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Abstract

This paper investigates continual learning for
semantic parsing. In this setting, a neural se-
mantic parser learns tasks sequentially with-
out accessing full training data from previous
tasks. Direct application of the SOTA contin-
ual learning algorithms to this problem fails
to achieve comparable performance with re-
training models with all seen tasks, because
they have not considered the special prop-
erties of structured outputs, yielded by se-
mantic parsers. Therefore, we propose TO-
TAL RECALL, a continual learning method de-
signed for neural semantic parsers from two
aspects: i) a sampling method for memory
replay that diversifies logical form templates
and balances distributions of parse actions in a
memory; ii) a two-stage training method that
significantly improves generalization capabil-
ity of the parsers across tasks. We conduct
extensive experiments to study the research
problems involved in continual semantic pars-
ing, and demonstrate that a neural semantic
parser trained with TOTAL RECALL achieves
superior performance than the one trained di-
rectly with the SOTA continual learning algo-
rithms, and achieve a 3-6 times speedup com-
pared to retraining from scratch. Code and
datasets are available at: https://github.

com/zhuang-li/cl_nsp.

1 Introduction

In the recent market research report published by
MarketsandMarkets (INC., 2020), it is estimated
that the smart speaker market is expected to grow
from USD 7.1 billion in 2020 to USD 15.6 bil-
lion by 2025. Commercial smart speakers, such
as Alexa and Google assistant, often need to trans-
late users’ commands and questions into actions.
Therefore, semantic parsers are widely adopted in
dialogue systems to map natural language (NL) ut-
terances to executable programs or logical forms
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(LFs) (Damonte et al., 2019; Rongali et al., 2020).
Due to the increasing popularity of such speakers,
software developers have implemented a large vol-
ume of skills for them and the number of new skills
grow quickly every year. For example, as of 2020,
the number of Alexa skills exceeds 100,000 and
24 new skills are introduced per day in 2020 (KIN-
SELLA, 2020). Although machine learning-based
semantic parsers achieve the state-of-the-art perfor-
mance, they face the following challenges due to
the fast growing number of tasks.

Given new tasks, one common practice is to re-
train the parser from scratch on the training data
of all seen tasks. However, it is both economically
and computationally expensive to re-train seman-
tic parsers because of a fast-growing number of
new tasks (Lialin et al., 2020). To achieve its op-
timal performance, training a deep model on all
8 tasks of NLMap (Lawrence and Riezler, 2018)
takes approximately 14 times longer than training
the same model on one of those tasks. In practice,
the cost of repeated re-training for a commercial
smart speaker is much higher, e.g. Alexa needs
to cope with the number of tasks which is over
10,000 times more than the one in NLMap1. In
contrast, continual learning provides an alterna-
tive cost-effective training paradigm, which learns
tasks sequentially without accessing full training
data from the previous tasks, such that the compu-
tational resources are utilized only for new tasks.

Privacy leakage has gradually become a major
concern in many Artificial Intelligence (AI) ap-
plications. As most computing environments are
not 100% safe, it is not desirable to always keep a
copy of the training data including identifiable per-
sonal information. Thus, it is almost not feasible
to assume that complete training data of all known
tasks is always available for re-training a semantic

1A rough estimation: re-training of our semantic parser for
100,000 tasks will take more than 138 days (2 mins of training
time per NLMap task×100,000) on a single-GPU machine.

https://github.com/zhuang-li/cl_nsp
https://github.com/zhuang-li/cl_nsp
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parser (Irfan et al., 2021). For the semantic parser
of a privacy-sensitive AI system, e.g. personalized
social robot, continual learning provides a solu-
tion to maintain the knowledge of all learned tasks
when the complete training data of those data is not
available anymore due to security reasons.

A major challenge of continual learning lies in
catastrophic forgetting that the (deep) models eas-
ily forget the knowledge learned in the previous
tasks when they learn new tasks (French, 1991; Mi
et al., 2020). Another challenge is to learn what
kind of knowledge the tasks share in common and
support fast adaptation of models for new tasks.
Methods are developed to mitigate catastrophic for-
getting (Lopez-Paz and Ranzato, 2017; Han et al.,
2020) and facilitate forward knowledge transfer (Li
and Hoiem, 2017). Instead of directly measuring
speedup of training, those methods assume that
there is a small fixed-size memory available for
storing training examples or parameters from the
previous tasks. The memory limits the size of train-
ing data thus proportionally reduces training time.
However, we empirically found that direct applica-
tion of those methods to neural semantic parsers
leads to a significant drop of test performance on
benchmark datasets, in comparison to re-training
them with all available tasks each time.

In this work, we investigated the applicability
of existing continual learning methods to seman-
tic parsing in-depth, and we have found that most
methods have not considered the special proper-
ties of structured outputs, which distinct semantic
parsing from the multi-class classification problem.
Therefore, we propose TOTAL RECALL (TR), a
continual learning method that is especially de-
signed to address the semantic parsing specific
problems from two perspectives. First, we cus-
tomize the sampling algorithm for memory re-
play, which stores a small sample of examples
from each previous task when continually learning
new tasks. The corresponding sampling algorithm,
called Diversified Logical Form Selection (DLFS),
diversifies LF templates and maximizes the entropy
of the parse action distribution in a memory. Sec-
ond, motivated by findings from cognitive neuro-
science (Goyal and Bengio, 2020), we facilitate
knowledge transfer between tasks by proposing
a two-stage training procedure, called Fast Slow
Continual Learning (FSCL). It updates only un-
seen action embeddings in the fast-learning stage
and updates all model parameters in the follow-up

stage. As a result, it significantly improves general-
ization capability of parsing models.

