
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5715–5731
November 7–11, 2021. c©2021 Association for Computational Linguistics

5715

STraTA: Self-Training with Task Augmentation
for Better Few-shot Learning

Tu Vu1,2F, Minh-Thang Luong2, Quoc V. Le2, Grady Simon2, Mohit Iyyer1
University of Massachusetts Amherst1

Google Research2

{tuvu,miyyer}@cs.umass.edu
{ttvu,thangluong,qvl,gradys}@google.com

Abstract

Despite their recent successes in tackling many
NLP tasks, large-scale pre-trained language
models do not perform as well in few-shot set-
tings where only a handful of training exam-
ples are available. To address this shortcom-
ing, we propose STraTA, which stands for
Self-Training with Task Augmentation, an ap-
proach that builds on two key ideas for effec-
tive leverage of unlabeled data. First, STraTA
uses task augmentation, a novel technique
that synthesizes a large amount of data for
auxiliary-task fine-tuning from target-task un-
labeled texts. Second, STraTA performs self-
training by further fine-tuning the strong base
model created by task augmentation on a broad
distribution of pseudo-labeled data. Our exper-
iments demonstrate that STraTA can substan-
tially improve sample efficiency across 12 few-
shot benchmarks. Remarkably, on the SST-2
sentiment dataset, STraTA, with only 8 train-
ing examples per class, achieves comparable
results to standard fine-tuning with 67K train-
ing examples. Our analyses reveal that task
augmentation and self-training are both com-
plementary and independently effective.

1 Introduction

Recent advances in NLP demonstrate the effec-
tiveness of applying large-scale pretrained lan-
guage models to downstream tasks (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019; Lan
et al., 2020; Raffel et al., 2020; Brown et al.,
2020; He et al., 2021). While these models have
achieved state-of-the-art results on many NLP
benchmarks, they struggle when given limited train-
ing data. For instance, Devlin et al. (2019) find that
BERT is prone to degenerate performance on small
datasets. While enormous language models like
GPT-3 (Brown et al., 2020) exhibit the ability to
solve a new task from only a few examples without

F Work done as a student researcher at Google Brain.

labeled examples per class

Ac
cu

ra
cy

Ac
cu

ra
cy

labeled examples per class

Ac
cu

ra
cy

Figure 1: Our Self-Training with Task Augmentation
(STraTA) approach substantially improves sample effi-
ciency across different tasks. For example, when given
only 8 labeled examples per class from the SST-2 sen-
timent dataset, STraTA is competitive with standard
fine-tuning on 67K examples; on the SciTail entailment
dataset, with 512 labeled examples per class, STraTA
surpasses standard fine-tuning on 27K examples.

any fine-tuning, their performance still lags far be-
hind state-of-the-art fine-tuning results. Manually
annotating large amounts of training data will likely
improve performance but can also be prohibitively
expensive to obtain for many tasks and domains.
In this paper, we propose STraTA, an approach
that combines two complementary methods, Self-
Training and Task Augmentation, to effectively
leverage unlabeled data, which is comparatively
cheaper to obtain.1

At a high level, task augmentation exploits un-
labeled text from the domain of a given target task
to simulate a large amount of in-domain training
data for the auxiliary task of natural language in-
ference (NLI), which is then used to train a given
model before applying it to the target task. To
achieve this, we first build an NLI data gener-
ator by fine-tuning a pre-trained generative lan-
guage model on the MNLI data set (Williams et al.,
2018) in a text-to-text format. Then, given a tar-
get task (e.g., sentiment analysis) with unlabeled

1Our code and pre-trained models will be available at
https://github.com/google-research/google-research/tree/
master/STraTA.

https://github.com/google-research/google-research/tree/master/TA-ST
https://github.com/google-research/google-research/tree/master/TA-ST

5716

Task Augmentation Self-training

Task-specific
Unlabeled

Texts

Synthetic
In-domain

Auxiliary-task
Data

Data
Generation

Model

Pre-trained
Language Model

Auxiliary-task
Model

Teacher
Model

Student
Model

Labeled
Data

Pseudo-labeled
Data

Inference

Use a broad

distribution

Repeat until
convergence

Figure 2: An illustration of our Self-Training with Task Augmentation (STraTA) approach. In task augmentation,
we train an NLI data generation model and use it to synthesize a large amount of in-domain NLI training data
for each given target task, which is then used for auxiliary (intermediate) fine-tuning. Our self-training algorithm
iteratively learns a better model using a concatenation of labeled and pseudo-labeled examples. At each iteration,
we always start with the auxiliary-task model produced by task augmentation and train on a broad distribution of
pseudo-labeled data.

texts (e.g., his acting was really awful), we use
the NLI data generator to generate NLI examples
(e.g., [his acting was really awful, he gave an in-
credible performance, contradiction]). We show
that task augmentation alone can significantly im-
prove downstream performance across different
tasks, generally outperforming other fine-tuning
approaches, such as target-task language model
fine-tuning (Howard and Ruder, 2018; Gururan-
gan et al., 2020) and intermediate-task fine-tuning
on MNLI (Phang et al., 2019), in both high- and
low-data regimes.

Having obtained a strong auxiliary-task model
with task augmentation, STraTA uses this model
as a base model for self-training. Specifically, at
each at iteration, the base model is fine-tuned using
the available labeled data for the target task. Then,
the resulting model’s predictions on unlabeled ex-
amples2 are used as pseudo-labels to augment the
original labeled data set. The newly formed labeled
data set is then used to learn a better model in the
next iteration, and this procedure is repeated for
a number of iterations until a stopping criterion is
reached. While self-training has been extensively
studied (Rosenberg et al., 2005; McClosky et al.,
2006; He et al., 2020; Xie et al., 2020b; Du et al.,
2021), our experiments reveal that using a strong
base model and training on a broad distribution of
pseudo-labeled data are key factors for successful
deployment in NLP.

2We use the term unlabeled text to refer to pieces of text
(e.g., sentences) from the target domain, and the term unla-
beled examples to refer to examples that can be annotated
using the set of class labels for the target task.

Using our STraTA approach, we are able to sig-
nificantly improve sample efficiency, in terms of
both performance and variance, across 12 NLP
benchmark datasets. For instance, on the SST-2
sentiment dataset (Socher et al., 2013), with only 8
training examples per class, we achieve comparable
results to standard fine-tuning with 67K training
examples (see Figure 1).

Our main contributions are as follows:

1. We propose task augmentation, a novel data
augmentation-based fine-tuning method, and
show its effectiveness in comparison to other
competing fine-tuning approaches.

2. We propose a simple yet effective self-training
algorithm and highlight important ingredients
for successful self-training, which we hope
will enable the wider adoption of self-training
in NLP.

3. With STraTA, we demonstrate the effective-
ness of combining task augmentation and self-
training in improving sample efficiency across
NLP benchmarks.

2 Task augmentation

Labeled data is often expensive and time-
consuming to obtain, which motivates approaches
that learn from both labeled and unlabeled data.
More formally, assume we are given a target task
T with a labeled data set LT = {(xi,yi)}Mi=1

and an unlabeled data set UT = {(xj)}Nj=1. The
unlabeled data UT can be created artificially by

5717

removing the ground-truth labels y from LT (as
in our main experiments), or it can come from
additional unlabeled texts from the target domain
or from related datasets/domains (see Section 5).
Our methods, task augmentation and self-training,
take advantage of the unlabeled data UT to maxi-
mize performance on the target task T , even when
the number of labeled examples M is small (e.g.,
M = 16). In this section, we first present a frame-
work and implementation for task augmentation,
which uses natural language inference (NLI) as an
auxiliary (intermediate) training task to improve
downstream performance.

