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Abstract

Providing pretrained language models with sim-
ple task descriptions in natural language en-
ables them to solve some tasks in a fully unsu-
pervised fashion. Moreover, when combined
with regular learning from examples, this idea
yields impressive few-shot results for a wide
range of text classification tasks. It is also a
promising direction to improve data efficiency
in generative settings, but there are several chal-
lenges to using a combination of task descrip-
tions and example-based learning for text gen-
eration. In particular, it is crucial to find task
descriptions that are easy to understand for the
pretrained model and to ensure that it actually
makes good use of them; furthermore, effective
measures against overfitting have to be imple-
mented. In this paper, we show how these chal-
lenges can be tackled: We introduce GENPET,
a method for text generation that is based on
pattern-exploiting training, a recent approach
for combining textual instructions with super-
vised learning that only works for classification
tasks. On several summarization and headline
generation datasets, GENPET gives consistent
improvements over strong baselines in few-shot
settings.1

1 Introduction

Pretraining large neural networks with a language
modeling objective has led to significant improve-
ments throughout NLP (Peters et al., 2018; Howard
and Ruder, 2018; Radford et al., 2018; Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020,
i.a.). Further improvements are often possible by
choosing a different pretraining objective that more
closely matches the downstream task of interest.
Examples include casing prediction for named en-
tity recognition (Mayhew et al., 2020), gap sen-
tence generation for summarization (Zhang et al.,

1Our implementation of GENPET and code to recreate our
few-shot training datasets is publicly available at https:
//github.com/timoschick/pet.

Instructions Generated Texts

Please contact us if you
have any questions.x __

Your Internet Banking
accounts are now setup
again for accessing.

Short Summary: __ x

Internet Banking Pass-
word reset?E-Mail Title: __ x

Figure 1: Texts generated by PEGASUS-large with dif-
ferent instructions for input x = Dear John, Your Internet
Banking accounts are now setup again for accessing.
The login id is still your main account with the password
being reset to the last six (6) digits of your SSN. Without
any instructions, the model simply generates a continu-
ation of the given input (top). Providing an instruction
makes it generate an appropriate summary (center) or
e-mail title (bottom) even in zero-shot settings and en-
ables much more data-efficient learning.

2020), and sentence unshuffling for discourse rep-
resentations (Lee et al., 2020).

While such approaches can significantly reduce
the amount of training data required, they typically
still do not perform well if only a handful of ex-
amples is available for the downstream task, which
is a common scenario for many real-word uses of
NLP. In such few-shot settings, however, signifi-
cant gains are possible by reversing what is adapted
to what: Instead of making pretraining more sim-
ilar to a downstream task, we can reformulate the
downstream task to make it more similar to the
pretraining objective. For masked language models
(e.g., Devlin et al., 2019; Lewis et al., 2020), one
such reformulation technique is to convert inputs
to cloze questions by adding a text snippet that
contains some form of task description, often in
the form of a short prompt (Radford et al., 2019;
Schick and Schütze, 2021a). Besides making pre-
training and finetuning more similar, this approach

https://github.com/timoschick/pet
https://github.com/timoschick/pet
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has the compelling benefit of enabling users to ex-
plain a task to a pretrained model, making it much
easier for the model to understand the task. This
is illustrated in Figure 1, where a pretrained lan-
guage model is given the same input with different
instructions and adapts its output accordingly.

The idea of providing task descriptions even
works in an unsupervised setting (Radford et al.,
2019) or when examples are simply provided as
additional context (Brown et al., 2020); however,
it only unfolds its full potential when combined
with gradient-based training on a handful of labeled
examples (Schick and Schütze, 2021b). Unfortu-
nately, current approaches for doing so are limited
to text classification tasks (Schick and Schütze,
2021a). Inspired by their success, we investigate
whether the underlying idea can also be transferred
to more challenging text-to-text tasks that require
the generation of text sequences given an input text,
such as abstractive summarization. We introduce
GENPET, a novel method based on PET (Schick
and Schütze, 2021a), that enables finetuning of
generative language models using both instructions
and labeled examples. We show that GENPET is
a highly data-efficient method that enables us to
finetune a pretrained PEGASUS model (Zhang et al.,
2020) with as little as 10 or 100 training examples.
We evaluate our approach on a diverse set of six En-
glish headline generation and text summarization
tasks both in zero-shot and few-shot settings and
show that PEGASUS trained with GENPET clearly
outperforms regular finetuning.

In summary, our contributions are as follows:

• We introduce GENPET, a finetuning procedure
for generative language models that achieves
great data efficiency by using both textual in-
structions and training examples.

• We show that training PEGASUS with GEN-
PET outperforms standard finetuning across a
broad set of tasks and training set sizes.

• We analyze the factors contributing to GEN-
PET’s strong performance and quantify the
impact of all its components.

2 Related Work

Masked language modeling was proposed as a pre-
training objective by Devlin et al. (2019). Several
variants of this objective that involve generating
sequences of text have been proposed, including
T5 (Raffel et al., 2020), BART (Lewis et al., 2020)

and PEGASUS (Zhang et al., 2020), of which we
make use in this work.