Our key contributions are as follows:

• We conduct the first in-depth empirical study
of the problems encountered by neural seman-
tic parsers to learn a sequence of tasks con-
tinually in various settings. The most related
work (Lialin et al., 2020) only investigated
incremental learning between two semantic
parsing tasks.

• We propose DLFS, a sampling algorithm for
memory replay that is customized for seman-
tic parsing. As a result, it improves the best
sampling methods of memory replay by 2-
11% on Overnight (Wang et al., 2015a).

• We propose a two-stage training algorithm,
coined FSCL, that improves the test perfor-
mance of parsers across tasks by 5-13% in
comparison with using only Adam (Kingma
and Ba, 2014).

• In our extensive experiments, we investigate
applicability of the SOTA continual learning
methods to semantic parsing with three differ-
ent task definitions, and show that TR outper-
forms the competitive baselines by 4-9% and
achieves a speedup by 3-6 times compared to
training from scratch.

2 Related Work

Semantic Parsing The recent surveys (Kamath
and Das, 2018; Zhu et al., 2019; Li et al., 2020)
cover an ample of work in semantic parsing. Most
current work employ a sequence-to-sequence ar-
chitecture (Sutskever et al., 2014) to map an ut-
terance into a structured meaning representations,
such as LFs, SQL, and abstract meaning repre-
sentation (Banarescu et al., 2013). The output se-
quences are either linearized LFs (Dong and La-
pata, 2016, 2018; Cao et al., 2019) or sequences
of parse actions (Chen et al., 2018; Cheng et al.,
2019; Lin et al., 2019; Zhang et al., 2019; Yin and
Neubig, 2018; Chen et al., 2018; Guo et al., 2019;
Wang et al., 2020a; Li et al., 2021). There are
also work (Guo et al., 2019; Wang et al., 2020a;
Li et al., 2021) exploring semantic parsing with
unseen database schemas or actions. Feedback se-
mantic parsing interactively collects data from user
feedbacks as continuous data streams but does not
address the problem of catastrophic forgetting or
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improve forward transfer (Iyer et al., 2017; Yao
et al., 2019; Labutov et al., 2018).

Continual Learning The continual learning
methods can be coarsely categorized into i)
regularization-based methods (Kirkpatrick et al.,
2017; Zenke et al., 2017; Ritter et al., 2018; Li
and Hoiem, 2017; Zhao et al., 2020; Schwarz
et al., 2018) which either applies knowledge dis-
tillation (Hinton et al., 2015) to penalize the loss
updates or regularizes parameters which are cru-
cial to the old tasks; ii) dynamic architecture meth-
ods (Mallya and Lazebnik, 2018; Serra et al., 2018;
Maltoni and Lomonaco, 2019; Houlsby et al., 2019;
Wang et al., 2020b; Pfeiffer et al., 2021; Rusu et al.,
2016) which dynamically alter the structures of
models to reduce the catastrophic forgetting; iii)
memory-based methods (Lopez-Paz and Ranzato,
2017; Wang et al., 2019; Han et al., 2020; Aljundi
et al., 2019; Chrysakis and Moens, 2020; Kim et al.,
2020) which stores historical instances and contin-
ually learn them along with instances in new tasks.
There are also hybrid methods (Mi et al., 2020; Liu
et al., 2020; Rebuffi et al., 2017) which integrate
more than one type of such methods.

In natural language processing (NLP), contin-
ual learning is applied to tasks such as relation
extraction (Wang et al., 2019; Han et al., 2020),
natural language generation (Mi et al., 2020), lan-
guage modelling (Sun et al., 2019) and the pre-
trained language models adapting to multiple NLP
tasks (Wang et al., 2020b; Pfeiffer et al., 2021). To
the best of our knowledge, (Lialin et al., 2020) is
the only work studying catastrophic forgetting for
semantic parsing. However, they consider learning
between only two tasks, have not proposed new
methods, and also have not evaluated recently pro-
posed continual learning methods. In contrast, we
propose two novel continual learning methods cus-
tomized for semantic parsing and compare them
with the strong and recently proposed continual
learning methods that are not applied to semantic
parsing before.

3 Base Parser

A semantic parser learns a mapping πθ : X → Y to
convert an natural language (NL) utterance x ∈ X
into its corresponding logical form (LF) y ∈ Y .
Most SOTA neural semantic parsers formulate this
task as translating a word sequence into an output
sequence, whereby an output sequence is either a
sequence of LF tokens or a sequence of parse ac-

tions that construct an LF. For a fair comparison
between different continual learning algorithms,
we adopt the same base model for them, as com-
monly used in prior works (Lopez-Paz and Ranzato,
2017; Wang et al., 2019; Han et al., 2020).

Similar to (Shin et al., 2019; Iyer et al., 2019),
the base parser converts the utterance x into a se-
quence of actions a = {a1, ..., at}. As an LF can
be equivalently parsed into an abstract syntax tree
(AST), the actions a sequentially construct an AST
deterministically in the depth-first order, wherein
each action at at time step t either i) expands an in-
termediate node according to the production rules
from a grammar, or ii) generates a leaf node. As in
(Shin et al., 2019), the idioms (frequently occurred
AST fragments) are collapsed into single units. The
AST is further mapped back to the target LF.

The parser employs the attention-based
sequence-to-sequence (SEQ2SEQ) architec-
ture (Luong et al., 2015) for estimating action
probabilities.

P (a|x) =
|a|∏
t=1

P (at|a<t,x) (1)

Encoder. The encoder in SEQ2SEQ is a standard
bidirectional Long Short-term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997),
which encodes an utterance x into a sequence of
contextual word representations.

Decoder. The decoder applies an LSTM to gen-
erate action sequences. At time t, the decoder pro-
duces an action representation st, which is yielded
by concatenating the hidden representation ht pro-
duced by the LSTM and the context vector ot pro-
duced by the soft attention (Luong et al., 2015).