2.1 A framework for task augmentation
Task augmentation builds on a recent body of NLP
research on intermediate-task training (Phang et al.,
2019; Vu et al., 2020), in which a pre-trained lan-
guage model, such as BERT, is fine-tuned on an
auxiliary task before the target task.3 In previ-
ous work on intermediate fine-tuning, the auxil-
iary dataset used is a fixed target task-independent
dataset, such as MNLI or SQuAD (Rajpurkar et al.,
2016). An obvious limitation of this choice is the
domain mismatch between the auxiliary and tar-
get tasks, which our proposed task augmentation
method addresses. More specifically, we fine-tune
a pre-trained generative language model and use it
to synthesize a large amount of in-domain training
data from UT for an auxiliary task A, which is
then used to improve performance of a model on
the target task T (Figure 2, left).4 In this work,
we choose NLI as the auxiliary task for two main
reasons: (1) NLI has been shown to be an effective
auxiliary task for a variety of target tasks (Conneau
et al., 2017; Phang et al., 2019), and (2) existing
NLI datasets contain large training sets, which al-
lows us to train a reliable data generator.

Generating synthetic NLI data: To obtain an
NLI data generator, we fine-tune the pre-trained T5-
3B model (Raffel et al., 2020) on MNLI, which con-
tains 393K sentence pairs labeled as {entailment,
contradiction, neutral}. We cast each MNLI train-
ing example (sentA, sentB)→ label into a text-
to-text format (label, sentA) → sentB to ob-

3This process differs from traditional data augmentation
approaches (e.g., lexical substitution, or back-translation),
which yield negligible improvements when combined with
large-scale pre-trained language models (Wei and Zou, 2019;
Yang et al., 2020).

4Traditional data augmentation is a special case of our
framework where the auxiliary task is identical to the target
task (A ≡ T).

tain fine-tuning examples that look like [entailment,
the facts are accessible to you→ you have access
to the facts].5 We fine-tune T5 on this dataset with
a constant learning rate of 0.001 for 216 = 65, 536
steps using the Adafactor optimizer (Shazeer and
Stern, 2018). The fine-tuned T5 data generator pro-
duces augmented examples for all target datasets.
Specifically, at inference time, we feed the model
an NLI label (e.g., entailment) and an unlabeled
sentence xj from the target domain to produce
some output sentence xk: (entailment,xj) →
xk (see Appendix B for example outputs). Data for
intermediate fine-tuning is then formed by creating
examples like (xj ,xk) → entailment. This ap-
proach has several advantages: (1) training labels
are free, and (2) by overgeneration, a large amount
of in-domain NLI training data can be produced
even for target tasks with small datasets.
Overgeneration and filtering: Following Puri
et al. (2020), we perform overgeneration and filter-
ing to increase the quantity and quality of synthetic
NLI training data. Concretely, we generate 100
output samples per input with top-k (k = 40) sam-
pling (duplicates are removed) and use a BERT
model fine-tuned on MNLI (in the original format)
as an NLI classifier to filter synthetic training ex-
amples. We keep a synthetic example if the NLI
classifier produces the same label as that fed to the
NLI data generator and is also confident about its
prediction.6 For all experiments, we perform in-
termediate fine-tuning on examples from both the
original MNLI dataset and the final filtered task
augmentation dataset.7

3 Self-training

While task augmentation uses unlabeled texts to
produce synthetic data for an intermediate task,
self-training is a complementary approach that im-
proves a model by training directly on the tar-
get task using pseudo-labeled examples. In this
section, we explore a simple self-training algo-
rithm in which a model learns to improve itself

5We fine-tune a separate T5 model per class label. To
overcome biases in MNLI where the hypotheses are usually
shorter than the premises, we also include reversed examples:
(reversed label, sentB)→ sentA.

6We use an example when its predicted probability ex-
ceeding a certain threshold τ . We choose a value for τ in
[0.3, 0.4, . . . , 0.9] for each target task based on performance
on the original MNLI development set.

7A two-stage intermediate fine-tuning procedure where
the model is first trained on the synthetic data before being
fine-tuned on the original data typically works better, and this
is used in our experiments.

5718

Algorithm 1: Our self-training algorithm

initialization
t = 0

Form a base model f0, which is initial-
ized with pre-trained parameters from a pre-
training/intermediate fine-tuning stage, and then
learn a teacher model f1 by training f0 on the
original labeled data set L.

repeat
t = t+ 1

1. Use the current teacher model ft to annotate
(for t = 1) or re-annotate (for t > 1) all of the
examples in U to obtain a set Ũ of pseudo-labeled
examples.

2. Add the whole set Ũ of pseudo-labeled exam-
ples to the original labeled data set L to form a
new labeled data set.

3. Learn a student model ft+1 by training the base
model f0 on the current labeled data set and option-
ally fine-tune it on L. The resulting student model
ft+1 is used as a teacher for the next iteration.

until convergence or the maximum number
of iterations is reached

using its predictions on unlabeled examples from
a given target task. Our method differs from tra-
ditional self-training methods in that we leverage
a strong base model and allow it to learn from all
available pseudo-labeled examples at every itera-
tion, regardless of model confidence. Formally,
given a target task T with a small labeled data
set L = {(xi,yi)}Mi=1 and an unlabeled data set
U = {(xj)}Nj=1, where M � N , we summarize
our self-training algorithm in Algorithm 1.

Starting with a strong base model: An impor-
tant ingredient in self-training algorithms is the
base model f0. Successful self-training typically
requires a good base model, which can provide a
large proportion of “correct” predictions or pseudo-
labels on unlabeled examples; otherwise, errors
can be propagated or magnified by later stages of
self-training. At each self-training iteration, we
always start from the same base model f0, which is
initialized with pre-trained parameters from a pre-
training/intermediate fine-tuning stage (e.g., the
auxiliary task training stage in task augmentation),8

and then fine-tune all of its parameters using the
available labeled and pseudo-labeled data.9

8We find empirically that starting from the base model
f0 works better than from the model ft−1 obtained in the
previous iteration.

9He et al. (2020) find that further fine-tuning the resulting
model on the original labeled data set L improves machine

Self-training on a broad distribution of pseudo-
labeled data: Another important factor is the se-
lection of pseudo-labeled examples at each self-
training iteration. Traditional self-training ap-
proaches usually select a small set of examples
where the current teacher model ft is sufficiently
confident (e.g., the probability of the predicted
class label is above a threshold) to add to the la-
beled data set at each iteration until the unlabeled
data pool U is exhausted. This can be problematic
as state-of-the-art language models like BERT are
overconfident and poorly calibrated (Jiang et al.,
2021). In preliminary experiments, we tried several
calibration methods, including temperature scal-
ing (Guo et al., 2017), label smoothing (Müller
et al., 2019), and confidence penalties (Pereyra
et al., 2017), but all of which failed to fully address
this problem. Instead, we encourage learning from
a “natural” broad distribution of pseudo-labeled
data by adding the whole set Ũ of pseudo-labeled
examples to the original labeled data set L at each
self-training iteration.10 At each iteration t > 1,
we also re-annotate all of the examples in the orig-
inal unlabeled data pool U with ft, as we expect
ft is better than ft−1.

4 Experiments

We perform experiments across 12 different NLP
datasets and three different data regimes (including
a few-shot setting). Task augmentation consistently
improves over prior fine-tuning approaches in all
three regimes, and the combination of self-training
and task augmentation, STraTA, results in higher
performance and lower variance than competing
approaches when given only 8 labeled examples
per class from each dataset.

4.1 Datasets & data regimes

The datasets used in our study (Table 1)11 come
from two common language understanding bench-
marks: GLUE (Wang et al., 2019b) and SentE-
val (Conneau and Kiela, 2018). Due to restricted
test set access for GLUE datasets, we held out a
small subset of the training set for validation and

translation models. We use development set performance to
determine whether or not to perform this fine-tuning step for
each dataset.

10We find that removing examples with the lowest-
confidence pseudo labels can be helpful for some tasks. One
can use a development set, upon availability, to assess if this
filtering is necessary.

11Appendix A contains more details about characteristics
and associated evaluation metrics for each dataset.