The idea to rephrase tasks as cloze questions is
commonly used to probe the knowledge contained
within masked language models (e.g., Petroni et al.,
2019; Wang et al., 2019; Talmor et al., 2020; Schick
and Schütze, 2020; Ettinger, 2020; Kassner and
Schütze, 2020; Sakaguchi et al., 2020). Schick and
Schütze (2021a) propose PET, which combines
this idea with gradient-based learning for efficient
few-shot text classification. Jiang et al. (2020) and
Schick et al. (2020) consider the problem of find-
ing the best way to rephrase a given task as a cloze
question. Schick and Schütze (2021b)’s version of
PET can generate multiple tokens, but still requires
a text classification objective and does not scale
to long output sequences. Radford et al. (2019)
consider task descriptions for text generation tasks,
but do so only in a zero-shot setting. In a simi-
lar spirit, Brown et al. (2020) investigate the abil-
ity of pretrained language models to leverage task
descriptions and examples without any gradient-
based optimization.

Other approaches to few-shot learning in NLP
commonly require large sets of examples from re-
lated tasks (Gu et al., 2018; Dou et al., 2019; Qian
and Yu, 2019; Ye et al., 2020), parallel data for
consistency training (Xie et al., 2020; Chen et al.,
2020), or highly specialized methods tailored to-
wards a specific task (Laban et al., 2020). In con-
trast, GENPET requires no additional labeled data
and provides an intuitive interface to leveraging
task-specific human knowledge.

Our work is also related to prefix-constrained de-
coding in interactive machine translation for mak-
ing suggestions on how to complete a partial trans-
lation (Knowles and Koehn, 2016; Wuebker et al.,
2016). Keskar et al. (2019) and He et al. (2020) sim-
ilarly use prompts and keywords for controllable
text generation, but require specific pretraining pro-
cedures and do so only in high-resource settings.

3 PEGASUS Pretraining

We briefly summarize the pretraining procedure
of PEGASUS (Zhang et al., 2020), the model to
which we apply GENPET. PEGASUS is a stan-
dard Transformer encoder-decoder architecture
(Vaswani et al., 2017) that is pretrained using gap-
sentence generation, an objective tailored to text
summarization tasks. This pretraining objective
requires a set of documents consisting of multi-
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P (x)

American Duo Wins Opening Beach Volleyball Match
x

News:__ 2

1

3

y

World

Business

Sports

v(y)

p(y | x) ∝ pM (v(y) | P (x))

Figure 2: Application of a pattern-verbalizer pair (P, v) in PET: The input x is converted into a cloze question
P (x). The probability p(y | x) of each label y is derived from the probability that a pretrained model M assigns to
its verbalization v(y) at the masked position. Figure adapted from Schick et al. (2020).

ple sentences. The key idea is to preprocess each
document by (i) picking a subset of m informa-
tive sentences,2 (ii) replacing each of these sen-
tences by a mask token, and (iii) concatenating all
removed sentences into a pseudo-summary. The
Transformer model is then trained to generate this
pseudo-summary given the partially masked doc-
ument. Similar to prior work (e.g., Raffel et al.,
2020; Lewis et al., 2020), this is done by having the
encoder process the entire masked document and
the decoder generate the output autoregressively.

Zhang et al. (2020) train two variants of PE-
GASUS: PEGASUS-base, a 12-layer model with
approximately 223M parameters, and PEGASUS-
large, a 16-layer model with 568M parameters. As
only the latter version is publicly available in a vari-
ant that is not finetuned on any downstream task,
all our experiments are based on PEGASUS-large.

4 Pattern-Exploiting Training

Pattern-Exploiting Training (PET, Schick and
Schütze (2021a)) is a finetuning method for text
classification tasks. That is, PET can be applied to
problems where a text sequence x ∈ X must be
mapped to a label y from a finite set Y . As shown
in Figure 2, PET enables data-efficient text classi-
fication by converting inputs into cloze questions;
this drastically reduces the number of examples
required (Schick and Schütze, 2021a,b).

Let M be a masked language model, V its vo-
cabulary of tokens and __ ∈ V the mask token; we
denote the set of all token sequences as V ∗. Given
an input sequence z ∈ V ∗ that contains exactly one
mask token, let pM (t | z) denote the probability
assigned to t ∈ V by M at the masked position in
z. As illustrated in Figure 2, PET requires:

• a pattern P : X → V ∗ that maps each input

2The most informative sentences are selected where infor-
mativeness is measured as the Rouge1 F1 score (Lin, 2004)
between the sentence and the remaining document.

x to a cloze question containing exactly one
mask token;

• a verbalizer v : Y → V that maps each label
y to a single token representing its meaning in
the pattern.

The probability of y given x is then derived from
the probability that M assigns to v(y) at the
masked position in P (x):

p(y | x) = pM (v(y) | P (x))∑
y′∈Y pM (v(y′) | P (x))

(1)

For finetuning, the cross-entropy between p(y | x)
and the true label of x is used as training objective.

