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Abstract

Natural Language Processing (NLP) is increas-
ingly relying on general end-to-end systems
that need to handle many different linguistic
phenomena and nuances. For example, a Nat-
ural Language Inference (NLI) system has to
recognize sentiment, handle numbers, perform
coreference, etc. Our solutions to complex
problems are still far from perfect, so it is im-
portant to create systems that can learn to cor-
rect mistakes quickly, incrementally, and with
little training data. In this work, we propose
a continual few-shot learning (CFL) task, in
which a system is challenged with a difficult
phenomenon and asked to learn to correct mis-
takes with only a few (10 to 15) training ex-
amples. To this end, we first create bench-
marks based on previously annotated data: two
NLI (ANLI and SNLI) and one sentiment anal-
ysis (IMDB) datasets. Next, we present var-
ious baselines from diverse paradigms (e.g.,
memory-aware synapses and Prototypical net-
works) and compare them on few-shot learn-
ing and continual few-shot learning setups.
Our contributions are in creating a benchmark
suite1 and evaluation protocol for continual
few-shot learning on the text classification
tasks, and making several interesting observa-
tions on the behavior of similarity-based meth-
ods. We hope that our work serves as a useful
starting point for future work on this important
topic.

1 Introduction

Large end-to-end neural models are becoming
more pervasive in Computer Vision (CV) and Nat-
ural Language Processing (NLP). In NLP in par-
ticular, large language models such as BERT (De-
vlin et al., 2019) fine-tuned end-to-end for a task,
have advanced the state-of-the-art for many prob-
lems such as classification, Natural Language Infer-
ence (NLI), and Question Answering (QA) (Devlin

1https://github.com/
ramakanth-pasunuru/CFL-Benchmark

et al., 2019; Liu et al., 2019; Wang et al., 2019).
End-to-end models are conceptually simpler than
the previously-popular pipelined models, making
them easier to deploy and maintain. However, be-
cause large end-to-end models are black-boxes, it
is difficult to correct the mistakes that they make.
Practical, real-world applications of NLP require
such mistakes to be corrected on the fly as the
system operates. For example, when a translation
system makes a harmful mistake (e.g., translates
“EMNLP” to “ICML”), a phrase-based system can
be corrected by finding and modifying the respon-
sible entries in the phrase table (Zens et al., 2002),
whereas there is no equivalent way to correct that
in an end-to-end neural MT system. Similarly, sys-
tems have been shown to exhibit bias (e.g., gender
or racial stereotypes) toward certain inputs of text,
which we want to correct via few examples on the
fly.

Further, the examples that provide supervision to
correct mistakes or learn a phenomenon are often
hard or impossible to acquire (e.g., due to privacy
or ethics issues) (Wang et al., 2020). Hence, it is
important to effectively learn to correct mistakes
using few extra training examples. Recent work
has shown the generalization capability of large
pre-trained models to handle multiple tasks with
zero to few training examples (Schick and Schütze,
2021; Brown et al., 2020; Yin et al., 2020). For
example, Yin et al. (2020) has shown that system
trained for NLI can be used to perform new tasks
zero-shot, i.e., without any task-specific training
data. We believe that similar models can be used
to rapidly learn to correct a phenomenon within
the same task from a few (e.g., 10 or 15) training
examples.

From a practical point of view, we need our
trained systems to rapidly adapt to new phenom-
ena (or correct its mistakes) using very few extra
training examples, and do it continually as new
phenomena (or errors) are discovered over time.

https://github.com/ramakanth-pasunuru/CFL-Benchmark
https://github.com/ramakanth-pasunuru/CFL-Benchmark
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Tackling this important setting, we take a fresh
look at continual learning in NLP and formulate a
new setting that bears similarity to both continual
and few-shot learning, but also differs from both
in important ways. We dub the new setting “con-
tinual few-shot learning” (CFL) and formulate the
following two requirements:

1. Models have to learn to correct classes of mis-
takes (or adapt to new domains) from only a
few examples.

2. They have to maintain performance on previ-
ous test sets.

To this end, we propose a benchmark suite and
evaluation protocol for continual few-shot learning
(CFL) on text classification tasks. Our benchmark
suite consists of both existing and newly created
datasets. More precisely, we use the dataset with
several linguistic categories annotated by Williams
et al. (2020) from ANLI Round-3 (Nie et al., 2020);
and also provide two new datasets with linguis-
tic categories that we annotated using the coun-
terfactual augmented data provided by Kaushik
et al. (2020) on SNLI natural language inference
dataset (Bowman et al., 2015) and IMDB sentiment
analysis dataset (Maas et al., 2011).

We discuss several methods as important promis-
ing baselines for CFL, borrowing from the litera-
ture of few-shot learning and continual learning.
We classify these baselines into parameter correc-
tion methods (e.g., MAS (Aljundi et al., 2018))
and non-parametric feature matching methods (e.g.,
Prototypical networks (PN) (Snell et al., 2017)).
We compare these methods on our benchmark suite
in a traditional few-shot setup and observe that
non-parametric feature matching methods perform
surprisingly better than other methods. Next, we
test the same methods in a continual few-shot setup
and observe that a simple fine-tuning method per-
forms better than other parameter correction meth-
ods like MAS. The non-parametric feature match-
ing based PN performs well on the examples that
are being corrected (few-shot categories), but at the
expense of the original performance. Further, we
also observe a large performance improvement on
the few-shot categories in this setup. Additionally,
we provide interesting ablations to understand the
usefulness and generalization capabilities of PN for
few-shot linguistic categories. We compare models
trained with cross-entropy loss versus Prototypical
loss via empirical studies and t-SNE plots, and dis-
cuss their major differences in detail. We hope that

our CFL benchmark suite and evaluation protocol
will serve as a useful starting baseline point and
encourage substantial progress and future work by
the community on this important practical setting.

2 Related Work

CFL bears similarity to few-shot learning, contin-
uous learning, and online learning. Below, we
discuss these three paradigms and highlight the
similarity and differences from our approach.

Few-Shot Learning. The goal in few-shot learn-
ing is to learn a new task from only a few labeled ex-
amples. Few-shot learning problems are studied in
the image domain (Koch et al., 2015; Vinyals et al.,
2016; Snell et al., 2017; Ren et al., 2018; Sung et al.,
2018), focusing mainly on two kinds of approaches:
metric-based approaches and optimization-based
approaches. Metric-based approaches learn gener-
alizable metrics and corresponding matching func-
tions from multiple training tasks with limited la-
bels (Vinyals et al., 2016). For example, Snell et al.
(2017) proposed to build representations for each
class using supporting examples and then compar-
ing the test instances by Euclidean distances. Opti-
mization approaches aim to learn to optimize model
parameters based on the gradients computed from
limited labeled examples (Ravi and Larochelle,
2017; Munkhdalai and Yu, 2017; Finn et al., 2017).

