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Abstract

Adapting word order from one language to an-
other is a key problem in cross-lingual struc-
tured prediction. Current sentence encoders
(e.g., RNN, Transformer with position em-
beddings) are usually word order sensitive.
Even with uniform word form representations
(MUSE, mBERT), word order discrepancies
may hurt the adaptation of models. This pa-
per builds structured prediction models with
bag-of-words inputs. It introduces a new re-
ordering module to organize words following
the source language order, which learns task-
specific reordering strategies from a general-
purpose order predictor model. Experiments
on zero-shot cross-lingual dependency parsing,
POS tagging, and morphological tagging show
that our model can significantly improve tar-
get language performances, especially for lan-
guages that are distant from the source lan-
guage. 1

1 Introduction

Extracting linguistic structures from natural lan-
guage usually relies on high quality human anno-
tations. To handle low resource scenarios, efforts
have been devoted to sharing resources among lan-
guages and adapting from high resource models.
One crucial step of these methods is how to unify in-
put and output spaces over languages. For example,
the universal dependency project (McDonald et al.,
2013) constructs a universal output space for cross-
lingual dependency parsers, and cross-lingual word
representation learning algorithms helps aligning
word forms of different languages (Conneau et al.,
2017; Devlin et al., 2019).

Beyond word form, word order is another im-
portant factor in cross-lingual structured prediction

∗This work was conducted when Tao Ji was interning at
Alibaba DAMO Academy.

1https://github.com/AntNLP/zero-shot-structured-
prediction.

(Wang and Eisner, 2018b): it is possible that sen-
tences in two different language have similar parse
trees, but their words are organized in different
orders (e.g., SVO or SOV). To share annotations
among them, we need to handle word order dis-
crepancies carefully: if a model learned on the
source language is tightly coupled with the source
language word order, performances on target lan-
guages could be hurt as their word order could be
incompatible (Wang et al., 2019). On the other side,
if one completely drops word order (e.g., bag-of-
words), the source language (and target languages)
performances might be poor as order-sensitive fea-
tures could be essential. Trade-offs have been made
by using weak word order information (e.g., rel-
ative positions instead of absolute positions (Ah-
mad et al., 2019a)), but we still want to seek better
adaptation of word order without sacrificing source
language performances.

In this work, we integrate new reordering mod-
ules to help cross-lingual structured prediction.
Given a bag-of-words from the target language,
the module tries to reorder them to best resemble
a source language sentence. The structured predic-
tion part then receives inputs with a more familiar
order information. Crucially,
• the training of the reordering model only re-

quires unlabelled source language data, without
parallel corpora or off-the-shelf word alignment
tools (Tiedemann et al., 2014; Zhang et al., 2019)
(thanks to the universal word forms).

• we don’t really need to perform the reordering
action. Instead, the correct order can be implic-
itly encoded by multi-task learning: word order
information accesses the model as a supervision
signal.

The separation of reordering module and structured
prediction module provides a new way to both ex-
plore and transfer order information.

We suggest a distillation framework (Hinton
et al., 2015) for learning the reordering module.

https://github.com/AntNLP/trans-dep-parser
https://github.com/AntNLP/trans-dep-parser
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Figure 1: A diagram of the traditional zero-shot cross-lingual transfer approach (a) and the reordering-based
approach (b) on the dependency parsing task. The structure in red is the output of the parser.

A general order prediction model is first trained on
large scale unlabelled source language data, then
for each structured prediction task, we distill the
knowledge from the general model to teach task
specific reordering modules.

We evaluate our method on three zero-shot cross-
lingual structured prediction tasks (dependency
parsing, part-of-speech and morphological tag-
ging). By taking English as source language, we
observe no obvious monolingual result loss in most
cases, while the cross-lingual results could be sig-
nificantly improved. We also analyze reordering
perplexities of different target languages and show
their correlation with performances of cross-lingual
representation and structured prediction tasks. The
conclusion reflects that both word order and word
form could be important in cross-lingual learning.

2 Method Overview

Given a sentence x = B, w1, · · · , wn,E (Begin and
End are synthetic marks), we can have two views
on x, a bag-of-words ω and an order of words o.
Structured prediction tasks map x to a linguistic
structure y (e.g., a parse tree). Here, we consider
a strict zero-shot cross-lingual setting: given a la-
belled source language corpus S = {(xs, ys)}, we
train a structured prediction model on S, and apply
it directly on a target language sentence xt (with
ωt, ot), without seeing any labelled or unlabelled
target language data. We will assume a reason-
able cross-lingual word representation which maps
source and target language words into a same vec-
tor space.

