, X, POS, XX, PP, PRT, JJS, HYPH, „ RB, VBN, :,
VBP, DT, VB, SINV, UCP, WHNP, NNPS, NNP.

19https://xgboost.readthedocs.io/en/
latest/python/index.html

92.45%/91.13% are for PyrXSum. Each num-
ber is an average of 5 folds (split by examples).
As shown in Table 1, Lite2Pyramid (with fine-
tuned NLIs) always gets higher correlations than
Lite2Pyramid-0 (with non-finetuned NLIs) except
for PyrXSum. Therefore, we think NLI accu-
racy positively affects the results. In our work,
we use a RoBERTa (Liu et al., 2019) based NLI
models. Here, to evaluate our metrics’ robust-
ness to different types of NLI models, we test an
ALBERT (Lan et al., 2019) based NLI model.20

On REALSumm, Lite2Pyramid gets 0.90/0.64
system/summary-level Pearson correlations with
human, similar to our RoBERTa-NLI based results
(0.89/0.64).

Regressor. On REALSumm, TAC08, TAC09,
and XSum, our regressors’ Mean Absolute Er-
rors (MAE) are 0.135, 0.211, 0.206, and 0.090,
respectively. On REALSumm, we test a weaker
regressor (MAE=0.167), while we get similar re-
sults (0.89/0.62 system/summary-level Pearson cor-
relations for Lite2.5Pyramid) to our original re-
gressor (0.90/0.62). However, the sentence se-
lector guided by our regressor always works bet-
ter than the random selector (shown in Figure 2
and Figure 4). We think the regressor influences
the results by determining the ranking. If we re-
verse the ranking from the regressor, i.e., replacing
SCUs with STUs for more complex sentences, we
get lower correlations (0.88/0.60). In our work,
we use XGBoost regressor instead of regressors
based on pretrained LM because we think to de-
termine the simulation easiness of sentences, syn-
tactic features are more important than seman-
tic features, and we want to keep the regressor
as light-weight as possible. Here, we evaluate a
RoBERTa-based regressor on REALSumm and it
gets 0.89/0.62 system/summary-level Pearson cor-
relations for Lite2.5Pyramid, which is similar to our
XGBoost regressor’s results (0.90/0.62).

20ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-
nli

https://demo.allennlp.org/constituency-parsing
https://demo.allennlp.org/constituency-parsing
https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html