In the language domain, Yu et al. (2018) pro-
posed to use a weighted combination of multiple
metrics obtained from meta-training tasks for infer-
ring on a newly-seen few-shot task. On the dataset
side, Han et al. (2018) introduce a few-shot relation
classification dataset. Recently, large-scale pre-
trained language models have been used for few-
shot learning of downstream tasks (Brown et al.,
2020; Schick and Schütze, 2021). Yin et al. (2020)
used pre-trained entailment system for generalizing
across more domains or new tasks when there are
only a handful of labeled examples.

All of the above-mentioned approaches focus on
few-shot learning for new tasks. In contrast, we
consider the same original task, but target examples
that can be considered new because they require
solving a linguistic phenomenon, an error category,
or a new domain. Unlike few-shot learning, we
also require models that can maintain or improve
performance on the existing data.

Continual Learning. Continual learning is
a long-standing challenge for machine learn-
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Dataset Categories Example

ANLI R3 Numerical, Reference Context: Police said that a 21-year-old man was discovered after he had been shot in South Jamaica on Aug. 18 and
is in critical condition. Just before 9:30 p.m., police responded to a shooting at 104-46 164th St and discovered the
victim, whose name has not been released, at the scene. The victim was shot in the thigh and transported to Jamaica
Hospital, where he is currently listed in critical condition. No arrests have been made in the incident.
Hypothesis: The victim was less than a quarter century old.
Label: Entailment

IMDB Negation Original Text: We know from other movies that the actors are good but they cannot save the movie. A waste of time.
The premise was not too bad. But one workable idea (interaction between real bussinessmen and Russian mafia) is not
followed by an intelligent script
Revised Text: We know from other movies that the actors are good and they make the movie. Not at all a waste of
time. The premise was not bad. One workable idea (interaction between real bussiness men and Russian mafia) is
followed by an intelligent script
Original Label: Negative; Revised Label: Positive

SNLI Substituting Entities Original Premise: Several bikers are going down one side of a four lane road while passing buildings that seem to be
composed mostly of shades of brown and peach.
Revised Premise: Several bikers are going down one side of a four lane road while passing farms that seem to be
composed mostly of shades of brown and peach.
Original Label: Entailment; Revised Label: Contradiction

Table 1: Examples of few-shot categories from ANLI R3, IMDB, and SNLI datasets.

ing (French, 1999; Hassabis et al., 2017), defined
as an adaptive system capable of learning from a
continuous stream of information. The information
progressively increases over time, but there is no
predefined number of tasks to be learned. Majority
of methods in continual learning focus on sequen-
tial training of various ‘tasks’ (not necessarily of
same kind) and address the catastrophic forgetting
problem. These approaches can be broadly classi-
fied into (1) architectural approaches that focus on
altering the architecture of the network to reduce
the interference between the tasks without chang-
ing the objective function (Razavian et al., 2014;
Donahue et al., 2014; Yosinski et al., 2014; Rusu
et al., 2016); (2) functional approaches that focus
on penalizing the changes in the input-output func-
tion of the neural network (Jung et al., 2018; Li and
Hoiem, 2017); and (3) structural approaches that
introduce constraints on how much the parameters
change when learning the new task so that they
remain close to their starting point (Kirkpatrick
et al., 2017). Other notable works in recent years
are based on using intelligent synapses to accumu-
late task-related information over time (Zenke et al.,
2017), using online variational inference (Nguyen
et al., 2018), and dynamically expanding network
capacity based on incoming data (Yoon et al., 2018).
Further, a few previous works have explored contin-
ual learning with few examples for computer vision
tasks (Le et al., 2019; Xie et al., 2019; Douillard
et al., 2020; Tao et al., 2020). Unlike the typical
continual learning setup, in our CFL, we contin-
ually learn various linguistic phenomena for the
‘same task’ with only limited labeled examples.
Our setup is important for practical usage. The

most closest to our work is from the vision com-
munity, where they proposed a benchmark suite
containing few-shot datasets for continual learn-
ing and evaluation criteria (Antoniou et al., 2020).
However, the major contrast is that our setup fo-
cuses on correcting the errors specific to a linguistic
phenomenon rather than learning new class labels
with few examples.

Online Learning. Online learning algorithms
learn to update models from data streams sequen-
tially, where the task is the same but can ex-
hibit concept drift (new patterns) (Zinkevich, 2003;
Crammer et al., 2006; Sahoo et al., 2018; Jerfel
et al., 2019; Javed and White, 2019). Our setup is
different from online learning because we start with
a model that is fully trained on a task (i.e., no large
sequential data steams), and only focus on correct-
ing the errors specific to linguistic phenomena by
giving few extra training examples.

3 Datasets

In this section, we describe all the English datasets
that we curated and borrowed from previous works
for creating a benchmark suite for continual few-
shot learning (CFL). Table 1 presents some exam-
ples from these datasets.

3.1 ANLI R3 Few-Shot Categories

Nie et al. (2020) introduced the Adversarial Natu-
ral Language Inference (ANLI) dataset which con-
sists of adversarially collected examples for Natural
Language Inference (NLI) that are miss-classified
by the current state-of-the-art models. The data
is collected in three rounds with each round in-
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Numerical Basic Reference Tricky Reasoning Imperfections

Train set 75 (15) 75 (15) 75 (15) 75 (15) 75 (15) 75 (15)
Dev set 49 (67) 154 (165) 76 (92) 70 (82) 205 (211) 32 (47)
Test set 117 (157) 360 (387) 179 (216) 164 (194) 481 (494) 77 (112)

Total 241 (239) 589 (567) 330 (323) 309 (291) 761 (720) 184 (174)

Table 2: Dataset statistics of 6 categories in ANLI R3 for few-shot learning setup (and continual few-shot setup).

troducing more difficult examples than the previ-
ous. Williams et al. (2020) analyzed the ANLI
dataset and annotated the development set of all
three rounds by labeling each example as to what
type of reasoning is required to perform the infer-
ence. They used 40 fine-grained reasoning types
organized hierarchically, where the top-level cat-
egories are: (1) Numerical: examples where nu-
merical reasoning is crucial for determining the
correct label. (2) Basic: require reasoning based
on lexical hyponymy, conjunction, and negation.
(3) Reference: noun or event references need to
be resolved either within or between premise and
hypothesis. (4) Tricky: require complex linguistic
knowledge, e.g., pragmatics or syntactic verb argu-
ment structure. (5) Reasoning: require reasoning
outside of the given premise and hypothesis pair.
(6) Imperfections: examples that have spelling er-
rors, foreign language content, or are ambiguous.
We refer to Williams et al. (2020) for more details
on each of these categories. We use the reasoning
annotations to create a CFL setup. Unlike previ-
ous few-shot learning setups, we focus on few-shot
learning of linguistic phenomena (6 categories in
this case), instead of new tasks, classes, or domains.