We maintain an embedding for each action in
the embedding table. The probability of an action
at is estimated by:

P (at|a<t,x) =
exp(cᵀatst)∑

a′∈At
exp(cᵀa′st)

(2)

where At is the set of applicable actions at time t,
and ca is the embedding of the action at, which is
referred to as action embedding in the following.

4 Continual Semantic Parsing

Problem Formulation. We consider a widely
adopted continual learning setting that a parser πθ
is trained continually on a sequence of K distinct
tasks {T (1), T (2),...,T (K)} (Lopez-Paz and Ran-
zato, 2017; Han et al., 2020). In both training and
testing, we know which task an example belongs
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to. As the definition of tasks is application specific
and parallel data of semantic parsing is often cre-
ated by domain experts, it is easy to identify the
task of an example in practice. We further assume
that there is a fixed-size memoryMk associated
with each task T (k) for e.g. storing a small amount
of replay instances, as adopted in (Rebuffi et al.,
2017; Wang et al., 2019). This setting is practical
for personalized conversational agents because it
is difficult for them to re-collect past information
except reusing the ones in the memories.

4.1 Challenges

We demonstrate catastrophic forgetting in contin-
ual semantic parsing by training the base parser
sequentially with each task from the OVERNIGHT

corpus (Wang et al., 2015a) and report the test ac-
curacy of exactly matched LFs of all seen tasks
combined (More evaluation details are in Sec. 5).

Figure 1: The accuracy on OVERNIGHT after the
parser being trained on each task. The parser uses
GLOVE (Pennington et al., 2014), BERT (Devlin et al.,
2019) with parameters updated (BERT-finetune) and
fixed (BERT-fix) as the input embedding layer.

Fig. 1 shows the performance of continually
training the base parser with BERT (Devlin et al.,
2019) (with and without fine-tuning BERT param-
eters) and GlOVE respectively by using the stan-
dard cross entropy loss. The accuracy on the com-
bined test set drops dramatically after learning the
second task. The training on the initial task ap-
pears to be crucial on mitigating catastrophic for-
getting. The BERT-based parser with/without fine-
tuning obtains no improvement over the one using
GLOVE. The forgetting with BERT is even more
serious compared with using GLOVE. The same
phenomenon is also observed in (Arora et al., 2019)
that the models with pre-trained language models
obtain inferior performance than LSTM or CNN,
when fine-tuning incrementally on each task. They

conjecture that it is more difficult for models with
large capacity to mitigate catastrophic forgetting.

Figure 2: The average conditional probabilities
P (at|a<t,x) of the representative cross-task (solid)
and task-specific (dash) actions till the seen tasks on
OVERNIGHT after learning on each task sequentially.
The boxes at ith task indicate the actions from the ini-
tial task also exist in the ith task.

We further investigate which parse actions are
easy to forget. To measure the degree of forget-
ness of an action, after training the parser in the
first task, we average the probabilitiesP (at|a<t,x)
produced by the parser on the training set of the
first task. We recompute the same quantity after
learning each task sequentially and plot the mea-
sures. Fig. 2 depicts the top two and the bottom
two actions are easiest to forget on average. Both
top two actions appear only in the first task, thus
it is difficult for the parser to remember them after
learning new tasks. In contrast, cross-task actions,
such as GEN ( string < ), may even obtain improved
performance after learning on the last task. Thus, it
indicates the importance of differentiating between
task-specific actions and cross-task actions when
designing novel continual learning algorithms.

4.2 TOTAL RECALL

To save training time for each new task, we cannot
use all training data from previous tasks, thus we
introduce a designated sampling method in the se-
quel to fill memories with the examples most likely
mitigating catastrophic forgetting. We also present
the two-stage training algorithm FSCL to facilitate
knowledge transfer between tasks.

Sampling Method. DLFS improves Episodic
Memory Replay (EMR) (Wang et al., 2019;
Chaudhry et al., 2019) by proposing a desig-
nated sampling method for continual semantic pars-
ing. EMR utilizes a memory module Mk =

{(x(k)
1 ,y

(k)
1 ), ..., (x

(k)
M ,y

(k)
M )} to store a few exam-



3820

ples sampled from the training set of task T (k),
where (x

(k)
m ,y

(k)
m ) ∈ D(k)

train and M is the size of
the memory. The training loss of EMR takes the
following form:

LEMR = LD(k)
train

+

k−1∑
i=1

LMi (3)

where LD(k)
train

and LMi denotes the loss on the

training data of current task T (k) and the mem-
ory data from task {T }(k−1)i=1 , respectively. The
training methods for memory replay often adopt a
subroutine called replay training to train models
on instances in the memory. Furthermore, prior
works (Aljundi et al., 2019; Wang et al., 2019; Han
et al., 2020; Mi et al., 2020; Chrysakis and Moens,
2020; Kim et al., 2020) discovered that storing a
small amount of diversified and long-tailed exam-
ples is helpful in tackling catastrophic forgetting
for memory-based methods. Semantic parsing is
a structured prediction problem. We observe that
semantic parsing datasets are highly imbalanced
w.r.t. LF structures. Some instances with similar
LF structures occupy a large fraction of the training
set. Therefore, we presume storing the diversified
instances in terms of the corresponding LF struc-
tures would alleviate the problem of catastrophic
forgetting in continual semantic parsing.