5719

Task |Train|
text classification/regression
SNLI (Bowman et al., 2015) 570K
MNLI (Williams et al., 2018) 393K
QQP (Iyer et al., 2017) 364K
QNLI (Wang et al., 2019b) 105K
SST-2 (Socher et al., 2013) 67K
SciTail (Khot et al., 2018) 27K
SST-5 (Socher et al., 2013) 8.5K
STS-B (Cer et al., 2017) 7K
SICK-E (Marelli et al., 2014) 4.5K
SICK-R (Marelli et al., 2014) 4.5K
CR (Hu and Liu, 2004) 4K
MRPC (Dolan and Brockett, 2005) 3.7K
RTE (Dagan et al., 2005, et seq.) 2.5K

Table 1: Datasets used in our experiments.

report results on the original development set. The
training set without ground-truth labels is used as
unlabeled data UT for each task.

We consider three data regimes by varying the
amount of labeled training data across the down-
stream tasks: FULL (all labeled training data),
LIMITED (1024 random labeled training examples),
and FEW-SHOT (8 random labeled training exam-
ples per class).12 Since fine-tuning BERT can be
unstable on small datasets (Devlin et al., 2019), we
perform 10 random restarts where there are less
than 10K training examples and report the mean
and standard deviation.13 Since large development
sets are impractical in low-resource settings (Oliver
et al., 2018; Kann et al., 2019), we randomly sam-
ple 256 development examples for each task in the
LIMITED and FEW-SHOT regimes. Additionally,
in the FEW-SHOT regime, we experiment with a
real-world scenario where there is no development
set access.

4.2 Setup

As in Devlin et al. (2019), our input format for
all tasks contains a [CLS] token followed by a sin-
gle text segment or a concatenation of text seg-
ments (e.g., a premise-hypothesis pair) separated
with a [SEP] token. We feed the final [CLS] rep-
resentation into a task-specific classification layer
and fine-tune all the parameters end-to-end on the
downstream tasks. For both fine-tuning and self-
training, we perform early stopping based on devel-
opment set performance. We use the Transformers

12For regression tasks, we partition the output interval [0, 5]
into five bins and sample 8 examples from each bin.

13We resample examples for each restart.

library (Wolf et al., 2019) and its recommended
hyperparameters for all experiments.14

4.3 Methods

We experiment with task augmentation (TA) and
self-training (ST) individually, as well as the com-
bined approach STraTA, which uses the auxiliary-
task model from task augmentation as the base
model for self-training. We compare our methods
to the following baselines:

LMFT & ITFTMNLI: We compare our meth-
ods against commonly-used fine-tuning ap-
proaches, including target-task language model
fine-tuning (LMFT; Howard and Ruder, 2018; Gu-
rurangan et al., 2020)—in which a model is first
trained with the language model objective on task-
specific unlabeled data before being fine-tuned on
the target task—and intermediate-task fine-tuning
on MNLI (ITFTMNLI; Phang et al., 2019)—which
first trains a model on MNLI before fine-tuning it
on the target task.

Prompt-based/entailment-based fine-tuning ap-
proaches: We also include results from recent
work on prompt-based (LM-BFF; Gao et al., 2021)
and entailment-based (EFL; Wang et al., 2021)
fine-tuning,15 which has been shown to outper-
form the GPT-3-style “in-context learning” ap-
proach (Brown et al., 2020) for few-shot learning.
These approaches do not assume access to task-
specific unlabeled data and are not directly compa-
rable to our methods due to differences in model
architecture and experimental settings.

Du et al. (2021)’s self-training approach: Most
related to our work, Du et al. (2021) propose a data
augmentation method called SentAugment, which
retrieves a large amount of “in-domain” data for
a given task from a large bank of Web sentences.
A base model trained using task-specific labeled
data is then applied to obtain pseudo-labels for
the retrieved sentences, which is then added to the
original training set to train a better model. Their
approach is complementary to ours, and combining
these approaches is a promising direction for future
work.

14While individual task performance can likely be further
improved with more involved hyperparameter tuning, we stan-
dardize hyperparameters across tasks to cut down on compu-
tational expense. Our experiments were conducted on Google
Cloud with 100% renewable energy.

15Results taken from Wang et al. (2021).

5720

Model SNLI QQP QNLI SST-2 SciTail SST-5 STS-B SICK-E SICK-R CR MRPC RTE

FULL

BERTLARGE 91.1 88.4 91.9 92.4 95.3 53.70.9 89.60.2 87.90.6 84.40.4 91.70.6 89.00.8 68.67.2

+ LMFT 91.0 88.1 90.4 93.5 95.3 54.00.4 89.50.2 87.70.5 84.00.5 91.60.8 89.51.0 66.57.3

+ ITFTMNLI 91.1 88.2 91.6 93.5 96.5 54.00.8 90.30.3 89.90.2 86.30.3 92.00.6 89.70.9 82.31.4

+ TA 91.9 88.5 92.5 94.7 96.9 55.70.8 90.90.2 90.70.3 87.00.3 93.30.6 90.80.7 83.81.1

LIMITED (1024 total training examples)
BERTLARGE 77.40.6 74.11.0 81.70.9 89.80.6 90.90.7 49.11.3 88.20.4 84.80.7 80.20.4 91.20.6 85.71.7 66.82.7

+ LMFT 75.81.5 71.60.5 80.52.0 88.90.8 87.72.3 49.23.1 88.40.4 83.20.6 78.50.6 90.90.7 84.91.1 65.23.4

+ ITFTMNLI 85.20.4 74.00.5 83.50.5 90.00.8 92.11.1 49.41.2 87.80.8 88.80.5 83.20.7 91.30.7 86.40.9 81.11.3

+ TA 87.30.3 75.70.5 85.00.5 91.70.7 92.31.1 51.41.0 89.00.6 89.40.4 84.30.4 92.60.6 88.00.8 82.91.8

FEW-SHOT (8 training examples per class)
BERTBASE 43.72.2 55.96.5 59.010.9 59.18.4 67.16.6 30.52.0 73.64.5 61.34.1 59.72.7 65.28.2 72.410.2 51.42.5

+ LMFT 45.23.9 57.26.2 57.69.1 64.98.7 64.08.0 33.41.9 75.44.4 59.34.0 58.32.0 72.46.0 73.98.6 50.93.9

+ ITFTMNLI 75.25.7 63.77.0 62.85.1 76.87.2 75.85.6 35.02.6 80.21.1 80.41.9 73.52.7 79.23.6 74.38.0 62.213.5

+ TA 83.30.8 68.71.5 70.13.4 80.36.6 78.53.2 37.43.0 80.71.5 81.12.4 75.91.8 86.52.2 74.56.5 67.67.1

+ ST 65.05.8 69.95.9 71.611.3 62.710.4 68.68.3 33.93.5 80.52.2 68.14.5 64.02.4 78.26.3 80.51.8 50.73.1

+ ITFTMNLI + ST 83.20.3 70.75.9 81.51.2 88.02.1 83.74.4 39.52.0 84.20.8 81.82.6 75.82.2 85.62.3 80.61.2 62.512.0

+ STraTA 85.70.2 74.50.4 82.10.5 90.10.8 86.33.5 41.31.5 84.70.5 84.91.2 77.61.6 90.50.8 81.00.8 70.62.4

BERTLARGE 43.14.4 58.54.7 64.46.1 66.18.7 68.89.5 35.21.3 74.63.8 66.54.5 66.63.3 72.06.0 79.92.0 53.13.3

+ LMFT 39.62.6 52.74.7 52.21.6 66.39.3 66.410.6 36.82.9 75.49.4 58.86.9 51.67.0 75.65.9 80.52.4 52.84.8

+ ITFTMNLI 79.93.1 62.69.0 64.54.4 80.75.0 72.311.2 36.42.1 75.54.0 77.83.8 73.52.8 82.63.0 72.87.9 69.714.6

+ TA 84.80.7 64.66.3 71.54.0 85.51.4 79.04.5 38.53.0 78.92.4 81.23.9 77.51.4 88.61.3 78.26.6 77.06.3

+ ST 69.39.2 74.31.2 85.41.7 81.912.2 79.94.8 42.01.5 82.82.3 77.33.1 73.12.3 88.11.3 81.20.5 53.94.3

+ ITFTMNLI + ST 85.40.3 74.80.7 86.11.1 89.70.7 86.24.2 42.22.0 84.11.7 84.32.0 78.41.3 89.31.0 81.41.2 72.75.4

+ STraTA 87.30.3 75.10.2 86.40.8 91.70.7 87.32.9 43.02.3 84.51.6 86.31.8 79.01.0 90.00.6 81.50.7 77.15.4