We use the Round-3 (R3) development set and
consider all 6 of the above categories as different
few-shot learning cases (labeled ANLI R3 cate-
gories in the rest of the paper). In our framework,
we consider two scenarios: (1) few-shot learning
setup; (2) continual few-shot learning setup.2 In
the few-shot learning setup, for each category, we
choose 5 disjoint training sets with each set con-
taining 5 examples from each class label. The rest
of the examples are divided into development and
test sets with 30% and 70% splits, respectively. For
each category in the continual few-shot learning
setup, we choose 5 training examples from each
class label. Training examples across the categories
are disjoint, and we divide the rest of the examples
in each category into development and test sets
with 30% and 70% splits, respectively. Table 2

2The details of these setups are in Sec. 4.

presents the full statistics on all 6 categories.

3.2 SNLI Counterfactual Few-Shot
Categories

Stanford NLI dataset (Bowman et al., 2015) is a
popular natural language inference dataset where
given a premise and a hypothesis, the task is to
predict whether hypothesis entails or contradicts
or neural w.r.t. the premise. Kaushik et al. (2020)
annotated a small part of the SNLI dataset by mod-
ifying either the premise or hypothesis with mini-
mum changes to create counterfactual target labels
dubbed revised examples. We use the revised exam-
ples to create a few-shot learning setup. First, we
train a RoBERTa-Large (Liu et al., 2019) classifier
on the full original SNLI dataset which consists of
∼550K examples. We then filter examples from
the revised data which are incorrectly predicted by
the trained classifier. Then, we manually annotate
these filtered examples based on the most frequent
edit categories mentioned in Kaushik et al. (2020),
along with some new additions. These categories
are as follows (1) Insert or remove phrases: refers
to examples where either phrases are added or re-
moved in premise or hypothesis to change the label.
(2) Substitute entities: refers to examples where
changing the entity in premise or hypothesis en-
ables to change the label. (3) Substitute evidence:
refers to examples where changing the evidence
in premise or hypothesis results in a change in the
class label. (4) Modify entity details: refers to ex-
amples where the details of the entities are modified
to change the label, e.g., red ball vs. blue ball. (5)
Change action: refers to examples where a change
in the action word in premise or hypothesis results
in a change in the label, (6) Numerical changes:
refers to change in numerical aspects results in
a change in the label, e.g., one person vs. two
persons. (7) Negation: refers to examples where
negation is used to change the label. (8) Using ab-
stractions: refers to examples where original words
are replaced with their abstractions or vice-versa
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Category Train Dev Test Total

IMDB

Modifiers 30 (10) 42 (47) 99 (110) 171 (167)
Negation 30 (10) 19 (24) 45 (110) 95 (144)

SNLI

Insert/remove phrases 45 (15) 141 (149) 331 (348) 517 (512)
Substitute entities 45 (15) 66 (74) 156 (174) 267 (263)
Substitute evidence 45 (15) 93 (100) 218 (236) 356 (351)
Modify entity details 45 (15) 36 (44) 85 (105) 166 (164)
Change action 45 (15) 26 (35) 63 (82) 134 (132)

Table 3: Dataset statistics of various categories in
IMDB and SNLI counterfactual data for few-shot learn-
ing setup (and continual few-shot learning setup).

to change the label, e.g, man vs. person.3 A few
examples did not fall into any of these categories
which are labeled as ‘Other’, and are discarded. We
follow similar data splits as discussed for ANLI R3
few-shot categories, except that we use only 3 train-
ing sets instead of 5 in the few-shot learning setup.
We did not get enough balanced training sets for
negation, numerical changes, and using abstraction
categories, hence discarded them. The statistics of
the rest of the categories are presented in Table 3.

3.3 IMDB Counterfactual Few-Shot
Categories

Kaushik et al. (2020) also annotated a small part of
the IMDB sentiment analysis dataset (Maas et al.,
2011) by modifying the input examples with mini-
mum changes to create counterfactual target labels.
We follow a similar procedure as in Sec. 3.2 to
create a few-shot learning setup from these revised
examples. We categorize the examples as follows:
(1) Inserting or replacing modifiers, (2) Inserting
phrases, (3) Adding negations, (4) Diminishing po-
larity via qualifiers, (5) Changing ratings, and (6)
Suggesting sarcasm. We discarded a few examples
that did not belong to any of these categories. We
follow similar data splits as discussed for SNLI
counterfactual few-shot categories. We did not get
enough balanced training sets for categories except
inserting or replacing modifiers and adding nega-
tion, hence we discarded those categories. Table 3
presents the statistics of these two categories.

3.4 Annotation (More details in Appendix A)
First, a single expert annotated both SNLI and
IMDB counterfactual examples, as both need a de-
gree of expertise to correctly reason among various
categories with examples often falling into multiple

3We refer to Sec. 3.4 for more details about the annotation.

categories. Previous NLU projects also benefited
from expert annotations (Basile et al., 2012; Bos
et al., 2017; Warstadt et al., 2019; Williams et al.,
2020). Next, since the annotations need complex
reasoning and can be subjective sometimes, we fur-
ther employed another annotator to annotate 100
examples from each dataset to calculate the inter-
annotator agreement. We calculate the percentage
agreement and Cohen’s kappa (Cohen, 1960) for
each category independently and report the average
scores across all categories. The average percent-
age agreement score for SNLI and IMDB datasets
are 86.4% and 90.5%, respectively, which is a high,
acceptable level as per previous work (Toledo et al.,
2012; Williams et al., 2020). The Cohen’s kappa
score (Cohen, 1960) for SNLI and IMDB datasets
are 0.61 and 0.79, respectively, which is a substan-
tial agreement (Landis and Koch, 1977).