5 Generation with Instructions

We now introduce GENPET, our method for fine-
tuning language models with instructions for text
generation. Similar to PET, we provide instruc-
tions by means of patterns P : X → V ∗ that we
use to modify the original input. However, we
do not require a verbalizer as our output space al-
ready consists of natural language sentences, i.e.,
Y ⊆ V ∗. In designing GENPET, we tackle three
key challenges for few-shot text generation with
instructions:

1. How should we provide an instruction to an
encoder-decoder model so that the model can
make the best possible use of it? (§5.1)

2. How can we ensure that the model under-
stands the instructions provided sufficiently
well, and how do we deal with the fact that
even minor modifications to the patterns can
have a big impact on performance (Jiang et al.,
2020; Schick and Schütze, 2021a; Elazar et al.,
2021)? (§5.2)

3. How do we prevent overfitting, a major issue
in few-shot settings? (§5.3)
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Notation Let P be a pattern, x ∈ X and y ∈ Y
input and output text sequences, and z = P (x)
the result of applying P to x, i.e., a text sequence
containing a single mask token. Furthermore, let
y = y1 . . . yn, z = z1 . . . zm and let the mask
token in z be at some position h ≤ m. We denote
the subsequence yi . . . yj by yi:j .

We consider an encoder-decoder model M pre-
trained by masked language modeling. That is,
the model must be able to compute a probability
pM (y | z) that measures to what extent y is a
plausible substitute for the mask in z. We further
require that this is done by decomposing the joint
probability of y as follows:3

pM (y | z) =
n∏

i=1

pM (yi | z;y1:i−1) (2)

where pM (yi | z;y1:i−1) is obtained by processing
z using the encoder and y1:i−1 using the decoder.
If we happen to already know some prefix y1:k−1

of y, we denote with

pM (yk:n | z;y1:k−1) =
n∏

i=k

pM (yi | z;y1:i−1)

(3)
the probability that M assigns to the remaining
sequence yk:n if the prefix y1:k−1 was already pro-
cessed with the decoder.

5.1 Using a Single Instruction
As M is an encoder-decoder language model, we
have several options for how to apply a pattern P ,
i.e., how to ingest an instruction when computing
the probability of y given x: We may process the
entire sequence P (x) = z with the encoder, but
we may also choose some index j < h and process
z1:j−1zh:n using the encoder and zj:h−1 using the
decoder. For example, if z = Summary: __ Text: x ,
we can process the prefix “Summary:” using the
encoder or the decoder; that is, we may compute
either of the following (cf. Figure 3):

p1 = pM (y | Summary: __ Text: x ) (4)

p2 = pM (y | __ Text: x ; Summary: ) (5)

In preliminary experiments, we found tokens that
belong to the partially generated output sequence
(i.e., tokens that are processed using the decoder)

3There are several recent architectures that meet this re-
quirement, including BART (Lewis et al., 2020), T5 (Raffel
et al., 2020) and PEGASUS (Zhang et al., 2020).

Summary : __ Text : x

Encoder

⟨s⟩ y0 ... yn−1

Decoder

y0 y1 ... yn

__ Text : x

Encoder

⟨s⟩ Summary : y0 ... yn−1

Decoder

y0 y1 ... yn

Figure 3: Generation process of an output y = y0...yn
for input x when the instruction is entirely processed us-
ing the encoder (top) and when parts of it are processed
using the decoder (bottom). We use ⟨s⟩ to denote the
model’s start-of-sequence token. The seemingly sub-
tle difference between the two setups can lead to quite
different generations: Instructions processed by the de-
coder have a stronger impact on the model’s predictions
than those processed by the encoder.

to have a much stronger impact on the model’s
predictions than regular input tokens (i.e., those
processed by the encoder). This applies all the
more to PEGASUS, which is pretrained to always
generate full sentences: If the pattern used consists
of a partial sentence (e.g., a short prompt) which is
to be completed by the model, PEGASUS tends to
instead simply start a new sentence that does not
relate to the given prefix if the latter is processed
with the encoder.

Based on this observation, we supplement each
pattern P with a decoder prefix d ∈ V ∗ that is
given to the model as part of the generated se-
quence rather than the observed input. Accordingly,
we define the probability of y given x as

p(P,d)(y | x) = pM (y | P (x); d) (6)

In Eqs. 4 and 5, probability p1 corresponds to us-
ing pattern P1(x) = Summary: __ Text: x with an
empty decoder prefix d1, whereas p2 corresponds
to using the pattern P2(x) = __ Text: x with a
decoder prefix d2 = Summary: . Both variants are
illustrated in Figure 3.

We finetune M on a set of training examples
(x,y) simply by minimizing the cross-entropy be-
tween p(P,d)(y | x) and y using teacher forcing.

5.2 Combining Instructions
As shown in previous work (Jiang et al., 2020;
Schick and Schütze, 2021a), using different instruc-
tions or formulating the same input in different
ways can have a strong impact on the model’s per-
formance. Unfortunately, in the absence of a large
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development set, instructions that work well are
often hard to distinguish from those that perform
poorly. We alleviate this issue by enabling the
simultaneous usage of multiple instructions (rep-
resented by multiple pairs of patterns and decoder
prefixes) and combining them using a mechanism
similar to knowledge distillation (Hinton et al.,
2015). This mechanism mitigates the negative in-
fluence of instructions that are hard to understand
for the model. This means that users can simply
provide all (variants of) instructions that they can
think of. Further, it is much faster and more mem-
ory efficient than having to constantly use multiple
instructions (and thus, multiple models) during in-
ference. PET (Schick and Schütze, 2021a) also
uses a multi-pattern approach – which is based on
averaging the predictions obtained with different
patterns –, but it is not applicable in text genera-
tion settings as we cannot compute the average of
multiple generated sequences in a meaningful way.