Prompt-based (LM-BFF; Gao et al., 2021) and entailment-based (EFL; Wang et al., 2021) fine-tuning approaches
RoBERTaLARGE 38.41.3 58.89.9 52.71.8 60.53.1 – – 24.58.4 – – 61.95.1 76.13.9 55.01.3

+ LM-BFF 52.01.7 68.21.2 61.83.2 79.96.0 – – 66.03.2 – – 88.62.3 78.52.3 63.32.1

+ EFL 81.01.1 67.32.6 68.03.4 90.81.0 – – 71.01.3 – – 92.30.4 76.21.3 85.80.9

Table 2: STraTA significantly improves results across 12 NLP benchmark datasets (numbers in the subscript
indicate the standard deviation across 10 random seeds). See Appendix C for full results.

4.4 Results and Discussion

Table 2 shows the main results of our experiments
with task augmentation and self-training. Below,
we first provide an overview of these results before
analyzing them in more detail.

Baselines: LMFT is not always helpful and can
even hurt performance (e.g., on QNLI, a task built
from Wikipedia, which is part of BERT’s pre-
training data). Du et al. (2021) also observe a
decrease in performance when using LMFT with
task-specific in-domain unlabeled data retrieved
from Web data. ITFTMNLI significantly outper-
forms LMFT in many cases, particularly on target
tasks closely related to MNLI.

Task augmentation significantly improves re-
sults on downstream tasks: The first three
blocks of Table 2 show the results for TA, which
improves almost all target tasks across all three
data regimes. TA even improves results on SNLI
in the FULL regime, where there is a large amount
of labeled data available (570K examples). Chang-
ing the data regimes significantly impacts the av-

erage absolute performance gain over the vanilla
BERTLARGE across target tasks, which is lowest
in FULL regime (+2.7%) and highest in the FEW-
SHOT regime (+13.0%). SNLI (+41.7%) and RTE
(+23.9%) benefit the most from TA in the FEW-
SHOT regime. TA also significantly outperforms
both LMFT and ITFTMNLI, particularly in the low-
data regimes (+16.4% and +4.8%, respectively).

Adding self-training further boosts down-
stream performance when task-specific unla-
beled examples are available: The third block
of Table 2 shows that in the FEW-SHOT regime,
adding ST to TA, which results in STraTA, fur-
ther boosts downstream performance. In particu-
lar, STraTA performs the best across target tasks,
achieving up to +44.2% absolute improvement on
SNLI over BERTLARGE. Overall, STraTA provides
an average absolute performance gain of +20.9%
and +18.4% for BERTBASE and BERTLARGE, re-
spectively. Using ST alone also leads to large
improvements over the vanilla BERT models; how-
ever, the performance gain largely depends on the
target task.

5721

Model SST-2 SST-5 CR

Ours (8 examples per class)
BERTBASE 69.86.5 32.82.0 73.10.5

+ TA 85.50.6 41.00.8 88.70.2

+ ST 74.99.0 38.30.8 85.61.8

+ STraTA 90.80.6 43.11.1 91.40.2

BERTLARGE 75.63.3 36.60.4 79.30.7

+ TA 87.30.3 41.71.1 90.00.4

+ ST 90.60.3 43.80.4 89.01.1

+ STraTA 92.40.1 45.50.7 90.60.0

Du et al. (2021) (20 examples per class)
RoBERTaLARGE 83.62.7 42.31.6 88.91.7

+ SentAugST 86.72.3 44.41.0 89.72.0

Table 3: Compared to Du et al. (2021), our approach
leads to better downstream performance, despite using
a weaker base model (BERT vs. RoBERTa) and with
less labeled examples.

Using a better base model leads to better self-
training results: Our experiment results show
that self-training is complementary to different
BERT base models across target tasks—the better
the BERT base model, the better self-training re-
sults. BERT + TA yields better self-training results
than BERT + ITFTMNLI, and both are better than the
vanilla BERT. Combinations of BERTLARGE and
ST typically outperform that of BERTBASE and ST.
Interestingly, BERTLARGE+ ST is competitive with
BERTLARGE+ STraTA on several tasks (e.g., QQP
and QNLI), and this does not hold for BERTBASE.

Comparison to recent published work: The
last three rows of Table 2 and the last two rows of
Table 3 show results from recent published work.16

Broadly, our methods lead to better performance
compared to these approaches. However, due to
differences in evaluation methodology (e.g., mod-
els, training/development data subsets, number of
random restarts, and other factors), we refrain from
explicitly ranking the approaches.

5 Analysis of few-shot learning results

Having established the effectiveness of both task
augmentation and self-training in the few-shot set-
ting, we conduct a series of analysis experiments

16While Wang et al. (2021) report results for LM-BFF and
EFL across 5 random data subsets using a fixed set of seeds,
Du et al. (2021) tried 10 seeds for each of their 5 random data
subsets and report the mean of the top 3 seeds. To be more
comparable to (Du et al., 2021), we report the mean of our top
3 random seeds in Table 3.

Model SST-2 SciTail

RANDBASE 50.01.6 50.72.4

+ STraTA 78.60.9 64.43.1

BERTBASE 59.18.4 67.16.6

+ STraTA 90.10.8 86.33.5

BERTLARGE 66.18.7 68.89.5

+ STraTA 91.70.7 87.32.9

Table 4: Our approach yields improvements even when
starting with a randomly-initialized model, but pre-
training helps considerably.

in this section to explore the source of the observed
improvements.

Sample efficiency with task augmentation and
self-training: Figure 1 illustrates how our
STraTA approach improves sample efficiency as
the number of examples per class increases. For
the SST-2 sentiment dataset, despite using only
K = 8 training examples per class, STraTA has
already nearly saturated its performance, achiev-
ing results competitive with standard fine-tuning
over the whole dataset of 67K labeled examples.
On the harder task of SciTail, STraTA continues
to improve as K increases, and surpasses the per-
formance of standard fine-tuning with the whole
dataset of 27K labeled examples at K = 512.

STraTA improves a randomly-initialized base
model: Table 4 shows that our STraTA ap-
proach does not require a powerful pre-trained
base model to exhibit improvements: when
applied to a randomly initialized Transfomer
model (RANDBASE) with the same architecture
as BERTBASE, RANDBASE+ STraTA outperforms
the vanilla BERTBASE by a large margin on SST-2,
while being competitive on SciTail. Additionally,
BERTBASE+ STraTA substantially outperforms the
vanilla BERTLARGE by 24% and 17.5% on SST-2
and SciTail, respectively.

Self-training on a broad distribution of
pseudo-labeled data: Previous self-training
algorithms (Rosenberg et al., 2005; McClosky
et al., 2006; Sohn et al., 2020; Du et al., 2021)
typically add a small set of unlabeled examples
with the highest-confidence pseudo labels to
the labeled data set L at each iteration. In
contrast, our approach adds all pseudo-labeled
examples to L at every iteration regardless of
confidence. We compare the two approaches in

5722

self-training iterations

La
be

lin
g

ac
cu

ra
cy

Figure 3: On the SST-2 sentiment dataset, traditional
confidence filtering-based self-training (left) yields
poor results compared to our approach, which trains on
all pseudo-labels at each iteration (right).