4 Methods

Experimental Setup. In all experiments we first
train a RoBERTa-Large (Liu et al., 2019) classifier
on the original full training set (e.g., full SNLI data
for SNLI few-shot categories). We then experiment
with the curated few-shot datasets. We consider
two setups: (a) few-shot learning, where we con-
sider how methods adapt to a single error category;
(b) continual few-shot learning setup, where meth-
ods ‘continually’ learn various error categories se-
quentially. The few-shot setup gives us an idea on
how learnable is each error category/linguistic phe-
nomenon with few examples, whereas the continual
setting simulates a system that is repeatedly cor-
rected. Next, we briefly discuss several baselines;
more details on the baselines are in the Appendix.

Zero-Shot: Directly test the RoBERTa-Large
classifier trained on the original data without using
any few-shot training examples.

Fine-Tuning: Additionally fine-tune the original
classifier with the few examples from the setup.

Memory-Aware Synapses: Aljundi et al. (2018)
proposed an approach that estimates an importance
weight for each parameter of the model, which
approximates the sensitivity of the learned function
to a parameter change. During the training with
few-shot examples, the loss function is updated to
consider the importance weights of the parameters
through a regularizer.
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Model MNLI-m MNLI-mm Numerical Basic Reference Tricky Reasoning Imperfections Average

Zero-Shot 90.3 90.1 27.4 29.7 29.6 30.5 31.6 27.3 29.4
Fine-Tune 90.2±0.1 90.0±0.1 29.0±1.8 32.1±1.2 30.8±0.7 30.6±1.9 30.4±0.6 27.8±1.5 30.2±1.3
SCL 90.3±0.0 90.0±0.1 30.1±1.1 31.4±1.0 31.1±0.6 31.3±1.3 31.1±1.1 28.1±1.7 30.5±1.1
MAS 90.2±0.1 89.9±0.1 30.3±1.3 31.2±1.8 32.0±0.6 31.2±2.7 30.4±0.8 27.8±2.5 30.5±1.6
PN 90.3 90.1 37.6±8.6 42.7±6.4 44.0±7.0 37.7±4.6 43.0±6.7 38.2±5.6 40.5±6.5
k-NN 89.8 89.7 36.6±5.6 40.1±6.6 43.4±4.6 45.1±7.7 41.5±6.0 39.2±3.0 41.0±5.6

Table 4: Results on 6 categories of few-shot learning ANLI R3 dataset. Results are averaged across 5 support
sets, and the corresponding standard deviation is also reported. Results reported in the last column (‘Average’) are
based on the average performance on few-shot categories only.

Model SNLI Insert/Remove
Phrases

Substitute
Entities

Substitute
Evidence

Change/Remove
Entity Details

Change
Action Average

Zero-Shot 92.5 0.6 0.6 1.4 1.2 0.0 0.8
Fine-Tune 92.3±0.2 6.7±2.5 10.3±5.1 7.0±1.7 5.9±1.2 11.1±4.2 8.2±2.9
SCL 92.3±0.3 7.9±2.0 9.0±2.8 6.7±3.0 2.7±0.7 12.7±2.7 7.8±2.2
MAS 92.1±0.2 9.8±2.1 9.6±3.3 8.3±1.2 7.8±1.4 12.2±1.8 9.5±2.0
PN 92.5 48.6±7.5 44.2±9.2 47.9±1.5 44.3±9.5 40.7±14.4 45.1±8.4
k-NN 92.3 43.1±8.6 47.6±10.0 47.9±1.4 54.1±10.2 46.6±5.1 47.9±7.1

Table 5: Results on 5 categories of few-shot learning SNLI dataset. Results are averaged across 3 support sets.

Model IMDB Modifiers Negation Average

Zero-Shot 96.0 11.1 11.1 11.1
Fine-Tune 96.0±0.0 18.9±4.1 14.8±1.3 16.9±2.7
SCL 96.0±0.0 18.2±4.0 22.2±2.7 20.2±3.4
MAS 95.9±0.0 23.2±4.0 21.5±3.4 22.4±3.7
PN 96.0 88.9±1.0 89.6±1.3 89.3±1.2
k-NN 95.8 10.4±1.2 6.7±0.0 8.6±0.6

Table 6: Results on 2 categories of few-shot learning
revised IMDB dataset. Results averaged across 3 sets.

Prototypical Networks (PN): Snell et al. (2017)
proposed to produce a class distribution for an ex-
ample based on a softmax over distances to the pro-
totypes or mean class representations. In our work,
we use several different support sets to compute
the class prototypes: the original training data; the
few-shot training examples; or, both. We use the
output before softmax layer of the model (trained
on cross-entropy loss using the original training
data) as feature representation for examples (fθ).

Supervised Contrastive Learning (SCL):
Gunel et al. (2021) proposed supervised con-
trastive learning for better generalizability, where
they jointly optimize the cross-entropy loss and
supervised contrastive loss that captures the
similarity between examples belonging to the same
class while contrasting with examples from other
classes.

k-Nearest Neighbors (k-NN): We recreate the
classic nearest neighbors method by assigning to
each example the dominant class label from the
k-nearest training (support) examples. We measure
the nearest examples based on the euclidean dis-
tance in the feature representation space fθ.4 We
use the final encoder hidden representations before
softmax layer as fθ. As with Prototypical networks,
support sets can be either the original training data,
the few-shot training examples, or both.

5 Results

In this section, we report the performances of vari-
ous baselines discussed in Sec. 4 on our benchmark
suite. We refer to Appendix for training details.

5.1 Results on Few-Shot Learning

ANLI R3 Categories. Table 4 shows the results
on the 6 categories from the Round-3 of the ANLI
dataset. The base model, is trained on the com-
bined data of MNLI (Williams et al., 2018), ANLI
Round-1 (R1), and ANLI Round-2 (R2). On aver-
age, we observe that using the few-shot training ex-
amples for each of the categories improves the per-
formance (comparing zero-shot vs. rest of the mod-
els), while maintaining the performance on MNLI
matched (MNLI-m) and mis-matched (MNLI-mm)
datasets. More importantly, we also observe that

4We use the faiss library (https://github.com/
facebookresearch/faiss).