Given pairs of patterns and corresponding de-
coder prefixes (P1,d1), . . . , (Pk,dk) and a set of
models M1, . . . ,Mk, where each Mi was finetuned
using (Pi,di), we aim to obtain a single model M̃
that contains the combined knowledge of all mod-
els. To do so, we require a small set of unlabeled
examples U . For each x ∈ U , we first generate one
output sequence y(Pi,di) per (Pi,di) using greedy
decoding as in Zhang et al. (2020), resulting in a set
of candidate outputs Cx = {y(Pi,di) | 1 ≤ i ≤ k}.
To assign a score to each candidate y ∈ Cx, we first
compute the log-likelihood of y for each (Pi,di)
as

si(y | x) = log p(Pi,di)(y | x) (7)

The total score of y is then simply the exponenti-
ated average over the patterns:

s(y | x) = exp
1

k

k∑
i=1

si(y | x) (8)

The model M̃ is trained on pairs (x,y) where
x ∈ U and y is drawn from Cx with probability
proportional to s(y | x).

While we could train this final model to simply
maximize pM̃ (y | x), we note that this creates a
large discrepancy between pretraining and finetun-
ing: During pretraining, masked language models
only process sequences that contain at least one
mask token. In the spirit of our intention to make
pretraining and finetuning as similar as possible
(§1), we therefore train M̃ using a trivial pattern

P (x) = __ x that just prepends a single mask to-
ken to the input and use an empty decoder prefix;
that is, we maximize pM̃ (y | __ x ; ) instead of
pM̃ (y | x). In addition to reducing the pretraining-
finetuning discrepancy, putting the mask token be-
fore the input biases the model towards generating
text that is likely to precede the input. This is de-
sirable because news articles – which abound in
big language models’ pretraining data – often have
a headline and a short summary before the article
rather than after it.

5.3 Preventing Overfitting

In preliminary experiments, we found pretrained
encoder-decoder models to strongly overfit the
training data when trained on just a handful of
examples: When generating new texts, they often
simply reproduce phrases from training examples,
even if they are not in any way related to the cur-
rent input. To alleviate this issue, we introduce two
modifications to our training procedure; we refer
to them as unsupervised scoring and joint training.

Unsupervised Scoring For unsupervised scor-
ing, we compute s(y |x) as in Eq. 8, but we use
an untrained model (i.e., one that has not been
finetuned on task-specific examples) to compute
p(Pi,di)(y |x) in Eq. 7 for all i ∈ {1, . . . , k}.

The intuition behind this is as follows: If for
a given input, a trained model simply reproduces
phrases from its training set, the resulting pair of
input and output texts should look strange to an
untrained model, which has not seen the example
from which the output is (partially) copied. Thus,
sampling outputs from the candidate set Cx based
on the probability assigned to each example by
an untrained model helps prevent overfitting: It
results in the final model being primarily trained
on examples that also look natural to a model that
has not seen the training data.

We further use this idea to discard generated
texts of really poor quality altogether. To this end,
we sort the set C =

⋃
x∈U Cx of all outputs for all

candidate sets based on their likelihood according
to the untrained model in ascending order. Let the
rank ry of each output y ∈ C be its position in
this sorted list, divided by the list’s size. We then
remove all outputs with ry < τ from the candidate
sets Cx, where the threshold τ is a hyperparameter.

Joint Training In §5.2, we assume the existence
of an ensemble {M1, . . . ,Mk} where each model
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was trained using a different instruction. How-
ever, instead of training an individual model Mi for
each pair (Pi,di), we can also train a single model
jointly on all instructions. To do so, we simply
replicate each training instance k times and process
the ith copy with (Pi,di). Our motivation is that
forcing a single model to work well for all instruc-
tions can act as a regularizer to prevent overfitting.
This approach comes with the additional benefits of
both being faster to train and generating less over-
head. Note that we still require instruction combi-
nation (§5.2) because even given a single model
understanding all instructions, it would be unclear
which instruction to choose during test time, and
querying the model with all instructions would be
inefficient.

6 Experiments

Tasks We evaluate PEGASUS with and without
GENPET on a subset of the tasks in Zhang et al.
(2020). As our computing resources are limited,
we only choose those tasks for which the maximum
output length in Zhang et al. (2020) is at most 128
tokens. We include the following tasks:

• AESLC (Zhang and Tetreault, 2019): Given
an email body, predict the title of the email.

• Gigaword (Rush et al., 2015): Given the first
sentence of a news article, generate its head-
line.

• XSum (Narayan et al., 2018): Summarize
articles spanning a wide range of different
topics.

• Reddit TIFU (Kim et al., 2019): Generate
summaries for posts from the TIFU commu-
nity in Reddit.

• NEWSROOM (Grusky et al., 2018): Gener-
ate summaries for articles from various major
publications.

• CNN/DailyMail (Hermann et al., 2015): For
articles from CNN and the Daily Mail, gener-
ate a list of highlights.