Figure 3, which shows the labeling accuracy (%
of unlabeled examples that are labeled correctly)
on the development set (dev), the test set (test),
and the unlabeled data pool (predict) of the SST-2
sentiment dataset. In the iterative confidence
filtering-based approach (left plot), a fixed number
(in this plot, 32) of most confidently labeled
examples are added to the labeled set L at each
iteration (the self-train line shows the labeling
accuracy of these examples); once they have been
added, they are not removed, and this process is
repeated until the unlabeled set U is exhausted.
As can be seen, this approach works well for
the several first self-training iterations (3-5), but
then labeling accuracy begins to degrade. In
contrast, our algorithm (right plot) gradually
and consistently improves labeling accuracy
before converging at some iteration. These results
suggest that strong base models benefit from
including even significantly noisy pseudo-labels in
self-training, as opposed to training on a narrow
distribution of high-confidence predictions.

Does self-training work with out-of-
domain/distribution (OOD) unlabeled ex-
amples? We investigate this question by
applying self-training on top of BERTBASE+ TA.
We consider SOURCE → TARGET task pairs
where training data from the source task without
ground-truth labels is used as OOD unlabeled data
for the target task. We experiment with several task
pairs, including MNLI → SciTail, SST-2 → CR,
QQP → MRPC, and MNLI → RTE. As shown
in Table 5, self-training with OOD unlabeled
examples (STOUT) is also helpful, offering an
average absolute performance gain of +3.5% over
the strong BERTBASE+ TA baseline. However,
using OOD unlabeled examples typically leads

Model SciTail CR MRPC RTE

BERTBASE 67.16.6 65.28.2 72.410.2 51.42.5

BERTBASE+ TA 78.53.2 86.52.2 74.56.5 67.67.1

+ STIN 86.33.5 90.50.8 81.00.8 70.62.4

+ STOUT 81.43.7 88.31.9 80.31.9 71.23.2

+ STIN + OUT 82.62.6 88.31.5 80.21.1 69.94.0

Table 5: Self-training with out-of-domain unlabeled
examples also results in improvements, but using in-
domain data works significantly better.

Model SST-2 SciTail

BERTBASE 58.88.4 (↓ 0.3) 61.55.4 (↓ 5.6)
+ LMFT 64.08.1 (↓ 0.9) 59.35.6 (↓ 4.7)
+ ITFTMNLI 76.57.2 (↓ 0.3) 76.25.4 (↑ 0.4)
+ TA 79.86.3 (↓ 0.5) 77.83.3 (↓ 0.7)
+ STraTA 86.62.6 (↓ 3.5) 80.63.0 (↓ 5.7)

Table 6: In a realistic evaluation without a development
set, our STraTA approach still leads to significant im-
provements on top of BERTBASE. In parentheses, we
show the absolute increase (↑) or decrease (↓) in per-
formance compared to the same method used with a
development set.

to worse self-training results compared to using
in-domain unlabeled examples (STIN), except for
the case MNLI → RTE, and combining the two
types of unlabeled examples (STIN + OUT) does not
bring further improvements over STIN.

Towards realistic evaluation in few-shot learn-
ing: In real-world low-resource scenarios, it is of-
ten impractical to rely on a development set (Oliver
et al., 2018; Kann et al., 2019). With so little data,
it may be more effective to use all labeled data
for training. To examine the applicability of our
methods to this real-world setting, here we con-
sider an evaluation that does not make use of a
development set. Rather than using early stopping,
we fine-tune each model for a fixed number of 512
steps. We checkpoint every 30 steps and evaluate
a single model obtained by averaging the last 5
model checkpoints. For self-training, we perform
a fixed number of 30 self-training iterations, each
following the same fine-tuning procedure.

Table 6 summarizes our results. Broadly, all
models perform worse in this setting than when
a development set is available. Our STraTA ap-
proach still provides significant improvements over
BERTBASE, but much worse than the same method
used with a development set. We conjecture that
this is because without a development set, the

5723

model achieves somewhat lower accuracy in each
self-training iteration, and these errors compound
through later iterations.

6 Related Work

Improving language model fine-tuning: Fine-
tuning has been the most common approach for
applying pre-trained language models to down-
stream tasks. However, it typically requires a tar-
get dataset of thousands to hundreds of thousands
of examples to work well (Yogatama et al., 2019;
Brown et al., 2020). Many methods have been
proposed to improve performance and stability of
pre-trained language models on small datasets, in-
cluding language model fine-tuning on unlabeled
data from the target domain (Howard and Ruder,
2018; Gururangan et al., 2020), intermediate-task
fine-tuning (Phang et al., 2019), multi-task pre-
finetuning (Aghajanyan et al., 2021a), better de-
sign choices and training strategies (Mosbach et al.,
2021; Zhang et al., 2021), and regularization-
oriented techniques (Jiang et al., 2020; Aghajanyan
et al., 2021b). More related to our work is research
on intermediate-task fine-tuning that makes use
of data-rich tasks (Phang et al., 2019), tasks that
require complex reasoning and inference (Pruk-
sachatkun et al., 2020), and beneficial relationships
among tasks (Vu et al., 2020).

Few-shot learning: Our work also relates to re-
search in few-shot learning. In previous work,
fine-tuning is combined with other learning strate-
gies to improve few-shot performance, including
consistency training (Xie et al., 2020a), meta-
learning (Bansal et al., 2020), self-training (Du
et al., 2021; Sun et al., 2020), and contrastive learn-
ing (Gunel et al., 2021). Other work has focused
on prompt-based/entailment-based few-shot learn-
ing approaches (Brown et al., 2020; Schick and
Schütze, 2021; Gao et al., 2021; Tam et al., 2021;
Wang et al., 2021). Notably, Brown et al. (2020)
demonstrate remarkable few-shot learning perfor-
mance with a single frozen GPT-3 model, although
its performance still lags far behind state-of-the-art
fine-tuning results.

Generative data augmentation: Recent work
explores the generation capabilities of large-scale
generative language models, such as GPT-2 (Rad-
ford et al., 2019) and T5 (Raffel et al., 2020), to
generate synthetic training data for different tasks,
including text classification (Anaby-Tavor et al.,
2020; Lee et al., 2021; Schick and Schütze, 2021),

question answering (Puri et al., 2020), and com-
monsense reasoning (Yang et al., 2020). Yang et al.
(2020) show that such a generative approach con-
sistently outperforms previous data augmentation
methods based on back-translation (Sennrich et al.,
2016; Xie et al., 2020a).

Semi-supervised learning: Another area upon
which our work builds is semi-supervised learn-
ing (SSL). Recent work has combined self-training
with other techniques, e.g., noise injection (He
et al., 2020; Xie et al., 2020b), consistency reg-
ularization and pseudo-labeling (Sohn et al., 2020),
to develop powerful SSL algorithms. Du et al.
(2021) show that self-training improves upon lan-
guage model pre-training.

7 Limitations & Conclusion

Task augmentation and self-training provide com-
plementary ways to leverage task-specific unla-
beled data for improved downstream performance.
While task augmentation utilizes unlabeled texts
to synthesize a large amount of in-domain data
for an auxiliary training task, self-training uses a
model’s predictions on unlabeled examples to im-
prove the model itself. When combining these
methods in STraTA, we are able to substantially
improve sample efficiency across 12 NLP bench-
mark datasets. That said, each method has its own
limitations. While our implementation uses NLI
as an auxiliary task in task augmentation, there are
target tasks for which NLI may not be helpful (e.g.,
on grammatical acceptability judgments, as shown
in Wang et al. (2019a)). Additionally, other auxil-
iary tasks may increase improvements (e.g., QNLI
benefits more from QA tasks (Vu et al., 2020)).
We leave exploration of other auxiliary tasks to fu-
ture work. Finally, our self-training algorithm (like
prior approaches) assumes access to task-specific
unlabeled examples, which might be non-trivial to
acquire for some applications.