To sample instances with the diversified LF
structures, our method DLFS partitions the LFs
in Dtrain into M clusters, followed by selecting
representative instances from each cluster to max-
imize entropy of actions in a memory. To char-
acterize differences in structures, we first com-
pute similarities between LFs by sim(yi,yj) =
(Smatch(yi,yj) + Smatch(yj ,yi))/2, where
Smatch (Cai and Knight, 2013) is a asymmetrical
similarity score between two LFs yielded by cal-
culating the overlapping percentage of their triples.
Then we run a flat clustering algorithm using the
distance function 1− sim(yi,yj) and the number
of clusters is the same as the size of a memory.
We choose K-medoids (Park and Jun, 2009) in this
work for easy interpretation of clustering results.

We formulate the problem of balancing action
distribution and diversifying LF structures as the
following constrained optimization problem. In
particular, it i) aims to balance the actions of stored
instances in the memory module M by increas-
ing the entropy of the action distribution, and ii)
requires that each instance m inM belongs to a
different cluster cj . Let the function c(m) return

the cluster id of an instance in a memoryM and
mi denote its ith entry, we have

max
M
−

∑
ai∈A

pM(ai) log pM(ai)

s.t.∀mi,mj ∈M, c(mi) 6= c(mj) (4)
where pM(ai) = ni∑

aj∈A
nj

, with ni being the fre-

quency of action ai inM and A being the action
set included in the training set Dtrain. In some
occasions, the action set A is extremely large (e.g.
1000+ actions per task), so it may be infeasible
to include all actions in the limited memory M.
We thus sample a subset of h actions, A′ ⊆ A,
given the distribution of PD(A) in Dtrain where
pD(ai) = ni∑

aj∈A
nj

, with ni being the frequency

of ai in Dtrain. In that case, our method addresses
the optimization problem over the actions in A′.
We solve the above problem by using an iterative
updating algorithm, whose details can be found
in Appendix B. The closest works (Chrysakis and
Moens, 2020; Kim et al., 2020) maintain only the
balanced label distribution in the memory while our
work maintains the balanced memory w.r.t. both
the LF and action distributions.

Fast-Slow Continual Learning. Continual
learning methods are expected to learn what the
tasks have in common and in what the tasks differ.
If there are some shared structures between tasks,
it is possible to transfer knowledge from one task
to another. Inspired by findings from cognitive
neuroscience, the learning should be divided into
slow learning of stationary aspects between tasks
and fast learning of task-specific aspects (Goyal
and Bengio, 2020). This is an inductive bias that
can be leveraged to obtain cross-task generalization
in the space of all functions.

We implement this inductive bias by introduc-
ing a two-stages training algorithm. In the base
model, action embeddings ca (Eq. (7)) are task-
specific, while the remaining parts of the model,
which builds representations of utterances and ac-
tion histories, are shared to capture common knowl-
edge between tasks. Thus, in the fast-learning
stage, we update only the embeddings of unseen
actions c(i)a with the cross-entropy loss, in the slow-
learning stage, we update all model parameters.
Fast-learning helps parsers generalize to new tasks
by giving the unseen actions good initialized em-
beddings and reduces the risk of forgetting prior
knowledge by focusing on minimal changes of
model parameters for task-specific patterns.
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Algorithm 1: Fast-Slow Training for the
k-th task

Input :Training set D(k)
train of k-th task T (k),

memory dataM = {M1, ...,Mk−1}, the
known action set A(1:k−1) before learning
T (k)

Extract action set A(k) from D(k)
train

Obtain unseen actions A(k)
u by excluding A(1:k−1)

from A(k)

# fast-learning on unseen action embeddings
for i← 1 to epoch1 do

Update c
(k)
a with∇

c
(k)
a
L(θg, θ(k)s ) on D(k)

train

end
# slow-learning stage
for i← 1 to epoch2 do

# fine-tune all cross-task parameters and
task-specific parameters of the current task

Update (θg, θ
(k)
s ) with∇

(θg,θ
(k)
s )
L(θg, θ(k)s ) on

D(k)
train

# replay training with task-specific parameters of
the previous tasks frozen

forMi ∈M do
Update θg with∇θgL(θg, θ

(i)
s ) onM(i)

end
end

In the fast-learning stage, the unseen actions
A

(k)
u of the k-th task are obtained by excluding

all historical actions from the action set of current
task T (k), namely A(k)

u = A(k) \ A(1:k−1), where
A(k) denotes the action set of the k-th task. All
actions are unseen in the first task, thus we update
all action embeddings by having A(0)

u = A(0). In
the slow-learning stage, we differ updating param-
eters w.r.t. current task from updating parameters
w.r.t. memories of previous tasks. For the former,
the parameters θg shared across tasks are trained
w.r.t all the data while the task-specific parameters
θ
(i)
s are trained only w.r.t. the data from task T (i).

For the latter, the task-specific parameters learned
from the previous tasks are frozen to ensure they
do not forget what is learned from previous tasks.
More details can be found in Algo. 1. This train-
ing algorithm is closely related to Invariant Risk
Minimization (Arjovsky et al., 2019), which learns
invariant structures across different training envi-
ronments. However, in their work, they assume the
same label space across environments and have ac-
cess to all training environments at the same time.

Loss During training, we augment the EMR loss
with the Elastic Weight Consolidation (EWC) regu-
larizer (Kirkpatrick et al., 2017) to obtain the train-
ing loss LCL = LEMR + ΩEWC , where ΩEWC =
λ
∑N

j=1 Fj(θk,j − θk−1,j)2 , N is the number of

model parameters, θk−1,j is the model parameters
learned until T (k−1) and Fj = ∇2L(θk−1,j) w.r.t.
the instances stored inM. EWC slows down the
updates of parameters which are crucial to previous
tasks according to the importance measure Fj .