For each task, we use the entire test set for evalu-
ation.4 We create two types of training sets con-
taining either 10 or 100 training examples; in ad-
dition, we provide 1,000 unlabeled examples per

4The only exception to this is NEWSROOM, which con-
tains more than 100,000 examples: We only consider a subset
of 10,000 examples to ensure a resource-friendly evaluation.

Task Decoder Prefixes

AESLC d1 = E-Mail Subject: d2 = E-Mail Topic:
Gigaword d1 = Headline: d2 = Article Headline:
CNN/DM d1 = Highlights: d2 = Article Highlights:
Others d1 = Short Summary: d2 = Brief Summary:

Table 1: Decoder prefixes we use for AESLC, Gigaword,
CNN/DailyMail (CNN/DM) and all other summariza-
tion tasks (Others)

task. Both unlabeled and training examples are ob-
tained through uniform sampling from each task’s
original training set.5

As previous work (Schick and Schütze, 2021b)
has shown that the choice of training examples has
a large impact on model performance, we create
three distinct training sets per size (10 and 100)
and task using different random seeds, resulting in
a total of six training sets per task. Scores reported
in this section are always average scores across
all three equal-sized sets of training examples, ex-
cept for zero-shot settings where no training data
is available at all.

Instructions We use the same set of patterns
across all tasks, but we combine them with dif-
ferent decoder prefixes. The patterns we use are:

P1(x) = __ x P2(x) = __ Text: x

All decoder prefixes are shown in Table 1. We
combine each pattern with each decoder prefix,
resulting in four pairs per task: (P1, d1), (P1, d2),
(P2, d1), (P2, d2).

Setup For all our experiments with GENPET, we
use PEGASUS-large (Zhang et al., 2020) as underly-
ing language model and perform greedy decoding;
our implementation is based on the Transformers
library (Wolf et al., 2020) and PyTorch (Paszke
et al., 2017). Unless stated differently, all experi-
ments are performed using the same setup as Schick
and Schütze (2021a) and a single GPU with 11GB
RAM (NVIDIA GeForce GTX 1080 Ti).

For optimizing hyperparameters, much previous
few-shot work uses development sets that are larger
than the training sets by multiple orders of magni-
tude (e.g., Xie et al., 2020; Zhang et al., 2020; Chen
et al., 2020); however, assuming the existence of
such large development sets is inconsistent with
real-world few-shot settings. In contrast, Schick

5We do not reuse the datasets of Zhang et al. (2020) as they did
not use a fixed seed and thus their training data is not recoverable.
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t Model AESLC Gigaword XSum Reddit TIFU NEWSROOM CNN/DailyMail Avg

0
PEGASUS 8.20/ 2.74/ 7.35 23.91/ 7.66/20.64 18.61/ 2.54/12.06 17.19/ 3.29/12.00 23.24/11.20/18.34 35.20/14.07/22.84 21.06/ 6.91/15.54
PEGASUS-M 12.39/ 4.74/11.42 19.63/ 5.51/16.97 32.43/13.10/24.58 14.80/ 2.89/10.74 25.01/13.57/20.90 33.36/12.97/22.63 22.94/ 8.80/17.87
GENPET 19.81/ 8.81/18.53 28.01/10.48/24.92 29.24/10.56/22.73 15.41/ 2.83/11.63 26.35/15.79/23.22 33.08/12.82/23.27 25.32/10.21/20.71

10
PEGASUS 9.37/ 3.77/ 8.97 25.18/ 9.24/22.80 30.41/ 9.57/23.26 18.48/ 3.97/14.08 25.59/12.28/21.18 37.54/15.84/25.18 24.43/ 9.11/19.24
PEGASUS-M 16.53/ 7.47/16.15 27.33/10.60/24.98 33.96/11.90/26.29 19.78/ 4.50/15.16 29.91/16.73/25.70 37.88/16.19/25.82 27.56/11.23/22.35
GENPET 27.19/14.08/26.73 30.93/13.02/28.49 35.88/13.22/28.24 22.43/ 5.55/17.27 34.48/22.00/30.60 38.91/16.97/26.65 31.63/14.14/26.33

100
PEGASUS 23.22/10.24/22.43 30.80/12.27/27.92 40.23/16.68/31.90 24.24/ 6.28/18.72 33.13/20.24/28.80 39.64/16.94/26.79 31.87/13.77/26.10
PEGASUS-M 25.87/12.34/24.99 31.38/12.65/28.33 40.73/17.10/32.43 24.74/ 6.40/19.10 34.79/21.60/30.37 40.08/17.14/27.06 32.93/14.54/27.05
GENPET 29.97/15.32/29.26 32.75/13.98/29.94 41.71/17.99/33.46 26.06/ 7.34/20.34 36.20/23.51/32.02 40.02/17.77/27.79 34.45/15.98/28.80

Table 2: R1/R2/RL scores for six tasks and three training set sizes t; for 10 and 100 examples, all results are
averaged across three different (seed-dependent) training sets. The last column shows average performance across
all tasks.

and Schütze (2021a) assume no development data
at all and determine hyperparameters based only
on previous work and practical considerations. We
choose a middle course and create a small devel-
opment set of 100 examples for only one of the
six tasks, XSum. We use this development set in
combination with a single training set of 10 exam-
ples to determine hyperparameters for all tasks and
training sets. However, we do so only for hyper-
parameters for which no consistent value can be
derived from previous work.