Usually, we use S to estimate probability
p(y|xs) = p(ys|ωs, os) which takes word order
as an input. Models use word order os as a natural
reference to design hyper-parameters (e.g., it sug-

gests the linear chain structure of RNN and CRF)
or extract order sensitive features (e.g., position
embeddings in Transformer (Vaswani et al., 2017)).
However, the target language may hold a different
word order, so this tight connection between word
order patterns and model architectures is inflexible
for adaptation.

Here, we propose to estimate p(y, os|ωs) instead
of p(y|ωs, os) (i.e., moving the word order to the
output). We can conceptually factorize p(y, os|ωs)
to p(y|ωs)p(os|ωs), where p(y|ωs) is a structured
prediction module, and p(os|ωs) is a reordering
module whose job is to recover a source language
word order from bag-of-words ω (of both source
and target language). Two modules share internal
hidden states and model parameters. Comparing
with p(y|ωs, os), we observe that,
• p(y|ωs) decouples word order and model ar-

chitectures: we are now free to use order-
insensitive models (e.g., Transformer without
position embeddings). Instead of being in hyper-
parameters, word order information now appears
in the (shared) model parameters of p(y|ωs) and
p(os|ωs).

• p(os|ωs) plays the reordering action implicitly.
When training on the source language, it guides
the shared parameters to derive a correct order
os from ωs. When testing on the target language,
since words in ωt are in the same space of those
in ωs, the learned parameters in p(os|ωs) will im-
plicitly encode ωt with a proper source language
word order (like what it does for ωs). As a con-
sequence, p(y|ωt) will receive a more familiar
order information even if ot is different from os.

Figure 1 shows an illustration of the two meth-
ods. Before moving to details of p(y, os|ωs), we
describe possible representations of word order.
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Figure 2: Three order objectives of a sentence “B thank
you ! E”. A empty element is equal to 0. (a) An undi-
rected adjacent matrix M . (b) A forward adjacent ma-
trix

−→
M . (c) An assignment matrix M ′ assigns the cor-

responding position of each word.

3 Word Order Representation

To share more parameters with downstream struc-
tured prediction tasks, we consider the word order
recovery task as another (linear) structured predic-
tion task. For two words wi, wj in the bag of words
of a sentence x, we design two kinds of order ob-
jectives based on the adjacency matrix,
• undirected adjacency matrix M , where Mij = 1

means that wi and wj are adjacent in x.
• directed adjacency matrices,

−→
M (forward) and

←−
M

(backward), where
−→
M ij = 1 (

←−
M ij = 1) means

that wi is the previous (next) word of wj ,
Besides, as suggested by Mena et al. (2018), an-
other word order objective is assignment matrix
M ′. It assigns each word to its correct position in
a shuffled sentence. They show that assignment
matrix has a strong ability to restore sequence from
a random order. All of the above objectives are
in the form of word-to-word matrices (Figure 2).
They can easily supervise the same word-to-word
self-attention matrices in Transformer Encoder.

4 Joint Prediction and Reordering

We now describe the implementation of p(y, os|ωs).
Basically, it requires the input to be a bag of words
without order information. Here we choose a Trans-
former Encoder without position embeddings 2

(Vaswani et al., 2017) instead of order-sensitive
networks like RNNs.

Input Features Denote x1, · · · ,xn as each
word’s vector representation. We obtain xi by con-
catenating a fixed cross-lingual word embedding
wi (from MUSE or mBERT), an optional cross-
lingual part-of-speech tag embedding ti (used only
for dependency parsing task), and a trainable oc-

2It can be seen as an order-insensitive graph neural net-
work.

...
Multi-Head Attn
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Figure 3: A diagram of a reordering-based Transformer
encoder for dependency parsing task. A blue block is
the reordering block. A red block is the structured pre-
diction block. The yellow block is the supervision of
reordering or structured prediction module.

currence index embedding ci. The ci avoids the
isomorphism problem 3 of same words by indi-
cating which of them is used first, which is used
second, and so on.

Transformer Encoder A Transformer Encoder
is obtained by stacking N layers of identical Trans-
former blocks. We follow the standard notation to
introduce how a Transformer block outputs a deep
representation X ′=[x′1, · · · ,x′n] based on a shal-
low input X=[x1, · · · ,xn]. We start by mapping
the input X to three spaces via linear transforma-
tions:
Q =WQ ·X K =WK ·X V =WV ·X

A = softmax

(
Q ·K>√

d

)
(1)

A self-attention matrixA is then obtained by scaled
dot-product attention function. Where d is the col-
umn dimension of Q, Aij measures an interaction
score between xi and xj . The self-attention out-
put O = A · V contains an average of vectors X
using weights from A, and the vector oi in O is a
deep hidden representation of xi. We can extend
the above single-head self-attention layer to multi-
head by defining multiple sets of {WQ ,WK ,WV }.
The output of a multi-head layer is the concate-

3Without ci, if there are two same words the1, the2 and
any other wordwi in a sentence, the edge weight of 〈wi, the1〉
is always equal to 〈wi, the2〉.
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nation of a set of Ok obtained by corresponding
Qk, Kk and V k. We obtain the dimension-reduced
output O through a linear transformation:

O =WO ·
(
O1 ⊕ · · · ⊕Ok

)
X ′ = Add&Norm(FFN(Add&Norm(O)))

There is a residual connection and normalization
(Add&Norm) layer after the self-attention layer,
followed by a feed-forward layer, and finally an-
other residual connection and normalization layer.
After these layers we obtain a deep representation
X ′ = [x′1, · · · ,x′n]. The omitted detail of these
three layers can be found in Vaswani et al. (2017).