5 Experiments

Datasets and Task Definitions. In this work, we
consider three different scenarios: i) different tasks
are in different domains and there are task-specific
predicates and entities in LFs; ii) there are task-
specific predicates in LF templates; iii) there are
a significant number of task-specific entities in
LFs. All tasks in the latter two are in the same
domain. We select Overnight (Wang et al., 2015b)
and NLMapV2 (Lawrence and Riezler, 2018) to
simulate the proposed three continual learning sce-
narios, coined OVERNIGHT, NLMAP(QT) and
NLMAP(CITY), respectively.

Overnight includes around 18,000 queries in-
volving eight domains. The data in each domain
includes 80% training instances and 20% test in-
stances. Each domain is defined as a task.

NLMapV2 includes 28,609 queries involving 79
cities and categorizes each query into one of 4 dif-
ferent question types and their sub-types. In the
NLMAP(QT) setting, we split NLMapV2 into 4
tasks with queries in different types. In the setting
of NLMAP(CITY), NLMapV2 is split into 8 tasks
with queries of 10 or 9 distinct cities in each task.
Each city includes a unique set of point of interest
regions. In both NLMAP(CITY) and NLMAP(QT),
each task is divided into 70%/10%/20% of train-
ing/validation/test sets, respectively.

We attribute different distribution discrepancies
between tasks to different definitions of tasks.
Overall, distribution discrepancy between tasks on
OVERNIGHT is the largest while the tasks in other
two settings share relatively smaller distribution
discrepancies because tasks of NLMAP(QT) and
NLMAP(CITY) are all in the same domain.

Baselines. Our proposed method is compared
with 8 continual learning baselines. FINE-TUNE
fine-tunes the model on the new tasks based on pre-
vious models. EWC (Kirkpatrick et al., 2017) adds
an L2 regularization to slow down the update of
model parameters important to the historical tasks.
HAT (Serra et al., 2018) activates a different por-
tion of parameters for each task with task-specific
mask functions. GEM (Lopez-Paz and Ranzato,
2017) stores a small number of instances from pre-
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vious tasks and uses the gradients of previous in-
stances as the constraints on directions of gradients
w.r.t. current instances. EMR (Chaudhry et al.,
2019; Wang et al., 2019) trains the model on the
data from the current task along with mini-batches
of memory instances. EMAR (Han et al., 2020)
is an extension of EMR using memory instances
to construct prototypes of relation labels to pro-
hibit the model from overfitting on the memory
instances. ARPER (Mi et al., 2020) adds an adap-
tive EWC regularization on the EMR loss, where
the memory instances are sampled with a unique
sampling method called PRIOR. ProtoParser (Li
et al., 2021) utilizes prototypical networks (Snell
et al., 2017) to improve the generalization abil-
ity of semantic parsers on the unseen actions in
the new task. We customize it by training the
PROTOPARSER on the instances on current task
as well as the memory instances. The ORACLE
(All Tasks) setting trains the model on the data of
all tasks combined, considered as an upper bound
of continual learning.

Evaluation. To evaluate the performance of con-
tinual semantic parsing, we report accuracy of
exactly matched LFs as in (Dong and Lapata,
2018). We further adopt two common evaluation
settings in continual learning. One setting mea-
sures the performance by averaging the accura-
cies of the parser on test sets of all seen tasks
{D(1)

test,...,D
(k)
test} after training the model on task

T (k), i.e. ACCavg = 1
k

∑k
i=1 acci,k (Lopez-Paz

and Ranzato, 2017; Wang et al., 2019). The other
one evaluates the test sets of all seen tasks com-
bined after finishing model training on task T (k),
ACCwhole = accD(1:k)

test
(Wang et al., 2019; Han

et al., 2020). For reproducibility, we include the
detailed implementation details in Appendix A.

5.1 Results and Discussion

As shown in Table 1, the base parser trained with
our best setting, TR (+EWC), significantly outper-
forms all the other baselines (p<0.005) in terms
of both ACCavg and ACCwhole. The performance
of TR (+EWC) is, on average, only 3% lower
than the ORACLE setting. Without EWC, TR still
performs significantly better than all baselines ex-
cept it is marginally better than ARPER and PRO-
TOPARSER in the setting of NLMAP(QT). From
Fig. 4 we can see that our approaches are more
stable than the other methods, and demonstrates
less and slower forgetting than the baselines.

Methods
OVERNIGHT NLMAP(QT) NLMAP(CITY)
W A W A W A

Fine-tune 14.40 14.37 60.22 55.53 49.29 48.11
EWC 38.57 40.45 65.44 62.25 59.28 57.56
HAT 15.45 15.71 64.69 60.88 53.30 52.41
GEM 41.33 42.13 63.28 59.38 55.14 54.37
EMR 45.29 46.01 59.75 55.59 58.36 56.95

EMAR 46.68 48.57 14.25 12.89 51.79 50.93
ARPER 48.28 49.90 67.79 64.73 62.62 60.61

PROTOPARSER 48.15 49.71 67.10 63.73 62.58 60.87
TR 54.40 54.73 70.06 67.77 62.96 61.59

TR (+EWC) 59.02 58.04 72.36 70.66 67.15 64.89
ORACLE (All Tasks) 63.14 62.76 73.20 71.65 69.48 67.18

Table 1: LF Exact Match Accuracy (%) on two datasets
with three settings after model learning on all tasks.
“W” stands for the Whole performance ACCwhole, and
“A” stands for the Average performance ACCavg. All
the results are statistically significant (p<0.005) com-
pared with TR (+EWC) according to the Wilcoxon
signed-rank test (Woolson, 2007). All experiments are
run 10 times with different sequence orders and seeds.