Following Zhang et al. (2020), we use a maxi-
mum input length of 512 tokens, the Adafactor op-
timizer (Shazeer and Stern, 2018) with square root
learning rate decay, a dropout rate of 0.1 and label
smoothing setting ε = 0.1 (Szegedy et al., 2016);
we also adopt Zhang et al. (2020)’s maximum out-
put lengths for each task. As recommended by
Schick and Schütze (2021a), we train all models
for 250 steps using a batch size of 8. We also
tried training for 500 and 1,000 steps on our de-
velopment set but found no major differences in
performance. For the learning rate, we tried values
of α · 10−5 with α ∈ {1, 10, 50} as Schick and
Schütze (2021a) use α = 1 and Zhang et al. (2020)
use α = 50; we found α = 10 to perform best
for all models. For unsupervised scoring (§5.3),
we use a threshold of τ = 0.2, i.e., we discard
the 20% of examples that are least likely accord-
ing to an untrained model. We chose this value
by looking at texts generated by PEGASUS trained
on 10 examples from the XSum development set,
where we found the bottom 20% to contain texts of
poor quality, including random telephone numbers
and repetitions of the same word. For evaluation,
we follow Zhang et al. (2020) and report Rouge1,
Rouge2 and RougeL (R1/R2/RL) F1 scores (Lin,
2004) after stemming using the Porter algorithm
(Porter, 1997).

Results On all six tasks, we compare the follow-
ing three approaches for finetuning a pretrained
PEGASUS model:

• PEGASUS: The regular finetuning procedure
described in (Zhang et al., 2020).

• PEGASUS-M: Finetuning with a single trivial
pattern that inserts a mask token before the
first word.

• GENPET: Finetuning with GENPET using pat-
terns P1 and P2 and the decoder prefixes in
Table 1 as described above; we apply all mod-
ifications described in §5.3.

We do not compare to other few-shot approaches
as they either make quite different assumptions –
for example, GENPET requires manually designed
patterns and some amount of unlabeled examples,
whereas meta learning approaches (e.g., Gu et al.,
2018; Dou et al., 2019; Qian and Yu, 2019) re-
quire large annotated datasets for related tasks –,
or they cannot be transferred to a generative set-
ting in a straightforward fashion, as is the case for
consistency-based methods such as those of Xie
et al. (2020) and Chen et al. (2020). However, we
note that PEGASUS is a strong baseline in terms of
data efficiency, almost matching the performance
of prior state-of-the-art systems trained on the full
datasets with as little as 100 examples for many
tasks (Zhang et al., 2020).

Table 2 shows results for zero-shot learning and
for few-shot learning with 10 and 100 training ex-
amples. In the few-shot settings, GENPET con-
sistently outperforms PEGASUS across all tasks,
resulting in an average improvement in R1 over
PEGASUS of 7.20 (31.63 vs 24.43) and 2.58 (34.45
vs 31.87). PEGASUS-M performs better than reg-
ular finetuning, indicating that even just adding



397

a single mask token at the very beginning, with-
out any instructions, already effectively improves
performance. (Recall that the effect of the initial
mask is to make finetuning more similar to pre-
training and to bias the models towards generating
text that is likely to appear before the input; see
§5.2). However, it still performs clearly worse than
GENPET, demonstrating that PEGASUS is indeed
able to make use of the instructions provided. In
the zero-shot setting, GENPET also outperforms all
baselines on average, but falls short on individual
tasks.

Quantitative Analysis To analyze the factors
contributing to GENPET’s performance, Table 3
compares the performance of the best (“best only”)
and the worst (“worst only”) performing pairs of
pattern and decoder prefix to that of GENPET in a
setting with 10 training examples. We see some
difference in performance between using only the
best and worst pairs, but this difference is not
as pronounced as in previous work (Schick and
Schütze, 2021b,a) – possibly because our instruc-
tions are more similar to each other than patterns
in prior work. Notably, our strategy for combining
instructions clearly performs better than using just
the best instruction across all tasks and measures
(compare GENPET with “best only”). Table 3 also
shows results for using the best pattern without a
decoder prefix (“no dec. prefix”) and instead pro-
cessing the entire input using the encoder. That is,
given (P,d) with P (x) = z1 . . . zn and zh = __,
we compute pM (y | z1 . . . zh−1dzh . . . zn) rather
than pM (y | z1 . . . zn;d) similar to the example
shown in Figure 3 (top). While this variant still per-
forms better than PEGASUS-M on two out of three
datasets, results clearly show that PEGASUS makes
less use of task descriptions if they are processed
using the encoder.

The bottom two rows of Table 3 show per-
formance when we replace unsupervised scoring
(§5.3) with regular scoring using the supervised
models (“sup. scoring”) and if we additionally do
not perform joint training (“no joint train.”). As
can be seen, not using joint training hurts perfor-
mance for all three tasks and supervised scoring
hurts performance for two out of three tasks.