Reordering Block A reordering block just adds
a reordering signal Lorder to the ordinary Trans-
former block. As mentioned in Section 3, Lorder
can guide the attention matrix A (in Equation 1),
which is also a word-to-word matrix, to display
a linear chain structure. After aggregating the
shallow representation by using the matrix A as
weights, the deep outputX ′ of the reordering block
has the contextual information with respect to the
word order, since A is forced to match the desined
word order. We test different setting of Lorder with
different word order repersentation matrices.

Lorder =
∑
i,j


(Aij − 1

2Mij)
2

(Aij − 1
2(
−→
M ij +

←−
M ji))

2

(Aij −M ′ij)2.
(2)

In our experiments, we will select one of the re-
ordering signals to train the model and compare it
with each other. In addition, we use single-head
self-attention to reduce computation because pre-
liminary experiments show that multiple heads are
not helpful for reordering blocks. Michel et al.
(2019) has also shown that replacing multi-head
with single-head does not hurt performance.

We cross stack reordering blocks with original
Transformer blocks to build the complete encoder
(Figure 3). The reordering blocks estimate prob-
ability p(os|ωs) by learning linear word order on
the source language. The original blocks estimate
probability p(y|ωs) by learning a structured pre-
diction task without a direct reordering supervi-
sion. Given the bag of words ωt in target language,
thanks to cross-lingual word representation tech-
niques, the reordering block predicts a similar word
order p(os|ωt) as source language. Since the word
order of target language is not introduced, the en-
coder does not have word order drift between target
language and source language.

"
A cute puppy

…

…
millions of texts

……

reorder-teacher

other-studentparser-student tagger-student

Figure 4: A diagram of teacher-students framework.

Downstream Classifier For a downstream task,
we add a structured prediction classifier over the
last encoder block. We investigate three down-
stream tasks. For graph-based dependency parsing
(dep), we follow Dozat and Manning (2017) to
use two bi-affine classifiers. For universal part-of-
speech (upos) and morphological (mor) tagging,
we use a multi-layer perceptron (MLP) classifier.

We train one of the downstream tasks by the cor-
responding cross-entropy loss function Ldown ∈
{Ldep,Lupos,Lmor}. We assume the set of reorder-
ing block IDs is L. The joint objective function
Ljoint is to minimize a weighted combination:

Ljoint = λ1Ldown + λ2
∑
l∈L
Llorder. (3)

5 Distillation

In Equation 2, supervision signals on word reorder-
ing blocks are directly obtained from order objec-
tive (e.g.,

−→
M and

←−
M ). Since we jointly perform

reordering and structured prediction. The data for
learning word order is constrained by the corpus
size of structured prediction task (e.g., treebanks).
On the other hand, there are massive unlabelled
sentences which can help build a more powerful
reordering module. To use those unlabelled data,
one challenge is that directly feeding them into the
joint learning model could be problematic since the
severe imbalance between structured prediction sig-
nals and reordering signals would make the model
focus on reordering. Furthermore, if we solve a dif-
ferent structured prediction task, we need to repeat
the learning on those unlabelled data, which could
be unnecessary and time-consuming. Therefore,
it is important to separate the learning on those
unsupervised data and sharing them efficiently.

Here we design a generic p(os|ωs) model as a
teacher and then distill the knowledge it learned
in a large-scale unlabelled corpus into reordering
blocks in a structured prediction task, which play
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the role of a student (Figure 4). The reordering
student model attempts to learn the soft probabil-
ity distribution from the teacher model, rather than
the hard ground truth. Furthermore, multiple stu-
dent models can share one teacher model, which
avoids repeated training on a large-scale unlabelled
corpus.

5.1 The Teacher Model

The input features of teacher model are the same
as described in Section 4. We slightly modify the
Transformer encoder by removing the feed for-
ward layer to reduce GPU memory usage and speed
up training on a large-scale corpus. There are only
reordering supervision signals here, and all blocks
of the encoder are reordering blocks.

Reordering Classifier We use a reordering clas-
sifier over the last encoder block’s output (X ′ =
[x′1, . . . ,x

′
n]) instead of the downstream classifier.

To save space, we focus on describing the training
and teaching of undirected adjacency matrix M
order objective. 4.