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
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Model MNLI Numerical Basic Reference Tricky Reasoning Imperfections Average

Zero-Shot 90.3/90.0 33.1 29.5 32.4 28.9 32.2 28.6 30.8
Fine-Tune 90.0/89.7 34.4 35.1 36.1 35.6 35.2 30.4 34.5
SCL 89.9/89.6 32.5 38.0 35.7 35.6 39.1 30.4 35.2
MAS 90.4/90.1 32.5 31.3 31.9 30.9 33.2 25.9 31.0
Prototypical Network (PN) 83.7/83.2 28.0 38.8 33.8 27.8 38.3 35.7 33.7
Nearest Neighbor (k-NN) 89.9/89.7 31.8 30.7 30.1 29.9 31.8 25.9 30.0

Table 7: Continual learning results on few-shot ANLI R3 categories. Average score is on few-shot categories only.
Bold numbers are statistically significantly better than the rest based on bootstrap test (Efron and Tibshirani, 1994).

Model SNLI Insert/Remove
Phrases

Substitute
Entities

Substitute
Evidence

Change/Remove
Entity Details

Change
Action Average

Zero-Shot 92.5 0.6 0.6 1.3 0.9 0.0 0.7
Fine-Tune 90.6 21.8 15.5 13.1 31.4 20.7 20.5
SCL 90.9 20.4 16.1 12.7 24.8 19.5 18.7
MAS 92.5 4.9 5.7 3.8 6.7 6.1 5.4
Prototypical Network (PN) 70.9 44.3 40.8 44.1 36.2 52.4 43.6
Nearest Neighbor (k-NN) 92.3 7.8 4.6 8.1 6.7 12.2 7.9

Table 8: Continual learning results on few-shot SNLI categories.

Model IMDB Modifiers Negation Average

Zero-Shot 96.0 11.1 11.1 11.1
Fine-Tune 96.0 30.9 33.9 32.4
SCL 95.2 26.4 26.8 26.6
MAS 96.1 14.5 10.7 12.6
PN 89.7 51.8 57.1 54.5
k-NN 96.0 10.9 8.9 9.9

Table 9: Continual learning results on few-shot IMDB
categories.

simple feature matching-based approaches (Proto-
typical Networks (PN) and k-NNs) perform better
than parameter correction approaches (e.g., fine-
tuning, MAS, etc.) using the new examples as
a support set. However, in the feature matching
methods, we assume that we know whether the test
example belongs to the original data or a linguistic
category.5, 6 Feature matching methods have higher
variance than the parameter correction methods, as
they are heavily dependent on the few-shot train
examples (support set). However, feature matching
methods still achieve remarkable performance with
very few examples. We refer to Sec. 6 for more ab-
lations on this interesting result. Note that the CFL
problem is very challenging as it tries to correct the

5The choice of a category as support set will provide the
information on the test examples’ category. In Table 10, we
provide more results on avoiding this prior knowledge on the
test examples’ category.

6If we consider the categories as support set for calculating
the scores on MNLI with PN, the performance drops from
90.3/90.1 to 50.3± 25.5/50.5± 24.7.

errors made by a well-trained model using only a
few examples. Hence, many of our baselines have
low scores on the categories. This further motivates
the community in building new methods.

SNLI Categories. Table 5 presents the perfor-
mance of various models on the 5 annotated cate-
gories of SNLI dataset in a few-shot learning setup.
We observe similar trends: few-shot examples im-
prove the performance (comparing zero-shot vs.
other models in Table 5) and feature matching ap-
proaches perform consistently better than param-
eter correction approaches. Similar to the results
on ANLI R3 categories, feature matching methods
also exhibit high variance on the SNLI categories.

IMDB Categories. Table 6 presents the perfor-
mance of various models on the 2 categories of few-
shot IMDB sentiment analysis setup. Again, few
examples improve the performance in all categories
(with the exception of k-NN), and feature match-
ing method (Prototypical Networks) outperforms
parameter correction methods by a large margin.
Since IMDB is a 2-way classification dataset and
the examples are curated based on counterfactual
edits, the feature matching methods have to figure
out to just flip the label, which PN succeeded in
(also reason for high scores) and k-NN did not in
this case. Further, the variance for feature matching
methods is notably lower on this dataset.
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Model MNLI Numerical Basic Reference Tricky Reasoning Imperfections

CE-Loss 90.3/90.1 27.4 29.7 29.6 30.5 31.6 27.3
PN with CE-Loss (†) 90.3/90.1 28.2 28.9 27.9 30.5 32.5 27.3
PN with CE-Loss (‡) 50.3±25.5/50.5±24.7 37.6±8.6 42.7±6.4 44.0±7.0 37.7±4.6 43.0±6.7 38.2±5.6
PN with CE-Loss (?) 87.6±0.8/87.2±1.2 31.8±4.3 35.3±1.7 34.4±5.1 31.7±3.5 34.0±4.7 28.6±7.3

PN with PN-Loss (†) 90.6/90.5 24.8 24.7 29.1 26.8 24.7 22.1
PN with PN-Loss (‡) 31.4±26.1/30.6±25.9 38.1±7.3 43.8±9.4 47.8±6.4 35.7±6.6 38.8±9.0 45.7±12.6
PN with PN-Loss (?) 90.4±0.3/90.2±0.3 27.0±2.2 27.4±1.9 32.5±2.9 27.8±1.4 27±3.4 26.5±3.4

Table 10: Comparison of various models with cross-entropy loss (CE-Loss) optimization or prototypical network
loss (PN-Loss) optimization on NLI datasets. NLI models are trained with MNLI, ANLI R1, ANLI R2 data and
tested on both matched/mismatched development sets of MNLI, and test sets of ANLI R3 categories. † represents
MNLI as support set, ‡ represents ANLI R3 categories as support set, and ? represents both as support set.

5.2 Results on Continual Few-Shot Learning

In this section, we discuss the continual few-shot
learning setup on ANLI R3, SNLI, and IMDB
categories. We sequentially train the models on
each category by initializing with the model pa-
rameters learned for the previous category, thus
enabling continual few-shot learning. Evaluation
is performed on the final model that we get after
continually training on all categories. Table 7, Ta-
ble 8, and Table 9 present the continual few-shot
learning results for our three category datasets. All
the methods start with a RoBERTa-Large classi-
fier trained on MNLI+ANLI-R1+ANLI-R2, full
SNLI, and full IMDB datasets for their respec-
tive category datasets. Then, they are continually
trained on each of the categories in the order as re-
ported in the Tables. From the results, we observe
that all methods perform better than the zero-shot
method. Both fine-tuning and SCL approaches are
doing better in this setup. PN has mixed results for
ANLI R3 and good category-based results on SNLI
and IMDB, but lowest test scores on the original
datasets (MNLI, SNLI, and IMDB).7, 8 We hypoth-
esize that equal weight of all class representations
from the original dataset and categories leads to
higher misclassification of test examples from the
original dataset. The k-NN method has good re-
sults on the original dataset but lower scores on
category-based results. Since the original dataset
has more examples as support set than categories,
we hypothesize that test examples from the cate-
gories could not effectively find relevant category-
specific examples in their nearest neighbors.