Acknowledgments

We thank David Berthelot, Colin Raffel, Kalpesh
Krishna, Zi Yang, Jenny Lee, Guolong Su, and Nan
Hua for useful discussions and valuable feedback
at different stages of this project. We would also
like to thank the anonymous reviewers, Kenton Lee,
Zihang Dai, Ed H. Chi, Nader Akoury, Brendan
O’Connor, Zhiyang Xu, Andrew Drozdov, and the
rest of the UMass NLP group for their thoughtful
comments and suggestions.

5724

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-

tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021a. Muppet: Massive multi-task rep-
resentations with pre-finetuning. arXiv preprint
arXiv:2101.11038.

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021b. Better fine-tuning by reducing representa-
tional collapse. In Proceedings of the 9th Inter-
national Conference on Learning Representations
(ICLR 2021).

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! Proceed-
ings of the 33th AAAI Conference on Artificial Intel-
ligence (AAAI 2019), 34(05):7383–7390.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020. Self-supervised
meta-learning for few-shot natural language classifi-
cation tasks. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP 2020), pages 522–534.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2015), pages 632–642.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the 34th Conference on Neural In-
formation Processing Systems (NeurIPS 2020), vol-
ume 33, pages 1877–1901.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval 2017), pages 1–14.

Alexis Conneau and Douwe Kiela. 2018. SentEval:
An evaluation toolkit for universal sentence repre-
sentations. In Proceedings of the 11th International
Conference on Language Resources and Evaluation
(LREC 2018).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised

learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2017), pages
670–680.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Proceedings of the 1st International
Conference on Machine Learning Challenges: Eval-
uating Predictive Uncertainty Visual Object Classifi-
cation, and Recognizing Textual Entailment (MLCW
2005), page 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL 2019), pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the 3rd International Workshop on
Paraphrasing (IWP 2005).

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Veselin
Stoyanov, and Alexis Conneau. 2021. Self-training
improves pre-training for natural language under-
standing. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL 2021), pages 5408–5418.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing (ACL-IJCNLP 2021),
pages 3816–3830.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2021. Supervised contrastive learning for pre-
trained language model fine-tuning. In Proceed-
ings of the 9th International Conference on Learn-
ing Representations (ICLR 2021).

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning (PMLR 2017), vol-
ume 70, pages 1321–1330.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL
2020), pages 8342–8360.

https://arxiv.org/abs/2101.11038
https://arxiv.org/abs/2101.11038
https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://ojs.aaai.org/index.php/AAAI/article/view/6233
https://ojs.aaai.org/index.php/AAAI/article/view/6233
https://www.aclweb.org/anthology/2020.emnlp-main.38
https://www.aclweb.org/anthology/2020.emnlp-main.38
https://www.aclweb.org/anthology/2020.emnlp-main.38
https://www.aclweb.org/anthology/D15-1075
https://www.aclweb.org/anthology/D15-1075
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/L18-1269
https://www.aclweb.org/anthology/D17-1070
https://www.aclweb.org/anthology/D17-1070
https://www.aclweb.org/anthology/D17-1070
https://dl.acm.org/doi/10.1007/11736790_9
https://dl.acm.org/doi/10.1007/11736790_9
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://aclanthology.org/2021.naacl-main.426
https://aclanthology.org/2021.naacl-main.426
https://aclanthology.org/2021.naacl-main.426
https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295
https://openreview.net/forum?id=cu7IUiOhujH
https://openreview.net/forum?id=cu7IUiOhujH
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://www.aclweb.org/anthology/2020.acl-main.740
https://www.aclweb.org/anthology/2020.acl-main.740

5725

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural se-
quence generation. In Proceedings of the 8th Inter-
national Conference on Learning Representations
(ICLR 2020).

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In Proceedings of
the 9th International Conference on Learning Repre-
sentations (ICLR 2021).

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2018),
pages 328–339.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 2004), page
168–177.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai.
2017. First Quora Dataset Release: Question pairs.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2020), pages 2177–2190.

Zhengbao Jiang, Haibo Ding, Jun Araki, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language mod-
els for question answering. Transactions of the Asso-
ciation for Computational Linguistics (TACL 2021).

Katharina Kann, Kyunghyun Cho, and Samuel R. Bow-
man. 2019. Towards realistic practices in low-
resource natural language processing: The develop-
ment set. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP 2019),
pages 3342–3349.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the 32th
AAAI Conference on Artificial Intelligence (AAAI
2018).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proceed-
ings of the 8th International Conference on Learn-
ing Representations (ICLR 2020).

Kenton Lee, Kelvin Guu, Luheng He, Tim Dozat, and
Hyung Won Chung. 2021. Neural data augmen-
tation via example extrapolation. arXiv preprint
arXiv:2102.01335.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the 9th International Conference on
Language Resources and Evaluation (LREC 2014),
pages 216–223.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the 2006 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL 2006), pages 152–159.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. In Proceedings of the 9th International Con-
ference on Learning Representations (ICLR 2021).

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
Proceedings of the 33th Conference on Neural In-
formation Processing Systems (NeurIPS 2019), vol-
ume 32. Curran Associates, Inc.

Avital Oliver, Augustus Odena, Colin A Raffel,
Ekin Dogus Cubuk, and Ian Goodfellow. 2018. Re-
alistic evaluation of deep semi-supervised learn-
ing algorithms. In Proceedings of the 32th Con-
ference on Neural Information Processing Systems
(NeurIPS 2018), volume 31, page 3239–3250.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Łukasz Kaiser, and Geoffrey Hinton. 2017. Regular-
izing neural networks by penalizing confident out-
put distributions. In Proceedings of the 5th Inter-
national Conference on Learning Representations
(ICLR 2017).

Jason Phang, Thibault Févry, and Samuel R Bowman.
2019. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2020), pages 5231–5247.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa
Patwary, and Bryan Catanzaro. 2020. Training ques-
tion answering models from synthetic data. In
Proceedings of the 2020 Conference on Empirical

https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://www.aclweb.org/anthology/2020.acl-main.197
https://www.aclweb.org/anthology/2020.acl-main.197
https://www.aclweb.org/anthology/2020.acl-main.197
https://arxiv.org/abs/2012.00955
https://arxiv.org/abs/2012.00955
https://arxiv.org/abs/2012.00955
https://www.aclweb.org/anthology/D19-1329
https://www.aclweb.org/anthology/D19-1329
https://www.aclweb.org/anthology/D19-1329
http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf
http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/2102.01335
https://arxiv.org/abs/2102.01335
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/L14-1314
https://www.aclweb.org/anthology/L14-1314
https://www.aclweb.org/anthology/N06-1020
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c1fea270c48e8079d8ddf7d06d26ab52-Paper.pdf
https://openreview.net/forum?id=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe
https://arxiv.org/abs/1811.01088
https://arxiv.org/abs/1811.01088
https://www.aclweb.org/anthology/2020.acl-main.467
https://www.aclweb.org/anthology/2020.acl-main.467
https://www.aclweb.org/anthology/2020.acl-main.467
https://www.aclweb.org/anthology/2020.emnlp-main.468
https://www.aclweb.org/anthology/2020.emnlp-main.468

5726

Methods in Natural Language Processing (EMNLP
2020), pages 5811–5826.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research
(JMLR 2020), 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2016), pages 2383–
2392.

Chuck Rosenberg, Martial Hebert, and Henry Schnei-
derman. 2005. Semi-supervised self-training of ob-
ject detection models. In Proceedings of the 7th
IEEE Workshops on Application of Computer Vision
(WACV-MOTION 2005), volume 1, pages 29–36.

Timo Schick and Hinrich Schütze. 2021. It’s not just
size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL 2021), pages 2339–
2352.

Timo Schick and Hinrich Schütze. 2021. Generating
datasets with pretrained language models. arXiv
preprint arXiv:2104.07540.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2016), pages 86–96.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2013), pages 1631–1642.

Kihyuk Sohn, David Berthelot, Nicholas Carlini,
Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li.
2020. Fixmatch: Simplifying semi-supervised learn-
ing with consistency and confidence. In Proceed-
ings of the 34th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2020), volume 33,
pages 596–608.