Qualitative Analysis Table 4 shows zero-shot
abilities of three methods for one selected input
from Gigaword that illustrates some typical behav-
iors: Regular PEGASUS just creates a verbatim

Model AESLC XSum NEWSROOM

PEGASUS 9.37/ 3.77/ 8.97 30.41/ 9.57/23.26 25.59/12.28/21.18
PEGASUS-M 16.53/ 7.47/16.15 33.96/11.90/26.29 29.91/16.73/25.70

GENPET 27.19/14.08/26.73 35.88/13.22/28.24 34.48/22.00/30.60
worst only 24.08/12.22/23.58 33.85/11.95/26.60 32.55/19.73/28.59
best only 24.80/12.48/24.19 34.15/12.05/26.78 33.94/21.34/30.03

no dec. prefix 15.49/ 7.24/15.09 34.12/11.95/26.41 32.56/20.15/28.64
sup. scoring 25.33/13.41/24.87 35.68/13.19/28.06 34.37/22.04/30.53

no joint train. 24.37/12.67/24.00 35.41/13.15/27.95 34.04/21.95/30.35

Table 3: R1/R2/RL scores for several baselines and
variants of GENPET given 10 training examples

Input: the dollar slipped against the euro on friday after the
u.s. federal reserve cut its discount rate to banks by a half
percentage point.

PG federal reserve cut its discount rate to banks by a
half percentage point.

PG-M The dollar fell against the euro on monday after the
u.s.

GENPET dollar slips against euro after federal reserve cuts
discount rate to banks.

Gold dollar slides against euro as fed cuts discount rate

Table 4: Zero-shot summaries for the news item given
as “Input”. PEGASUS (PG) simply creates a verbatim
copy of the second part of the input. PEGASUS-M (PG-
M) hallucinates (“Monday” vs. “Friday”). GENPET’s
summary is close in quality to gold.

copy of the input’s second half – this is true not
only for this particular example, but can be seen
frequently for all datasets. We assume this is due
to the fact that Zhang et al. (2020) introduce some
modifications to their training procedure that en-
courage the model to copy text. PEGASUS-M is
able to produce an output that is not just a word-
for-word copy of the input, but hallucinates infor-
mation that is not backed by the input text (“mon-
day”). We found that hallucination is a frequent
problem for PEGASUS-M. This is hardly surprising
given that the model has no way of knowing that it
is expected to generate a factual headline summa-
rizing the input. In contrast, GENPET generates a
fluent and factual headline that covers all relevant
aspects.

7 Conclusion

We investigated the ability of pretrained language
models to make use of simple instructions with the
aim of enabling more data-efficient text generation.
We identified three major challenges: enabling lan-
guage models to make good use of the instructions
provided, ensuring that the instructions are useful
and preventing overfitting. We tackle these in our
proposed approach, GENPET, by (i) introducing
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the concept of decoder prefixes, (ii) combining in-
structions through knowledge distillation where tar-
get sequences are generated with probabilistically
sampled instructions and (iii) making use of unsu-
pervised scoring and joint training. A pretrained
PEGASUS model finetuned with GENPET clearly
outperforms regular finetuning in few-shot settings.
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A Analysis

Sequence Length We look at the performance
of GENPET as a function of the maximum output
length ℓ. One might be concerned that the influ-
ence of the decoder prefix on generated tokens may
decrease with distance. This would mean that di-
minishing gains are to be expected from GENPET

for tasks that require longer text sequences to be
generated. To investigate whether this is a problem
for GENPET, Table 5 shows the performance of
PEGASUS and GENPET for all tasks with an orig-
inal maximum output length of 128 tokens, using
maximum output lengths of ℓ = 32 and 128.

For both values of ℓ, we compute the gains
gℓ from using GENPET as the difference in per-
formance between GENPET and PEGASUS. On
average, increasing ℓ to 128 tokens reduces the
gains from GENPET over regular finetuning by just
g32 − g128 = 0.10 points R1. This shows that in-
structions provided using GENPET have a strong
impact on generated tokens even if there are dozens
of other tokens in between. Thus, GENPET works
not only for short sequences, but is also beneficial
for generating long text sequences.

Unsupervised Scoring We motivated the use of
unsupervised scoring in Section 5.2 by the obser-
vation that PEGASUS tends to overfit the training
data. This can for example be seen when training
PEGASUS with individual instructions on the 10
examples from the XSum dataset used to optimize
hyperparameters. One of these examples has the
gold-standard summary “Hugo Chavez [. . . ] is one
of the most visible, vocal and controversial lead-
ers in Latin America”; as shown in Table 6, this
induces PEGASUS to generate the phrase “the most
visible, vocal and controversial” for many other
inputs, even in cases where this phrase does not
make any sense given the input text. Out of the
summaries generated for 1,000 unlabeled exam-
ples, we found 92 to contain this particular phrase
word-for-word.