7For the PN, we find the closest mean feature class from
the pool of all mean feature classes of support sets that have
so far appeared during the continual learning.

8For k-NN, we continually update the feature set with all
the training examples that have so far appeared.

6 Ablations and Analyses

Robustness of Prototypical Networks. To ab-
late on how Prototypical networks (PN) performs
on the original data (e.g., MNLI or SNLI or IMDB),
we use the model trained with the cross-entropy
loss and test it using PN with the original training
data as the support set. Surprisingly, we observe
that PN performs equal to that of general softmax-
based prediction on all three datasets (see Table 10
row-1 vs. row-2, MNLI column; Table 11 row-1
vs. row-2, SNLI and IMDB columns). This is
interesting since and we can simply calculate an
example’s Euclidean distance to the mean feature
representations of classes to label it.

Cross-Entropy vs. Prototypical Loss. We train
a model with Prototypical network (PN) loss (min-
imize the distance between training examples and
the approximated class representations) and com-
pare it with cross-entropy (CE) loss. Table 10 and
Table 11 present the results. The model trained
with PN loss performs similar or slightly better
than cross-entropy loss on the original test sets (see
Table 10 row-1 vs. row-5; Table 11 row-1 vs. row-
5). Further, models with PN loss perform worse on
average than the CE loss for ANLI R3 categories,
whereas the opposite is true for the counterfactual
categories of SNLI and IMDB (Table 11 row-1 vs.
row-5). Note that ANLI R3 categories have exam-
ples from different domains that are not present in
MNLI (Nie et al., 2020), whereas the categories of
SNLI and IMDB have examples with counterfac-
tual edits but same domain as the their full original
datasets. This suggests that PN loss can generalize
well to in-domain examples, but worse to out-of-
domain examples.

We also tried combining both the original dataset
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Model SNLI Insert/Remove
Phrases

Substitute
Entities

Substitute
Evidence

Change/Remove
Entity Details

Change
Action IMDB Modifiers Negation

CE-Loss 92.5 0.6 0.6 1.4 1.2 0 96.0 11.1 11.1
PN w/ CE-Loss (†) 92.5 2.1 1.9 2.8 4.7 3.2 96.0 12.1 11.1
PN w/ CE-Loss (‡) 8.0±0.1 48.6±7.5 44.2±9.2 47.9±1.5 44.3±9.5 40.7±14.4 4.0±0.0 88.9±1.0 89.6±1.3
PN w/ CE-Loss (?) 84.91±.7 17.8±12.5 23.5±6.5 29.1±1.3 11.8±7.1 23.3±8.7 88.1±2.1 60.9±10.4 57.0±5.1

PN w/ PN-Loss (†) 92.0 19.0 17.3 20.2 16.5 28.6 96.0 49.5 37.8
PN w/ PN-Loss (‡) 50.1±45.1 42.8±5.4 44.7±2.3 48.5±7.4 48.6±7.1 41.8±5.6 50.0±50.4 49.5±0.0 51.8±12.2
PN w/ PN-Loss (?) 90.2±0.6 19.0±0.0 17.3±0.0 20.2±0.0 16.5±0.0 28.6±0.0 95.9±0.1 49.5±0.0 41.5±3.4

Table 11: Comparison of the performance of various models with cross-entropy loss (CE-Loss) optimization or
prototypical network loss (PN-Loss) optimization on NLI and sentiment analysis datasets. NLI models are trained
on SNLI dataset and tested on test sets of SNLI and its counterfactual categories. IMDB models are trained on
full IMDB dataset and tested on test sets of IMDB and its counterfactual categories. † represents SNLI/IMDB
as support set, ‡ represents SNLI or IMDB categories as support set, and ? represent both SNLI/IMDB and their
categories as support set.

and the few-shot categories as the support set,9

and observe a performance drop in the ANLI R3
few-shot categories, but still better than just using
original dataset (MNLI) as support set (Table 10).
This holds for both CE and PN losses. On the SNLI
and IMDB categories setup, the performance drops
again but still better than original dataset as support
set on CE loss and almost same on PN loss.

t-SNE Plot Visualizations. To further under-
stand the differences between cross-entropy loss
and Prototypical network (PN) loss, we present
t-SNE plots10 on the examples from MNLI and
ANLI R3 categories (each example is represented
in the feature space fθ). In Figure 1, the top row
plots are based on a cross-entropy-trained NLI
model (trained on MNLI, ANLI R1, and ANLI R2)
and the bottom row based on PN-loss-trained NLI
model. Each plot combines examples from MNLI
and one of the ANLI R3 categories. It is evident
that MNLI examples form class specific clusters.
However, the ANLI R3 categories’ examples may
not belong to its label cluster of MNLI, suggesting
their low performance in Table 4 zero-shot results.
Interestingly most of these examples are at the edge
of the clusters. Further, there is a remarkable differ-
ence in the cluster patterns between CE and PN loss
models. CE loss plots have dense clusters and PN
loss plots have skew (stretched) clusters. We also
observe that clusters based on PN loss model have
higher average distance to their cluster center and
a higher average distance with very high variance
between any two examples that belong to the same
cluster, supporting the 2D t-SNE observations.

9For a given test example, we assign the class label of the
closest mean class feature from the pool of mean class features
of original train data and categories train data.

10sklearn library (https://scikit-learn.org/).
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Figure 1: t-SNE plots showing examples from various
classes.