We feed the vector x′i into an MLP to obtain the
dimension-reduced vector vi, and then compute the
probability Pij of wordwi andwj being adjacent to
each other by a bi-affine and sigmoid (σ) function.

vi=MLP(x′i)

Pij=σ ( v
ᵀ
iWvj+bᵀ1hi+bᵀ2dj) , (4)

where {W, b1, b2} are parameters of the classifier.

Training and Teaching In training, the reorder-
ing blocks are supervised by the order objective
like Equation 2, while the reordering classifier is
supervised by cross-entropy loss function:

Lteacherorder = −
∑
i,j

Mij · log(Pij). (5)

In teaching, the objective of the student model’s
reordering blocks is the teacher model’s output
instead of the hard order matrices. We modify
Equation 2 as follows:

Lstudentorder =
∑
i,j

(Aij −
1

2
Pij)

2 (6)

6 Experiments

We demonstrate the effectiveness of our approach
on three structured prediction tasks in a strict
zero-shot cross-lingual setting, dependency parsing

4Descriptions of the other two order objectives are placed
in the Appendix A.

(DEP), universal part-of-speech tagging (UPOS),
and morphological tagging (MOR).

We train our general reordering teacher and three
structured prediction models on the train set of Uni-
versal Dependencies (UD) English-EWT treebank
(v2.2) (Nivre et al., 2018). We use the development
set and test set of the UD English-EWT treebank
to validate source language performance. Follow-
ing Ahmad et al. (2019a)’s setup, we take 30 other
languages as target languages, and use the develop-
ment set and test set of their treebanks to evaluate
target languages performance.

For the reordering model, a Base train set is
UD English, and an Extra set is automatically
annotated raw texts (Ginter et al., 2017) generated
by UDPipe v2.0 (Straka and Straková, 2017) from
CommonCrawl and Wikipedia. Each sentence is
automatic tokenization and syntactic annotations
(include UPOS).

The hyperparameters we used in word reorder-
ing task and downstream tasks are summarized in
Appendix B. The statistics of the UD treebanks are
summarized in Appendix C.

6.1 Performances of the Reordering Model

Our Models and Baselines We explore the input
features’ influence, order representations , and un-
labeled data size to the reordering model. For input
features, we utilize MUSE, mBERT, and optional
upos features. For order representations, we utilize
an undirected (M ) or directed (

−→
M,
←−
M ) adjacency

matrix, and an assignment matrix (Mena (2018)).
For unlabeled data size, we gradually increase the
training set in 10% increments.

Evaluation We use exact matching (EM) to mea-
sure reordering at the sentence level, which means
the whole sentence to be correctly decoding, use or-
der perplexity (PPL= 2H(x)) to measure the cross
entropy H(x) of sentence x 5. The cross-entropy
of a sentence usually decomposes to some local
n-grams, so PPL can more finely measure partial
matching. During testing, we exclude sentences
that are longer than 20 (only for PPL).

Results Firstly, we explore different order repre-
sentations including M ,

−→
M +

←−
M , and Mena (2018)

(Table 1). We first compare two adjacency matrix
objects.

−→
M +

←−
M is better in both EM (+12.6) and

5Here the form of H(x) is the same as at training, e.g.
H(x) = − 1

n

∑
i log

~Pi (i+1) of
−→
M matrix. The bound of the

PPL is [1, 20].
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Mena (2018) M
−→
M +

←−
M

EM/PPL EM/PPL EM/PPL

47.2/4.90 46.8/4.26 59.4/3.65

Table 1: Development set performances of three order
objects trained in the Base training set. Input feature
contains MUSE embeddings and upos tags.

Reorder MUSE MUSE mBERT mBERT
EM/PPL +upos +upos

Base 48.2/4.01 59.4/3.65 45.8/3.78 56.8/3.78
+10% 55.6/3.64 64.5/2.64 53.9/3.61 64.1/2.87
+20% 60.7/3.14 67.7/2.21 58.3/3.06 65.8/2.52
+30% 60.8/2.75 68.2/2.08 58.6/2.93 66.1/2.55
+40% 61.0/2.52 68.5/2.04 59.6/2.83 66.3/2.25
+50% 61.0/2.48 68.9/1.89 60.2/2.77 66.3/2.37
+60% 60.8/2.61 68.8/1.93 60.4/2.98 65.9/2.35

Table 2: The development results of the four input fea-
tures using different amounts of data. “+10%” means
additional using 10% Extra data and so on.

PPL (-0.61) mainly because of the stronger scoring
function.