Zijun Sun, Chun Fan, Xiaofei Sun, Yuxian Meng, Fei
Wu, and Jiwei Li. 2020. Neural semi-supervised
learning for text classification under large-scale pre-
training. arXiv preprint arXiv:2011.08626.

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving
and simplifying pattern exploiting training. arXiv
preprint arXiv:2103.11955.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2020), pages 7882–7926.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pap-
pagari, R. Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu,
Shuning Jin, Berlin Chen, Benjamin Van Durme,
Edouard Grave, Ellie Pavlick, and Samuel R. Bow-
man. 2019a. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language
modeling. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL
2019), pages 4465–4476.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019b.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. Proceedings of
the 7th International Conference on Learning Repre-
sentations (ICLR 2019).

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021. Entailment as few-shot learner.
arXiv preprint arXiv:2104.14690.

Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
mentation techniques for boosting performance on
text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP 2019), pages 6382–6388.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL
2018), pages 1112–1122.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C De-
langue, A Moi, P Cistac, T Rault, R Louf, M Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020a. Unsupervised data augmen-
tation for consistency training. In Proceedings of

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.ri.cmu.edu/pub_files/pub4/rosenberg_charles_2005_1/rosenberg_charles_2005_1.pdf
https://www.ri.cmu.edu/pub_files/pub4/rosenberg_charles_2005_1/rosenberg_charles_2005_1.pdf
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2021.naacl-main.185
https://arxiv.org/abs/2104.07540
https://arxiv.org/abs/2104.07540
https://www.aclweb.org/anthology/P16-1009
https://www.aclweb.org/anthology/P16-1009
https://arxiv.org/abs/1804.04235
https://arxiv.org/abs/1804.04235
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://arxiv.org/abs/2011.08626
https://arxiv.org/abs/2011.08626
https://arxiv.org/abs/2011.08626
https://arxiv.org/abs/2103.11955
https://arxiv.org/abs/2103.11955
https://www.aclweb.org/anthology/2020.emnlp-main.635
https://www.aclweb.org/anthology/2020.emnlp-main.635
https://www.aclweb.org/anthology/2020.emnlp-main.635
https://www.aclweb.org/anthology/P19-1439
https://www.aclweb.org/anthology/P19-1439
https://www.aclweb.org/anthology/P19-1439
https://openreview.net/pdf?id=rJ4km2R5t7
https://openreview.net/pdf?id=rJ4km2R5t7
https://arxiv.org/abs/2104.14690
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/N18-1101
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf

5727

the 34th Conference on Neural Information Process-
ing Systems (NeurIPS 2020, volume 33, pages 6256–
6268.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V. Le. 2020b. Self-training with noisy stu-
dent improves imagenet classification. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2020), pages
10687–10698.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping
Wang, Chandra Bhagavatula, Yejin Choi, and Doug
Downey. 2020. Generative data augmentation for
commonsense reasoning. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020
(Findings of EMNLP 2020), pages 1008–1025.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Proceedings of the 33th
Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), volume 32, pages 5753–5763.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, and Phil Blunsom. 2019. Learning
and evaluating general linguistic intelligence. arXiv
preprint arXiv:1901.11373.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q.
Weinberger, and Yoav Artzi. 2021. Revisiting few-
sample bert fine-tuning. In Proceedings of the 9th
International Conference on Learning Representa-
tions (ICLR 2021).

https://openaccess.thecvf.com/content_CVPR_2020/papers/Xie_Self-Training_With_Noisy_Student_Improves_ImageNet_Classification_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xie_Self-Training_With_Noisy_Student_Improves_ImageNet_Classification_CVPR_2020_paper.pdf
https://www.aclweb.org/anthology/2020.findings-emnlp.90
https://www.aclweb.org/anthology/2020.findings-emnlp.90
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://arxiv.org/abs/1901.11373
https://arxiv.org/abs/1901.11373
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF

5728

Appendices

A Additional details for the datasets used
in our study

The datasets used in our experiments come from
two common language understanding benchmarks:
GLUE (Wang et al., 2019b) and SentEval (Conneau
and Kiela, 2018). See Table 7 for details about
dataset characteristics. We report F1 scores for
QQP and MRPC, Spearman correlations for STS-
B and SICK-R, and accuracy scores for the other
tasks.

B Example outputs of our NLI data
generator

Table 8 shows example outputs of our NLI data
generator using unlabeled texts from SST-2 and
SciTail.

C Full experiment results across data
regimes

We report the full results for our experiments in the
FULL, LIMITED, and FEW-SHOT data regimes in
Table 9, Table 10, and Table 11, respectively.

5729

Task | Train | Task type Domain
text classification/regression (CR)
SNLI (Bowman et al., 2015) 570K NLI misc.
MNLI (Williams et al., 2018) 393K NLI misc.
QQP (Iyer et al., 2017) 364K paraphrase identification social QA
QNLI (Wang et al., 2019b) 105K QA-NLI Wikipedia
SST-2 (Socher et al., 2013) 67K sentiment analysis movie reviews
SciTail (Khot et al., 2018) 27K NLI science QA
SST-5 (Socher et al., 2013) 8.5K sentiment analysis movie reviews
STS-B (Cer et al., 2017) 7K semantic similarity misc.
SICK-E (Marelli et al., 2014) 4.5K NLI misc.
SICK-R (Marelli et al., 2014) 4.5K semantic similarity misc.
CR (Hu and Liu, 2004) 4K sentiment analysis product reviews
MRPC (Dolan and Brockett, 2005) 3.7K paraphrase identification news
RTE (Dagan et al., 2005, et seq.) 2.5K NLI news, Wikipedia

Table 7: Datasets used in our experiments and their characteristics, sorted by training data set size.

5730

unlabeled texts from SST-2

Input: a cast of a-list brit actors
+ entailment → Output: the cast includes british actors.
+ neutral → Output: the cast includes a-list brit actors such as nicole kidman and charlie chaplin.
+ contradiction → Output: the cast was all new and unknown.

Input: both heartbreaking and heartwarming ... just a simple fable done in an artless sytle , but it ’s tremendously moving
+ entailment → Output: the story is moving and touching.
+ neutral → Output: the artless style used to make the fable was a favorite of many.
+ contradiction → Output: the fable is artful and sophisticated but it is also heartbreaking.

Input: gaping plot holes sink this ‘ sub ’ - standard thriller and drag audience enthusiasm to crush depth
+ entailment → Output: this movie’s plot holes seriously affect the enjoyment of the movie.
+ neutral → Output: the movies pace is too slow for most audiences.
+ contradiction → Output: the movie is a fun, easy romp of a thriller.

Input: putting the primitive murderer inside a high-tech space station unleashes a pandora ’s box of special effects that run the gamut
from cheesy to cheesier to cheesiest

+ entailment → Output: the special effects are all over the place.
+ entailment → Output: putting a murderer in a space station leads to all sorts of cheesy special effects.
+ entailment → Output: the murderer was inside a space station.

Input: vera has created a provocative , absorbing drama that reveals the curse of a self-hatred instilled by rigid social mores .
+ neutral → Output: vera has created a provocative drama that is absorbing and has a great cast.
+ neutral → Output: vera has created a provocative drama that shows the curse of self-hatred and shows the bonds

between women.
+ neutral → Output: vera’s drama, which has been loved by millions, is about the curse of self-hatred.

Input: filmmaking from one of french cinema ’s master craftsmen
+ contradiction → Output: the filmmaking is from a newcomer to the french cinema.
+ contradiction → Output: the filmmaking is from a new blood in the american cinema.
+ contradiction → Output: the filmmaking of one of italian cinema’s master craftsmen

unlabeled texts from SciTail

Input: Surface tension is responsible for the fact that small insects can walk on water.
+ entailment → Output: small insects can walk on water due to surface tension.
+ neutral → Output: it’s difficult for large insects to walk on water.
+ contradiction → Output: small insects cannot walk on water because of surface tension.