Table 6 also shows the rank of each output as
defined in Section 5.3 (i.e., its relative position in a
list of all generated outputs that is sorted by likeli-
hood in ascending order) both when likelihood is
assigned using the trained models (rsup) and when
it is assigned using a fully unsupervised PEGASUS

model (runsup). As can be seen, an untrained model
indeed assigns much less likelihood to those ex-
amples, thus downweighting their influence on the

ℓ Model Reddit TIFU NEWSROOM CNN/DailyMail

27
PEGASUS 18.48/ 3.97/14.08 25.59/12.28/21.18 37.54/15.84/25.18
GENPET 22.43/ 5.55/17.27 34.48/22.00/30.60 38.91/16.97/26.65

25
PEGASUS 18.76/ 3.97/14.36 24.71/11.41/20.49 31.81/13.16/22.69
GENPET 22.45/ 5.54/17.32 33.89/21.26/30.02 33.44/14.35/24.17

Table 5: R1/R2/RL scores with maximum output lengths
of 25 = 32 and 27 = 128 given 10 training examples

final model. For example, the last text shown in
Table 6 is more probable than 92% of all generated
texts according to the trained model, compared to
24% for the untrained model. With unsupervised
scoring, the first three examples shown are even
completely removed from the training set for the
final model as their rank is below the chosen thresh-
old of τ = 0.2.

Variance To quantify the significance of per-
formance improvements with GENPET over
our two baselines, PEGASUS and PEGASUS-
M, Table 7 shows the standard deviation of
Rouge1/Rouge2/RougeL scores across the three
different training sets for all tasks considered.
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Text rsup runsup

Margaret Thatcher, [. . . ] was one of the most visible, vocal and controversial leaders in the world. 0.77 0.19
Bruce Forsyth [. . . ] was one of the most visible, vocal and controversial entertainers in the business. 0.51 0.18
[. . . ] Hawaii Five-O, a police drama that was one of the most visible, vocal and controversial of all-time. 0.41 0.11
Mongolia is one of the most visible, vocal and controversial countries in the world. 0.81 0.32
The state pension is one of the most visible, vocal and controversial of all-time. 0.92 0.24

Table 6: Texts generated by PEGASUS trained with individual patterns using GENPET on an XSum training set.
Each of the five texts contains a phrase (highlighted in bold) from one specific training example. The right columns
show the (normalized) rank of each output both with supervised scoring (rsup) and unsupervised scoring (runsup). In
these five examples, unsupervised scoring more effectively identifies the “parroted” phrase as not being a good fit
for its new context.

|T | Model AESLC Gigaword XSum

10
PEGASUS 9.37±2.08 / 3.77±1.07 / 8.97±2.17 25.18±0.77 / 9.24±0.41 / 22.80±0.61 30.41±0.44 / 9.57±0.27 / 23.26±0.29
PEGASUS-M 16.53±1.73 / 7.47±0.95 / 16.15±1.73 27.33±0.51 / 10.60±0.34 / 24.98±0.46 33.96±1.52 / 11.90±1.09 / 26.29±1.53
GENPET 27.19±1.93 / 14.08±1.13 / 26.73±1.99 30.93±0.15 / 13.02±0.17 / 28.49±0.17 35.88±1.42 / 13.22±1.17 / 28.24±1.50

100
PEGASUS 23.22±0.29 / 10.24±0.46 / 22.43±0.28 30.80±0.52 / 12.27±0.50 / 27.92±0.49 40.23±0.10 / 16.68±0.10 / 31.90±0.06
PEGASUS-M 25.87±0.06 / 12.34±0.11 / 24.99±0.13 31.38±0.05 / 12.65±0.19 / 28.33±0.12 40.73±0.06 / 17.10±0.03 / 32.43±0.04
GENPET 29.97±0.39 / 15.32±0.36 / 29.26±0.54 32.75±0.26 / 13.98±0.09 / 29.94±0.16 41.71±0.06 / 17.99±0.02 / 33.46±0.08

|T | Model Reddit TIFU NEWSROOM CNN/DailyMail

10
PEGASUS 18.48±0.85 / 3.97±0.26 / 14.08±0.41 25.59±1.07 / 12.28±1.29 / 21.18±1.11 37.54±0.39 / 15.84±0.27 / 25.18±0.27
PEGASUS-M 19.78±1.44 / 4.50±0.39 / 15.16±0.84 29.91±0.29 / 16.73±0.37 / 25.70±0.26 37.88±0.63 / 16.19±0.34 / 25.82±0.23
GENPET 22.43±0.78 / 5.55±0.30 / 17.27±0.30 34.48±0.74 / 22.00±0.70 / 30.60±0.71 38.91±0.56 / 16.97±0.19 / 26.65±0.14

100
PEGASUS 24.24±0.32 / 6.28±0.01 / 18.72±0.27 33.13±0.47 / 20.24±0.80 / 28.80±0.48 39.64±0.13 / 16.94±0.16 / 26.79±0.18
PEGASUS-M 24.74±0.08 / 6.40±0.05 / 19.10±0.01 34.79±0.55 / 21.60±0.74 / 30.37±0.54 40.08±0.23 / 17.14±0.09 / 27.06±0.07
GENPET 26.06±0.07 / 7.34±0.09 / 20.34±0.12 36.20±0.56 / 23.51±0.69 / 32.02±0.54 40.02±0.22 / 17.77±0.07 / 27.79±0.05

Table 7: Average R1/R2/RL scores and standard deviation (±) for 10 and 100 training examples across three
different (seed-dependent) training sets.