−→
M +

←−
M uses two bi-affine functions to

calculate forward and backward scores respectively,
while M uses only one dot product scoring func-
tion in order to satisfy symmetry. Previous work
(Dozat and Manning, 2017, 2018) shows bi-affine
function outperforms dot product, and using two
scoring functions can benefit from ensemble learn-
ing. Next we compare adjacency with assignment
matrix,

−→
M +

←−
M also outperforms Mena (2018)

(+12.2 EM, -1.24 PPL), since the assignment ma-
trix doesn’t represent meaningful edges of graph
while it also uses only one scoring function like M .

Secondly, since different downstream tasks as-
sume different input features, we list four cases
containing two cross-lingual word embeddings and
conditions on whether to use extra upos features
(Table 2). Basically, using extra upos features can
improve the results because it alleviates the prob-
lem of out-of-vocabulary and low frequency words.
Surprisingly, the mBERT representation formally
carries some order information from the positional
encoding in itself, but the reordering results based
on mBERT is lower than MUSE. We guess this
may be due to the loss of some lexical and order
information when doing the subword-to-word con-
version.

Finally, since reordering is an unsupervised task,
we analyze the impact of the number of Extra
texts used (Table 2). Two phenomena are observed.
One is the more unannotated data, the better re-

ordering performance because of the improved ex-
pression capacity of neural networks. The other is
it’s more difficult to improve reordering after using
up to 50% data. This is because the reordering task
is difficult in some cases. For example, “I like ap-
ples, bananas and oranges”, any exchange of three
fruits is a reasonable sentence. In the future, re-
ordering models could track the progress of graph
neural networks and further improve performance.

6.2 Results of The Downstream Tasks

Our Baselines We have five benchmark models
from previous work (Ahmad et al., 2019a):

• RNN uses biLSTM encoder,
• Abs uses Transformer encoder with absolute

position embedding,
• Rel uses undirected relative position embed-

ding,
• NoP drops position embedding directly.
• mBERT is a direct fine-tuning method based

on the pre-trained language model mBERT.

Our Models We have two variants of our model:
• Reord represents pipeline the reordering

model and structured prediction model. Di-
rectly feed the reordered sequence into Rel
model.

• noDst models two tasks as a multi-task learn-
ing task without distillation, with use 10%
Extra data.

Our final two models use MUSE and word-level
mBERT (base version) as word representations,
respectively. Note that our mBERT-based model
stacks 4-layers modified Transformer encoder on
the top of mBERT encoder.

Evaluation First, we have three downstream task
performance metrics. For DEP, following Ahmad
et al. (2019a), we evaluate it with label attachment
score (LAS) with punctuations excluded 6. For
UPOS, we evaluate it with token-level accuracy
(Acc). For MOR, we evaluate it with token-level
exact match (EM).

Second, we discuss three language distance met-
rics. Smith et al. (2017) report the “precision@5”
of MUSE in a bilingual dictionary, which measures
the word form distance (S17). Ahmad et al. (2019a)
use the Manhattan distance of directional feature
vector 7, which measures the word order distance

6The tokens labeled “PUNCT” or “SYM” POS tags are
not included.

7They statistic the relative frequency of modifier before
head in triples “(ModifierPOS, HeadPOS, DependencyLabel)”
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DEP Dist. to en MUSE mBERT
A19 S17 PPL RNN Abs Rel NoP Reord noDst Our mBERT Our