The dynamic architecture method, HAT, per-
forms worst on OVERNIGHT while achieves
much better performance on NLMAP(QT) and
NLMAP(CITY). Though the performance of the
regularization method, EWC, is steady across dif-
ferent settings, it ranks higher among other base-
lines on NLMAP(CITY) and NLMAP(QT) than on
OVERNIGHT. In contrast, the memory-based meth-
ods, GEM, and EMR, rank better on OVERNIGHT

than on NLMAP(QT) and NLMAP(CITY).
We conjecture that the overall performance of

continual learning approaches varies significantly
in different settings due to different distribution dis-
crepancies as introduced in Datasets. The general
memory-based methods are better at handling catas-
trophic forgetting than the regularization-based and
dynamic architecture methods, when the distri-
bution discrepancies are large. However, those
memory-based methods are less effective when the
distribution discrepancies across tasks are small.
Another weakness of memory-based methods is
demonstrated by EMAR, which achieves only
14.25% of ACCwhole on NLMAP(QT), despite it
is the SOTA method on continual relation extrac-
tion. A close inspection shows that the instances in
the memory are usually insufficient to include all
actions when the number of actions is extremely
large (i.e., more than 1000 actions per task in
NLMAP(QT)) while EMAR relies on instances
in memory to construct prototypes for each label.
Furthermore, large training epochs for memory-
based methods usually lead to severe catastrophic
forgetting on the previous tasks, while the regular-
ization method could largely alleviate this effect.

ARPER and PROTOPARSER are the two best
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baselines. Similar to TR, ARPER is a hybrid
method combining EMR and EWC, thus the joint
benefits lead to consistent superior performance
over the other baselines except PROTOPARSER in
all three settings. The generalization capability
to unseen actions in new tasks also seems critical
in continual semantic parsing. Merely combining
PROTOPARSER and EMR yields a new baseline,
which performs surprisingly better than most ex-
isting continual learning baselines. From that per-
spective, the parser with FSCL performs well in
continual learning also because of its strength in
generalizing to unseen actions.

Methods
OVERNIGHT NLMAP(CITY)

10 25 50 10 25 50

RANDOM 37.63 45.18 50.63 58.82 59.96 60.64
FSS 38.64 47.08 52.63 58.94 59.67 60.89
GSS 34.01 39.45 43.87 57.97 59.40 60.36

PRIOR 37.60 44.84 50.14 54.39 54.09 53.43
BALANCE 38.21 45.33 48.64 58.39 59.89 61.19

LFS 38.24 44.66 53.06 58.88 59.81 60.76
DLFS 39.24 48.21 54.73 59.31 60.58 61.59

Table 2: ACCavg (%) of TR with different sampling
strategies and memory sizes 10, 25 and 50.

Influence of Sampling Strategies. Table 2 re-
ports the evaluation results of TR with different
sampling strategies and sizes on OVERNIGHT and
NLMAP(CITY). The results on NLMAP(QT) can
be found in Appendix C. RANDOM randomly
samples instances from the train set of each task.
FSS (Aljundi et al., 2019; Wang et al., 2019; Mi
et al., 2020), GSS (Aljundi et al., 2019) and LFS
partition the instances into clusters w.r.t. the spaces
of utterance encoding features, instance gradients,
and LFs, respectively, and then select the instances
which are closest to the centroids. PRIOR (Mi
et al., 2020) selects instances that are most confi-
dent to the models and diversifies the entities in the
utterances of memory. BALANCE (Chrysakis and
Moens, 2020; Kim et al., 2020) balances the action
distribution in a memory.

Overall, our sampling method consistently out-
performs all other baselines on both OVERNIGHT

and NLMAP(CITY). On OVERNIGHT with mem-
ory size 50, the gap between DLFS and GSS is
even up to 11% and 2% between DLFS and FSS,
the best baseline. However, on NLMAP(CITY), the
performance differences across various sampling
methods are smaller than those on OVERNIGHT.
Similar observation applies to the influence of dif-
ferent sample sizes. We conclude that the smaller
distribution discrepancy reduces the differences of

sampling methods as well as the sample sizes in
the memory-based methods.

RANDOM performs steadily across different set-
tings though it is usually in mediocre performance.
FSS, GSS, and PRIOR are model-dependent sam-
pling methods. The gradients and model confi-
dence scores are not stable features for the sample
selection algorithms. We inspect that the instances
selected with GSS are significantly different even
when model parameters are slightly disturbed. For
the PRIOR, the semantic parsing model is usually
confident to instances with similar LF templates.
Diversifying entities do not necessarily lead to di-
versities of LF templates since the LFs with dif-
ferent entities may share similar templates. There-
fore, GSS and PRIOR can only perform well in
one setting. In contrast, the utterance encoding
features are much more reliable. FSS can achieve
the second-best performance among all methods.
Either balancing action distribution (BALANCE)
or selecting centroid LFs from LF clusters (LFS)
alone performs no better than DLFS, proving it is
advantageous to select a instance in a cluster which
balances the memory action distribution over di-
rectly using the centroid.

Methods
OVERNIGHT NLMAP(QT) NLMAP(CITY)
W A W A W A

TR (+EWC) 59.02 58.04 72.36 70.66 67.15 64.89
- fast 56.22 54.77 69.12 65.97 64.88 62.42

-/+ fast/lwf 55.80 54.54 69.45 66.37 65.14 62.70
-/+ fast/emar 56.93 56.05 69.43 66.42 64.89 62.51

TR 54.40 54.73 70.06 67.77 62.96 61.59
- fast 49.28 49.48 60.22 54.84 57.53 55.75

-/+ fast/lwf 47.47 47.77 58.96 53.54 55.24 56.89
-/+ fast/emar 49.63 48.74 64.98 61.09 56.89 55.24

Table 3: The ablation study results of FSCL.

Ablation Study of FSCL Training. Table 3
shows the ablation study of FSCL training by re-
moving (-) or replacing (-/+) the corresponding
component/step.