7 Conclusion

We presented a benchmark suite and evaluation
protocol for continual few-shot learning (CFL) on
the text classification tasks. We presented several
methods as important baselines for our CFL setup.
Further, we provided several interesting ablations
to understand the use of non-parametric feature
matching methods for CFL. We hope that our work
will serve as a useful starting point to encourage
future work on this important practical setting.
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Broader Impact and Ethics Statement

We view the CFL as a way to make real-world AI
systems safe and reliable by being able to correct
errors quickly. At the same time, we believe there
is a lot more to be done to bring the CFL approach
to practical scenarios and we do not intend to di-
rectly employ our benchmark suite off-the-shelf
on any real systems. Our benchmark suite serves
only to compare various models and encourage the
community to build better models on this impor-
tant practical setting. Moreover, since CFL deals
with only a few examples of training, the models
might overfit these examples, so any practical us-
age of such setup should thoroughly consider the
implications of overfitting scenarios. Further, our
data collection methods for this research and the
setup are not tuned for any specific real-world ap-
plication. Hence, while applying our methods in
a sensitive context, it is important to strictly em-
ploy extensive qualitative control and robust testing
before using them with real systems.
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A Annotation Details

Annotation of both SNLI and IMDB counterfactual
examples needed a degree of expertise to correctly
reason among various categories with often exam-
ples falling into multiple categories. Hence, a sin-
gle expert manually annotated both datasets in an
attempt to ensure high quality. The annotation pro-
cess is not done at scale, so this approach seemed
safer. ANLI categories discussed in Sec. 3.1 are
also manually annotated by an expert (Williams
et al., 2020). Further, various NLU projects bene-
fited from expert annotations (Basile et al., 2012;
Bos et al., 2017; Warstadt et al., 2019).

The expert annotated 1, 422 and 234 examples
in SNLI and IMDB counterfactual datasets, respec-
tively. It took roughly 15 hours to complete the
annotations.

Inter-annotator Agreement. Since the annota-
tions need complex reasoning and can be some-
times subjective, we further employed another an-
notator to annotate a subset of the examples to
calculate the inter-annotator agreement. The new
annotator first went over the definitions of various
categories and later trained with a few examples.
Finally, the new annotator annotated 100 examples
each from SNLI and IMDB datasets.

We calculate the inter-annotator agreement on
these second-annotated examples using the percent-
age agreement and Cohen’s kappa (Cohen, 1960)
for each category independently and report the av-
erage scores across all categories. For the SNLI
counterfactual dataset, average percentage agree-
ment score between the two annotators is 86.4%,
and the average kappa score is 0.62. Our inter-
annotator percentage agreement score is at an ac-
ceptable level as per previous work (Toledo et al.,
2012; Williams et al., 2020) annotation agreement
scores on similar types of annotations. Further, Co-
hen’s kappa score ranges from −1 to 1, and a score
in the range of 0.61 to 0.80 is considered as sub-
stantial agreement (Cohen, 1960; Landis and Koch,
1977). For the IMDB counterfactual dataset, the av-
erage percentage agreement score between the two
annotators is 90.5, and the corresponding Cohen’s
kappa score is 0.79, which is again a substantial
agreement.

B More Details on Baselines

Memory-Aware Synapses. Aljundi et al. (2018)
proposed an approach that estimates an importance
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weight for each parameter of the model which ap-
proximates the sensitivity of the learned function
to a parameter change.

Let f be a function with parameters θ that rep-
resents the neural network model trained on the
original full dataset. Let X,Y be the new exam-
ples from the few-shot setup. Hence, for a given
data point xk, the output of the network is f(xk; θ).
A small perturbation δ in the parameters space re-
sults in a change in the output function as follows:

f(xk; θ + δ)− f(xk; θ) ≈
∑
i,j

gij(xk)δij (1)

where gij(xk) is the gradient of the learned func-
tion w.r.t. the parameter θij and δij is the change in
the parameter θij . The magnitude of the gradient
gij(xk) represents the importance of a parameter
w.r.t. the input xk, hence, the overall importance
weight Ωij for a parameter θij is defined as follows:

Ωij =
1

N

N∑
k=1

||gij(xk)|| (2)

where N is the total number of few-shot exam-
ples. Aljundi et al. (2018) proposed to use l2 norm
of the function f to calculate gij , since this scalar
value allows to estimate gij with a single back prop-
agation. During the training with few-shot exam-
ples, the loss function is updated to consider the
importance weights of the parameters through a
regularizer. The final loss function is defined as
follows:

L′(θ) = L(θ) + λ
∑
i,j

Ωij(θij − θ∗ij)2 (3)

where λ is the hyperparameter for the regularizer
and θ∗ij is the learned parameter on the original full
dataset.

Prototypical Networks. Snell et al. (2017) rely
on an embedding function fθ that computes an
m dimensional representation for each example
and a prototype for each class. Let X,Y repre-
sents a set of few-shot examples, then the class
representation features are computed as ck =
1
|Sk|

∑
(xk,yk)∈Sk fθ(xk), where k represents the

kth class and Sk represents all the few-shot exam-
ples that belong to kth class. Prototypical networks
produce a class distribution for an example based
on a softmax over distances to the prototypes or

mean class representations (ck). The class distribu-
tion for an example is defined as follows:

pθ(y = k|x) =
exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

(4)

where d is the Euclidean distance.
We use several different support sets to com-

pute the class prototypes: the original training
data; the few-shot training examples; or, both. We
use the model’s output before the softmax layer
as fθ(x). For our initial experiments, we use the
model trained on cross-entropy loss using the origi-
nal training data. We also experiment with a model
trained on Prototypical loss (results discussion in
Sec. 6), where we randomly sample a support set
from the training data during each mini-batch op-
timization step and try to minimize the distance
between the mini-batch examples and the approx-
imated class representations based on the support
set. Distance minimization is done using Eqn. 4.

Supervised Contrastive Learning (SCL).
Gunel et al. (2021) proposed supervised con-
trastive learning for better generalizability, where
they jointly optimize the cross-entropy loss and
supervised contrastive loss that captures the
similarity between examples belonging to same
class while contrasting with examples from other
classes. Let X,Y be the few-shot examples, then
the total loss and supervised contrastive loss are
defined as follows:

L = (1− λ)LXE + λLSCL (5)

LSCL =

N∑
i=1

− 1

Nyi − 1

∑
xj∈Syi

log
gθ(xi, xj)∑

k,i6=k gθ(xi, xk)

(6)

gθ(xi, xj) = exp(fθ(xi) · fθ(xj)/τ) (7)

where λ is a hyperparameter to balance these two
losses. τ is also a hyperparameter to control the
smoothness of the distribution. Nyi represent num-
ber of examples with class label yi, and Syi repre-
sents the set of all the examples belonging to class
label yi. In this work, we use l2 normalized repre-
sentation of the final encoder hidden layer before
softmax as fθ.