en 0.00 1.00 1.89 88.30 89.10† 88.45 54.27 88.45 86.27 88.16 90.73† 90.58

no 0.06 0.85 2.49 72.83 72.75 72.81 31.90 73.04 70.15 73.65† 71.72 73.48†
it 0.12 0.86 2.50 76.23† 75.37 75.82 30.22 75.52 73.48 75.74 79.06† 78.34
fr 0.09 0.86 2.59 73.46 72.23 72.78 32.53 73.26 71.58 73.43 72.04 73.40†
pt 0.09 0.86 2.65 67.98 67.44 67.75 26.34 68.50† 66.07 68.39 67.13 67.21
es 0.12 0.85 2.70 66.91 66.71 66.44 28.47 67.19 64.73 67.23 65.30 65.44†
da 0.10 0.84 2.77 68.81 67.62 67.87 22.37 68.54 66.98 68.99 70.69† 69.40
pl 0.13 0.79 2.86 58.59 59.69 62.23† 27.35 60.92 59.08 61.13 63.05 63.11
sv 0.07 0.82 2.89 73.49 72.71 73.17 36.91 73.68 71.40 73.78 70.15 71.23†
nl 0.14 0.83 2.91 60.11 60.29 60.26 20.04 60.16 59.82 60.82† 65.62† 63.62
ca 0.13 0.81 2.92 65.57 65.30 65.13 21.11 65.47 64.58 66.16† 66.47† 65.96
cs 0.14 0.81 2.98 52.80 52.25 53.80† 16.34 53.34 50.63 53.68 50.26 51.09†
ru 0.14 0.78 3.01 50.81 50.44 51.63 15.91 51.35 48.65 51.64 52.90† 52.35
fi 0.20 0.80 3.02 48.74 48.21 48.69 10.06 48.71 47.74 49.38† 49.49 50.13†
de 0.14 0.75 3.09 59.31 60.58 61.62 19.44 61.44 59.38 61.92† 63.51 63.50
uk 0.13 0.75 3.10 51.14 52.06 52.28 17.05 52.61 50.37 52.98† 55.94† 53.39
ro 0.15 0.81 3.15 52.11 52.07 54.10† 15.23 52.43 51.78 53.39 46.40 51.05†
id 0.17 0.81 3.33 42.09 42.25 43.52 16.94 43.83† 40.82 43.43 42.99 43.58†
hr 0.13 0.75 3.40 50.67 50.03 52.86 12.35 53.53 48.09 53.56 56.08 56.96†
sl 0.13 0.77 3.52 54.57 54.70 56.54 13.32 56.65 51.92 56.86† 56.82 56.95†
sk 0.17 0.75 3.63 56.98 56.87 58.15 18.18 58.07 54.64 58.12 50.78 55.71†
bg 0.14 0.77 3.65 66.68 66.56 68.21 21.98 69.02 62.98 69.22† 71.24 71.64†
he 0.14 0.45 3.99 46.93 46.97 48.00 14.13 48.83 45.78 48.95 48.02 48.26†
et 0.20 0.73 4.03 44.40 43.93 44.87 13.62 45.06 40.71 45.42 46.40 46.91†
lv 0.18 0.68 4.11 49.59 48.86 49.30 16.98 49.13 45.95 49.62 45.10 45.87†
ar 0.26 0.69 4.44 25.48 25.64 28.04 8.17 29.26 23.58 29.78† 30.34 30.26
zh 0.23 0.68 4.56 10.77 10.59 11.36 7.10 12.14 10.69 12.60† 15.4 17.18†
hi 0.40 0.58 4.84 21.41 22.98 26.52 9.07 28.39 20.82 28.74† 15.48 19.25†
ko 0.33 0.58 5.07 15.40 16.06 16.40 6.63 17.68 13.46 18.06† 19.10† 18.22
la 0.28 0.34 5.11 33.91 33.42 35.21 12.89 35.32 29.83 35.75† 29.21 30.39†
ja 0.49 0.44 6.04 10.06 9.86 10.53 7.45 11.92 10.19 11.97 13.42 16.34†

Avg. 0.17 0.74 3.51 50.93 50.81 51.86 18.34 52.17 49.20 52.48 51.67 52.34

Table 3: LAS scores of our models and baseline models on 31 test sets of DEP task. ‘†’means that the best transfer
model is statistically significantly better (by paired bootstrap test, p < 0.05) than others.

(A19). We use the PPL of target languages in the
reordering model as distance, which measures the
confidence of reordering model to restore target
order. All distances are calculated by source (en)
to 30 targets.

Results Firstly, we compare our model with
some benchmark models on DEP task (Table 3).
The first part is MUSE-based models, and overall,
our hard reordering approach achieves competitive
performance on the source language and soft re-
ordering approach achieves the best cross-lingual
performance on 21 languages. First, the Rel model
achieves the highest cross-lingual performance in 4
baselines because of weakening the order by using
a undirected relative position. The results of the
benchmark model demonstrate that word order is
indeed a trade-off of source and cross-lingual per-
formance. Second, we analyze the effectiveness of
multi-task learning. Comparing the original Rel

as the directional feature.

model with the Reord model, we observe an im-
provement in cross-lingual performances, and this
approach does not affect English performance at
all. This illustrates the effectiveness of the reorder-
ing model, increasing the similarity between target
sentences and source sentences. Nevertheless, the
Reord model is still weaker than our approach.
The main reason is that combining the reordering
model in a pipline way can cause error propagation
problems which affect cross-lingual performance.
Third, we analyze the effectiveness of the distil-
lation method. Comparing noDst with Abs, we
observe that noDst performs worse in both English
and cross-lingual results. This result shows that
multi-tasking learning is affected by the data im-
balance problem of the reordering task and DEP
tasks. The model overfits the reordering task which
has large amounts of data. In fact, it makes the
parsing performances even weaker than single-task
learning setting. It demonstrates the effectiveness
of the proposed knowledge transfer approach.
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Figure 5: Pearson correlation coefficient for any two
metrics of A19, S17, PPL and LAS. LAS is the cross-
lingual performance of RNN model in DEP test set. We
pick RNN because it’s widely used and implicitly relies
on word order.