The fast-learning with action embeddings is the
most critical step in FSCL training. Removing it
causes up to 13% performance drop. To study this
step in depth, we also replace our fast-learning
with fine-tuning all task-specific parameters except
in the first task, as done in LwF (Li and Hoiem,
2017), or fine tuning all parameters, as done in
EMAR (Han et al., 2020), in the fast-learning stage.
The corresponding performance is no better than
removing it in most cases. We also plot the training
errors and test errors with or without this step in
Fig. 3. This step clearly leads to dramatically im-
provement of both generalization and optimization.
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Figure 3: The training and test errors of the base parser
with/without fast-learning on OVERNIGHT.

Figure 4: ACCwhole till the seen tasks on OVERNIGHT
after learning on each task sequentially.

Another benefit of this fast-learning step is in the
first task. We observe that a good optimization on
the first task is crucial to the model learning on the
following tasks. Our preliminary study shows that
by applying the fast-learning only to the first task,
the model can still keep the close-to-optimal perfor-
mance. As shown in Fig. 4, our method with this
fast-learning step is better optimized and general-
ized on the initial tasks than all the other baselines
and largely alleviate the forgetting problem caused
by learning on the second task.
Influence of Pre-trained Language Models.
We study the impact of pre-trained language mod-
els for semantic parsing in supervised learning and
continual learning, respectively. In both settings,
we evaluate the base parsers using BERT (Devlin
et al., 2019) as its embedding layer in two con-
figurations: fine-tuning the parameters of BERT
(BERT-finetune) and freezing BERT’s parameters
(BERT-fix). As in Tab. 4, BERT slightly im-
proves the overall performance of the base parsers
in supervised training (the ORACLE setting) on
OVERNIGHT. In contrast, in the continual learning
setting, base parsers with the BERT embedding
perform worse than the ones with the GLOVE em-

bedding. On NLMAP(QT), the accuracy of FINE-
TUNE with GLOVE embedding is 30% and 20%
higher than that with BERT’s embedding updated
and fixed, respectively. We conjecture the deeper
neural models suffer more from the catastrophic
forgetting. However, the average training speeds
of parsers with BERT-fix and BERT-finetune are
5-10 times and 20-40 times respectively slower
than those with GLOVE on each task. Overall, our
method outperforms other SOTA continual learn-
ing methods except that EWC with BERT-fix per-
forms comparably with ours on NLMAP(CITY). In
contrast, the performance of PROTOPARSER, the
best baseline with GLOVE, is highly unstable on
NLMap with BERT.

Methods
OVERNIGHT NLMAP(QT) NLMAP(CITY)
W A W A W A

BERT-finetune

Fine-tune 16.19 14.89 30.33 29.22 39.47 36.07
EWC 13.97 13.39 45.97 44.19 35.74 34.17
EMR 51.74 51.40 37.39 34.61 54.89 52.61

PROTOPARSER 47.74 46.99 15.10 13.03 34.56 32.27
TR 52.58 52.86 64.07 61.35 58.38 56.35

ORACLE (All Tasks) 65.40 64.39 72.70 71.60 67.51 68.80

BERT-fix

Fine-tune 14.10 12.09 40.45 36.06 49.15 46.48
EWC 17.69 18.56 54.20 51.32 64.10 61.67
EMR 39.10 39.03 42.46 39.50 57.55 55.42

PROTOPARSER 41.69 41.79 51.39 48.90 45.66 43.92
TR 47.14 48.12 59.41 55.84 64.48 62.66

ORACLE (All Tasks) 64.70 63.90 73.20 71.91 69.80 67.57

Table 4: ACCwhole and ACCavg (%) of parsers using
BERT by fine-tuning (Up) and fixing (Bottom) BERT’s
parameters.

6 Conclusion

We conducted the first in-depth empirical study to
investigate continual learning for semantic parsing.
To cope with the catastrophic forgetting and facili-
tate knowledge transfer between tasks, we propose
TOTAL RECALL, consisting of a sampling method
specifically designed for semantic parsing and a
two-stage training method implementing an induc-
tive bias for continual learning. The resulted parser
achieves superior performance over the existing
baselines on three benchmark settings. The abla-
tion studies also demonstrate why it is effective.
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A Reproducibility Checklist

The hyper-parameters are cross-validated on the
training set of OVERNIGHT and validated on the
validation set of NLMAP(QT) and NLMAP(CITY).
We train the semantic parser on each task with
learning rate 0.0025, batch size 64 and for 10
epochs. The fast-learning training epochs is 5. We
use the 200-dimensional GLOVE embeddings (Pen-
nington et al., 2014) to initialize the word embed-
dings for utterances. As different task orders in-
fluence the performance of the continual seman-
tic parsing, all experiments are run on 10 differ-
ent task orders with a different seed for each run.
We report the average ACCavg and ACCwhole of
10 runs. In addition, we use one GPU of Nvidia
V100 to run all our experiments. The sizes of hid-
den states for LSTM and the action embeddings
are 256 and 128, respectively. The default opti-
mizer is Adam (Kingma and Ba, 2014). For our
DLFS method, we sample the subsets of the ac-
tion sets with size 300 and 500 on NLMAP(CITY)
and NLMAP(QT), respectively. The number of
our model parameters is around 1.8 million. We
grid-search the training epochs from {10,50}, the
learning rate from {0.001,0.0025}. The coefficient
for EWC is selected from {50000, 200000}. Here
we also provide the experiment results on the vali-
dation sets as in Table 5.

Methods
OVERNIGHT NLMAP(QT) NLMAP(CITY)
W A W A W A

TR 52.38 53.30 68.78 66.83 68.51 66.23
TR (+EWC) 56.84 54.85 70.74 69.21 74.84 71.19

Table 5: Results on the validation sets.