C Original Datasets Details

In our experiments, before training on our category
datasets, we initially train our RoBERTa-Large
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Continual Training on (↓) MNLI Numerical Basic Reference Tricky Reasoning Imperfections

MNLI+ANLI-R1+ANLI-R2 90.3/90.1 33.1 29.5 32.4 28.9 32.2 28.6
Numerical 90.3/90.0 33.1 30.0 32.9 29.9 33.2 27.7
Basic 90.2/89.9 31.8 31.3 32.4 32.5 32.6 29.5
Reference 90.3/89.9 32.5 33.9 33.3 35.6 33.4 32.1
Tricky 90.3/89.9 32.5 32.8 31.5 36.6 33.4 29.5
Reasoning 90.0/89.7 31.2 37.0 36.1 38.7 33.8 31.2
Imperfections 90.0/89.7 34.4 35.1 36.1 35.6 35.2 30.4

Table 12: Continual learning results on ANLI R3 categories using the fine-tuning method. Model is continually
trained on each category in the order as presented in this Table, and tested on MNLI and all the categories of ANLI
R3.

classifier on a base original dataset. For the ANLI
R3 categories, we first train on MNLI, ANLI R1,
and ANLI R2 training sets with 392, 702, 16, 946,
and 45, 460 training examples, respectively.11, 12

We report the performance on the development
set of both matched and mis-matched examples
of MNLI (Williams et al., 2018). The number
of examples in the matched and mis-matched set
are 9, 815 and 9, 832, respectively. Similarly, for
the SNLI categories, we first train on the original
SNLI (Bowman et al., 2015) with the number of
examples in train, development, and test sets are
550, 152, 10, 000, and 10, 000, respectively.13 For
the IMDB categories, we use the data provided
by Kaushik et al. (2020) with 19, 262 train exam-
ples and 20, 000 test examples.14

D Training Details

In all our experiments, we use the RoBERTa-Large
classifier (356M parameters).15 We report on accu-
racy for all of our models. Our choice of the best
model during training is decided based on the accu-
racy performance on the development set. We do
minimal manual hyperparameter search in our ex-
periments. While training on the original datasets
(MNLI+ANLI R1+ANLI R2, SNLI, or IMDB), we
use a learning rate of 2e−5. For the training on
the few-shot categories, we use a learning rate of
1e−5, where we initially tuned in the range [2e−5,
5e−6]. We keep the rest of the hyperparameters
same between training on the original dataset ver-
sus training on the few-shot categories, e.g., we

11https://gluebenchmark.com/tasks
12https://github.com/facebookresearch/

anli
13https://nlp.stanford.edu/projects/

snli/
14https://github.com/acmi-lab/

counterfactually-augmented-data
15Based on Transformers repository (https://github.

com/huggingface/transformers).

use a batch size of 32, maximum sequence length
of 128 for training and 256 for testing, etc. The
average run time for training on the few-shot cat-
egories is less than five minutes (because of very
few training examples). We use 4 Nvidia GeForce
GTX 1080 GPUs on a Ubuntu 16.04 system to train
our models.

E Additional Results

E.1 Effect of Few-Shot Learning on Domains

In order to better understand the few-shot learn-
ing performance at the domain level, we chose
the ANLI R3 few-shot learning setting where do-
main (genre) information is available. For example,
the numerical category has ‘Wikipedia’ and ‘RTE’
domains. Table 13 presents the domain specific
performances of various categories comparing pa-
rameter correction approach (fine-tuning) and non-
parametric feature matching method (Prototypical
Networks). We observe that ‘Legal’ domain per-
formed best on average for both methods. Further-
more, the feature-matching method performed ‘rel-
atively’ better on RTE domain whereas the param-
eter correction method performed relatively worse
on this domain.

E.2 Fine-grained Continual Learning Results

Table 12 presents the detailed continual learning re-
sults on ANLI R3 categories using the fine-tuning
method. First, we observe that the performance
on MNLI drops as we add the categories, suggest-
ing that it is affected by catastrophic forgetting.
Next, we observe that the performance on all cate-
gories improve after the end of the continual train-
ing (w.r.t. performance on the pre-trained model).
Further, we also observe that some categories are
helping improve other categories. For example,
after continually training the model from tricky cat-
egory to reasoning category, the performance on

https://gluebenchmark.com/tasks
https://github.com/facebookresearch/anli
https://github.com/facebookresearch/anli
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://github.com/acmi-lab/counterfactually-augmented-data
https://github.com/acmi-lab/counterfactually-augmented-data
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Fine-Tune PN

Numerical
- Wikipedia 33.2±5.4 36.3±8.0
- RTE 28.6±1.9 38.7±10.9

Basic
- Legal 34.9±1.9 46.7±7.8
- Procedural 32.2±3.6 43.5±4.3
- Wikipedia 34.3±2.6 39.0±6.9
- RTE 28.4±1.7 41.7±10.6

Reference
- Legal 35.7±2.5 48.3±11.1
- Wikipedia 31.5±2.0 38.8±5.4
- RTE 26.9±1.1 46.3±9.3

Tricky
- Legal 27.1±2.4 40.0±3.8
- Procedural 36.4±6.4 45.5±6.4
- Wikipedia 33.7±2.1 38.8±7.5
- RTE 30.2±1.5 33.3±6.4

Reasoning
- Legal 34.0±1.9 42.6±7.0
- Procedural 31.2±2.2 44.2±11.0
- Wikipedia 31.1±1.4 38.6±4.8
- RTE 25.7±1.8 47.5±12.1

Imperfections
- Legal 66.7±0.0 46.7±18.3
- Wikipedia 36.5±1.6 34.7±7.0
- RTE 17.5±3.1 40.5±13.0

Table 13: Performance of parameter correction ap-
proach (fine-tuning) and non-parametric feature match-
ing method (Prototypical Networks - PN) on various
domains of ANLI R3 few-shot categories.

the basic category drastically improved, suggesting
that reasoning category has some useful informa-
tion to improve the performance on basic category.
Similarly, performance on the reference category
also improved dramatically, suggest that reasoning
examples are useful for learning reference linguis-
tic phenomenon. This suggests that ordering of
these categories has influence on the performance
to a certain degree. In order to understand this
impact, we randomly selected 10 different orders
and performed the continual learning of ANLI R3
categories. We observed (1) a standard deviation of
1.0 on the average scores; (2) the performance of
all categories except reasoning are relatively more
sensitive to the ordering.