The second part is encoding with mBERT rep-
resentation. Overall, our approach outperforms
the mBERT encoder, This shows our method also
works for mBERT representation. We analyze
two cross-lingual representations by comparing
the mBERT baseline with MUSE-based baselines
(RNN, Abs, Rel), it shows that the zero-shot
transfer performance with mBERT embeddings
is weaker than MUSE on the DEP task, and that
may because the mBERT representation is not well
aligned across languages. Previous work (Wang
et al., 2019) also demonstrates this conclusion, and
they use parallel corpus of source and target lan-
guage pairs as supervision to learn better alignment
of contextual cross-lingual representations. Since
using parallel corpus is not strictly a zero-shot set-
ting, we do not compare this work, but our model
is compatible with their approach and can benefit
from the better aligned representations.

Secondly, we discuss the correlation among lan-
guage distance metrics (A19, S17, PPL), and their
correlation to the parsing performance (LAS). (Fig-
ure 5). Basically, all three distances are positively
correlated with LAS. We observe a clearly higher
correlation between A19 and LAS than S17 and
LAS, possibly because the impact of word form
to LAS is weaker than word order. We observe a
slightly higher correlation between PPL and LAS
than A19 and LAS, which shows that, the reorder-
ing module does learn word order information. We
also observe a clearly higher correlation between
PPL and S17 than A19 and S17, since the reorder-
ing model uses MUSE as input and order as object,
it can specifically co-represent the distance of word
form and word order, which may indicate that it’s
not enough to consider word order alone and the
word form will helps.

Thirdly, we report results on the UPOS task and

Task RNN Abs Rel NoP Our mBERT Our

UPOS
♥

♠
94.2 93.9 93.3 56.2 93.7 95.2 95.2
37.8 41.3 44.6 12.6 47.7 74.5 75.4

MOR
♥

♠
94.6 94.8 94.1 71.7 94.4 95.7 95.3
38.1 38.3 40.0 25.6 41.1 68.5 69.0

Table 4: Acc/EM scores of our models and baseline
models on UPOS/MOR test sets. The ♥ indicates
source language while ♠ indicates the average of 30
target languages to save space.
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Figure 6: The impact of three different ways of com-
bining reordering modules. The numbers in the leg-
end indicate the sub-layer indices where the reordering
module is located.

the MOR task (Table 4). Overall, our approach
further improves cross-lingual results on both tasks
over strong MUSE (+3.1 Acc/+1.1 EM) or mBERT
(+0.9 Acc/+0.5 EM) baselines. This suggests that
the reordering module is generally effective for
different tasks and different cross-lingual word em-
beddings. In particular, RNN model achieves the
best source language performance on UPOS task,
which may indicate that RNN is able to capture
better word order information than absolute po-
sition embedding. Comparing the MUSE-based
cross-lingual results in the DEP task, UPOS and
MOR have a worse performance, which suggests
that upos, as a well-aligned cross-lingual feature,
is useful for zero-shot transfer. However, the im-
provement after using the mBERT embeddings is
more significant (e.g. from 47.7 to 74.5 Acc) than
DEP task, the reason may be that UPOS and MOR
task relies more on local information.

Finally, we analyze the reordering module by
exploring three versions of the odd, even, and bot-
tom layers (Figure 6). We observe that odd is the
most reasonable version, as it incorporates order
information evenly in each layer’s representation.
The even decreases performance less because it is
only an offset of the odd layer, and we think that the
main part of the decrease is due to the reordering
supervision in the last layer, which slightly hurts
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the learning process of structured prediction. The
bottom approach has the worst performance, and
we guess the reason is that the high level repre-
sentations are unable to receive fresh word order
information.

7 Related Work

There has been a lot of recent research on the
cross-lingual transfer of structured prediction tasks,
including dependency parsing (Wang and Eisner,
2018a; Ahmad et al., 2019b), and POS tagging (He
et al., 2019; Kim et al., 2017). Early work built
delexicalized models to direct transfer, but at the
expense of performance (McDonald et al., 2011;
Rosa and Žabokrtský, 2015). With the development
of cross-lingual word embedding techniques (Con-
neau et al., 2017; Devlin et al., 2019), the recent
work has utilized it to retain lexical information
(Ahmad et al., 2019b; Wang et al., 2019).

Data augmentation can enrich the word order
that appears on the source language, thereby in-
creasing the intersection with the target language’s
word order. Tiedemann and Agic (2016); Wang
and Eisner (2016, 2018a) create a high-quality syn-
thetic treebank to increase source data. But data
augmentation requires expert knowledge to build
treebank and extra train time. It does not apply to
a larger number of target languages. Annotation
projection relies on cross-language annotation map-
ping using parallel corpus and automatic alignment
(Rasooli and Collins, 2015; Agić et al., 2016; Plank
and Agić, 2018). Our approach does not require the
above resources, only the source language’s raw
data.

Tiedemann et al. (2014); Wang and Eisner
(2018b); Zhang et al. (2019); Rasooli and Collins
(2019) reorder the source treebanks to make them
similar to the target language of interest before
training on the source treebanks. This is a source-
to-target reordering that requires the use of parallel
corpus or automatic alignment tools. Instead, we
are target-to-source reordering, and training only
at source language.