Input: Tamiflu inhibits spread of virus.
+ entailment → Output: the virus is less spread when tamiflu is used.
+ neutral → Output: tamiflu is a good way to treat hiv.
+ contradiction → Output: tamiflu promotes viral spread.

Input: Animals can transport the waste material known as urea in the circulatory system and store it safely at high concentrations.
+ entailment → Output: animals can transport waste material in their circulatory systems.
+ neutral → Output: animals can store urea in their bloodstreams for up to a year.
+ contradiction → Output: only plants can transport the waste material known as urea in their circulatory systems.

Input: A number of applications of biomass, wind, hydropower and solar thermal are presently cost competitive with fossil fuels.
+ entailment → Output: many biomass applications are now cost competitive with fossil fuels.
+ entailment → Output: many alternatives to fossil fuels are cost competitive.
+ entailment → Output: some biofuels are now cost competitive with fossil fuels.

Input: A cell wall is not present in animal cells.
+ neutral → Output: in contrast, plant cells have a cell wall.
+ neutral → Output: in addition to not having a cell wall, animal cells also lack mitochondria.
+ neutral → Output: in animal cells, there is no cell wall, said the biologist.

Input: A bathymetric map can show the features of the bottom of a body of water.
+ contradiction → Output: a bathymetric map shows the top of a body of water.
+ contradiction → Output: a bathymetric map shows the features of the sky.
+ contradiction → Output: a bathymetric map shows what is on the surface of the water.

Table 8: Example outputs of our NLI data generator using unlabeled texts from SST-2 and SciTail.

5731

Model SNLI QQP QNLI SST-2 SciTail SST-5 STS-B SICK-E SICK-R CR MRPC RTE

BERTBASE 90.3 87.8 90.6 91.7 93.2 52.70.8 88.90.3 86.70.5 82.90.5 91.00.9 87.91.0 63.52.3

+ LMFT 90.8 87.8 90.2 91.3 92.9 52.80.9 89.30.3 86.80.8 82.70.5 90.51.0 87.90.6 63.93.7

+ ITFTMNLI 91.0 87.7 90.3 93.0 95.8 53.80.8 90.10.1 89.50.3 85.30.6 91.70.7 89.81.1 78.11.9

+ TA 91.2 88.1 90.9 93.9 96.3 54.30.9 90.10.1 90.10.3 85.60.3 92.20.5 90.10.8 79.30.9

BERTLARGE 91.1 88.4 91.9 92.4 95.3 53.70.9 89.60.2 87.90.6 84.40.4 91.70.6 89.00.8 68.67.2

+ LMFT 91.0 88.1 90.4 93.5 95.3 54.00.4 89.50.2 87.70.5 84.00.5 91.60.8 89.51.0 66.57.3

+ ITFTMNLI 91.1 88.2 91.6 93.5 96.5 54.00.8 90.30.3 89.90.2 86.30.3 92.00.6 89.70.9 82.31.4

+ TA 91.9 88.5 92.5 94.7 96.9 55.70.8 90.90.2 90.70.3 87.00.3 93.30.6 90.80.7 83.81.1

Table 9: Our experiment results in the FULL data regime.

Model SNLI QQP QNLI SST-2 SciTail SST-5 STS-B SICK-E SICK-R CR MRPC RTE

BERTBASE 71.71.1 71.70.4 78.70.7 87.41.0 88.31.2 47.11.3 86.80.6 81.50.6 76.70.8 89.90.7 83.91.1 61.71.3

+ LMFT 73.42.1 72.10.6 76.33.1 86.91.2 88.41.4 47.51.3 87.20.7 81.10.6 75.90.7 91.10.8 84.40.6 63.22.3

+ ITFTMNLI 82.90.3 73.30.7 81.60.9 87.80.6 90.31.1 48.81.0 88.50.3 87.60.5 81.70.8 90.00.6 87.00.9 78.01.3

+ TA 85.70.3 75.30.4 82.50.8 90.40.7 90.70.8 49.21.3 88.50.3 88.50.5 82.40.6 91.41.0 87.30.7 78.71.2

BERTLARGE 77.40.6 74.11.0 81.70.9 89.80.6 90.90.7 49.11.3 88.20.4 84.80.7 80.20.4 91.20.6 85.71.7 66.82.7

+ LMFT 75.81.5 71.60.5 80.52.0 88.90.8 87.72.3 49.23.1 88.40.4 83.20.6 78.50.6 90.90.7 84.91.1 65.23.4

+ ITFTMNLI 85.20.4 74.00.5 83.50.5 90.00.8 92.11.1 49.41.2 87.80.8 88.80.5 83.20.7 91.30.7 86.40.9 81.11.3

+ TA 87.30.3 75.70.5 85.00.5 91.70.7 92.31.1 51.41.0 89.00.6 89.40.4 84.30.4 92.60.6 88.00.8 82.91.8

Table 10: Our experiment results in the LIMITED data regime.

Model SNLI QQP QNLI SST-2 SciTail SST-5 STS-B SICK-E SICK-R CR MRPC RTE

BERTBASE 43.72.2 55.96.5 59.010.9 59.18.4 67.16.6 30.52.0 73.64.5 61.34.1 59.72.7 65.28.2 72.410.2 51.42.5

+ LMFT 45.23.9 57.26.2 57.69.1 64.98.7 64.08.0 33.41.9 75.44.4 59.34.0 58.32.0 72.46.0 73.98.6 50.93.9

+ ITFTMNLI 75.25.7 63.77.0 62.85.1 76.87.2 75.85.6 35.02.6 80.21.1 80.41.9 73.52.7 79.23.6 74.38.0 62.213.5

+ TA 83.30.8 68.71.5 70.13.4 80.36.6 78.53.2 37.43.0 80.71.5 81.12.4 75.91.8 86.52.2 74.56.5 67.67.1

+ ST 65.05.8 69.95.9 71.611.3 62.710.4 68.68.3 33.93.5 80.52.2 68.14.5 64.02.4 78.26.3 80.51.8 50.73.1

+ ITFTMNLI + ST 83.20.3 70.75.9 81.51.2 88.02.1 83.74.4 39.52.0 84.20.8 81.82.6 75.82.2 85.62.3 80.61.2 62.512.0

+ STraTA 85.70.2 74.50.4 82.10.5 90.10.8 86.33.5 41.31.5 84.70.5 84.91.2 77.61.6 90.50.8 81.00.8 70.62.4

BERTLARGE 43.14.4 58.54.7 64.46.1 66.18.7 68.89.5 35.21.3 74.63.8 66.54.5 66.63.3 72.06.0 79.92.0 53.13.3

+ LMFT 39.62.6 52.74.7 52.21.6 66.39.3 66.410.6 36.82.9 75.49.4 58.86.9 51.67.0 75.65.9 80.52.4 52.84.8

+ ITFTMNLI 79.93.1 62.69.0 64.54.4 80.75.0 72.311.2 36.42.1 75.54.0 77.83.8 73.52.8 82.63.0 72.87.9 69.714.6

+ TA 84.80.7 64.66.3 71.54.0 85.51.4 79.04.5 38.53.0 78.92.4 81.23.9 77.51.4 88.61.3 78.26.6 77.06.3

+ ST 69.39.2 74.31.2 85.41.7 81.912.2 79.94.8 42.01.5 82.82.3 77.33.1 73.12.3 88.11.3 81.20.5 53.94.3

+ ITFTMNLI + ST 85.40.3 74.80.7 86.11.1 89.70.7 86.24.2 42.22.0 84.11.7 84.32.0 78.41.3 89.31.0 81.41.2 72.75.4

+ STraTA 87.30.3 75.10.2 86.40.8 91.70.7 87.32.9 43.02.3 84.51.6 86.31.8 79.01.0 90.00.6 81.50.7 77.15.4

Table 11: Our experiment results in the FEW-SHOT data regime.