Some previous work has seen word order as a
trade-off, Ahmad et al. (2019a) modified trans-
former encoder by using undirected relative po-
sition to learn weak order information. Liu and
Fung (2020) using Conv1d to capture local word
order and taking the positional embeddings from
mBert to initialize a frozen positional embeddings.
Our reordering module can fully learn the source

language word order based on the bag-of-words in-
put. It’s useful for tasks that are sensitive to global
word order, such as parsing.

8 Conclusion

This work focus on the source-to-target word order
adaption in zero-shot transfer. We build structured
prediction models containing a novel reordering
module with a bag of words input. The reorder-
ing module is distilled from a task-generic, un-
supervised, and large-scale pre-trained reordering
teacher. Experiments show that, our model can
significantly improve cross-lingual performances
on three tasks without obviously hurting source
language performance. Future work contains two
parts: extending to multi-source transfer and ex-
tending to more structured prediction tasks such as
NER which requires span-level reordering.
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Appendix for Word Reordering for Zero-shot Cross-lingual Structured Prediction

A Other Reordering Classifiers

For assignment matrix M ′ similar to M , we only
modify the sigmoid function in Equation 4 to a
column-normalised softmax function.

Pij=Softmaxj ( v
ᵀ
iWvj+bᵀ1hi+bᵀ2dj) (7)

For directed adjacency matrices, we need to handle
forward matrix

−→
M and backward matrix

←−
M . Thus

we use two MLPs to generate forward representa-
tion hi and backward representation di. With these
two representations, the forward edge probability
~Pij can be calculated by a bi-affine score function
with a column-normalised softmax function, the
backward edge probability ~P ij can be calculated
by a bi-affine score function with a row-normalised
softmax function.

hi=
−−−→
MLP(x′i), di=

←−−−
MLP(x′i).

~Pij=Softmaxj h
ᵀ
i
~Wdj+~b

ᵀ
1hi+~b

ᵀ
2dj (8)

~P ij=Softmaxi h
ᵀ
i

~Wdj+ ~bᵀ1hi+ ~bᵀ2dj

Where {W, ~W, ~W, b1,~b1, ~b1, b2,~b2, ~b2} appear-
ing in Equations 7 and 8 are parameters.

B Hyper-parameters

The hyper-parameters we used in reordering
teacher model (Table 5) and downstream structured
prediction models (Table 6).

Layer Hyper-parameter Value

Input
MUSE 300
mBERT 768

POS 0.33

Transformer

Layer 6
Hidden 512
Head 1

Dropout 0.2

MLP Din → Dout 512→512

Trainer

Optimizer Adam
Learning rate 1e-3

(β1, β2) (0.9, 0.98)
Batch size 80

Table 5: Hyper-parameters for reordering teacher.

C Details of Datasets

The statistics (number of sentences) of Universal
Dependency (UD) treebanks are summarized in
Table 7.

Layer Hyper-parameter Value

Transformer

Layer 8
Hidden 200
Head 8 or 1

Dropout 0.2

Classifier
Bi-affine for arc 512→512

Bi-affine for label 512→128
MLP for POS&MOR 200→256

Multi-task (λ1, λ2) (1.0, 0.25)

Table 6: Hyper-parameters for downstream models.

Language Name #train #dev #test

Arabic ar 6,075 909 680
Bulgarian bg 8,907 1,115 1,116
Catalan ca 13,123 1,709 1,846
Chinese zh 3,997 500 500
Croatian hr 6,983 849 1,057
Czech cs 102,993 11,311 12,203
Danish da 4,383 564 565
Dutch nl 18,058 1,394 1,472
English en 12,543 2,002 2,077
Estonian et 20,827 2,633 2,737
Finnish fi 12,217 1,364 1,555
French fr 14,554 1,478 416
German de 13,814 799 977
Hebrew he 5,241 484 491
Hindi hi 13,304 1,659 1,684
Indonesian id 4,477 559 557
Italian it 13,121 564 482
Japanese ja 7,164 511 557
Korean ko 27,410 3,016 3,276
Latin la 15,906 1,234 1,260
Latvian lv 5,424 1,051 1,228
Norwegian no 29,870 4,300 3,450
Polish pl 19,874 2,772 2,827
Portuguese pt 17,993 1,770 1,681
Romanian ro 8,043 752 729
Russian ru 48,814 6,584 6,491
Slovak sk 8,483 1,060 1,061
Slovenian sl 8,556 734 1,898
Spanish es 28,492 3,054 2,147
Swedish sv 4,303 504 1,219
Ukrainian uk 4,513 577 783

Table 7: Statistics of the UD dataset we used. We chose
the same treebank as Ahmad et al. (2019a).