B DLFS Algorithm

We provide the detailed DLFS as in Algo. 2.

C Results of Different Sampling Methods

Table 6 shows the performance of TR with different
sampling strategies and different memory sizes on
NLMAP(QT).

D Dynamic Action Representation

To differentiate the learning of cross-task and task-
specific aspects, we innovatively integrate a des-
ignated dynamic architecture into the base parser
along with DLFS and FSCL for continual semantic
parsing, coined Dynamic Action Representation

Algorithm 2: DLFS
Input :Training set D, memory size M
Output :The memoryM
Partition D into M clusters, denoted as C, with the

similarity/distance metric
Randomly sample the memoryM of size M from D
Hold ← − inf
Compute the entropy Hnew of the action distribution
PM(A) inM as in Eq. 4

while Hnew > Hold do
for i-th cluster ci ∈ C do

Compute the entropy Hc of PM(A)
for instance n ∈ ci do

ReplicateM withM′
Replace the i-th instance mi inM′

with n
Compute the entropy H ′c ofM′
if H ′c > Hc then
M←M′
Ec ← H ′c

end
end
Hold ← Hnew
Compute the entropy Hnew of PM(A)

end
end

(DAR). This method could also significantly mit-
igate the catastrophic forgetting and improve the
forward transfer in the continual semantic parsing.
Due to the limited space, we did not put it into the
main paper. The details and analysis of this method
are listed below.

Decoder of Base Parser. The decoder of the
base parser applies an LSTM to generate action
sequences. At time t, the LSTM produces a hid-
den state ht = LSTM(cat−1 ,ht−1), where cat−1

is the embedding of the previous action at−1. We
maintain an embedding for each action in the em-
bedding table. As defined in Luong et al. (2015),
we concatenate ht with a context vector ot to yield
st,

st = tanh(Wc[ht;ot]) (5)
where Wc is a weight matrix and the context vec-
tor ct is generated by the soft attention (Luong
et al., 2015),

ot =
n∑
i=1

softmax(hᵀ
tE)ei (6)

The probability of an action at is estimated by:
P (at|a<t,x) =

exp(cᵀatst)∑
a′∈At

exp(cᵀa′st)
(7)

where At is the set of applicable actions at time t.
In the following, the dense vectors ca are referred
to as action embeddings.

Decoder of DAR. The key idea of dynamic ar-
chitectures is to add new parameters for new
tasks and retain the previous parameters for old
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Methods
NLMAP(QT)

10 25 50

RANDOM 65.63 66.20 67.21
FSS 66.51 67.15 67.67
GSS 65.89 66.60 67.07

PRIOR 66.08 67.47 67.42
BALANCE 65.37 66.21 66.99

LFS 66.08 67.20 67.53
DLFS 65.21 66.60 67.77

Table 6: ACCwhole (%) of TR with different sam-
pling strategies and memory sizes 10, 25 and 50 on
NLMAP(QT).

tasks (Houlsby et al., 2019; Wang et al., 2020b;
Pfeiffer et al., 2021). As a result, those methods
can adapt to new tasks by using new parameters and
still memorize the knowledge of previous tasks by
keeping existing parameters. In semantic parsing,
we differentiate task-specific actions A(k)

s , which
generate task-specific predicates or entities, from
cross-task actions, which are the remaining actions
Ag associated with predicates appearing in more
than one tasks. We model different actions using
different action embeddings (Eq. (7)). But the key
challenge lies in switching between task-specific
and cross-task hidden representations.

To address the problem, given an output hidden
state of LSTM, ht = LSTM(cat−1 ,ht−1), we ap-
ply a task-specific adapter modules to transform
the hidden state ht ∈ Rd.

ĥt = gi(ht)φi(ht) + (1− gi(ht))ht (8)
where φi(·) : Rd → Rd is an adapter network
and gi(·) : Rd → Rd is a gating function for task
T (i). Here, we adopt the following modules for the
adaptor network and the gating function,

φi(ht) = tanh(Wi
φht) (9)

gi(ht) = sigmoid(Wi
g[φi(ht);ht]) (10)

where parameters Wi
φ ∈ Rd×d and Wi

g ∈ R2d×d

are task-specific. The number of parameters in-
troduced per task is merely O(3d2), which is
parameter-efficient. Therefore, the context vector
of attention and the state to infer action probability

in Eq. 5 and 6 become:

ôt =
n∑
i=1

softmax(ĥᵀ
tE)ei (11)

ŝt = tanh(Wc[ĥt; ôt]) (12)

Methods
OVERNIGHT NLMAP(QT) NLMAP(CITY)
W A W A W A

TR (+EWC) 59.02 58.04 72.36 70.66 67.15 64.89
- cross 57.90 56.65 71.52 69.74 66.06 63.92

- specific 55.32 54.64 71.47 69.81 65.87 63.73
TR 54.40 54.73 70.06 67.77 62.96 61.59
- cross 52.77 53.07 68.87 66.49 62.18 60.91

- specific 51.44 52.84 69.18 66.88 61.26 59.93

Table 7: The ablation study results of DAR.

Ablation Study of DAR As shown in Tab. 7, re-
moving the task-specific representations (-specific)
generally degrades the model performance by
1.5-3.5% except on NLMAP(QT). Our further
inspection shows that the proportion of task-
specific actions in NLMAP(QT) is only 1/20 while
the ratios are 1/4 and 2/5 in OVERNIGHT and
NLMAP(CITY), respectively. Using either task-
specific representations (-specific) or cross-task
representations (-cross) alone cannot achieve the
optimal performance.

E Accuracy Curve

Methods OVERNIGHT NLMAP(QT) NLMAP(CITY)

Fine-tune 54.19 360.09 110.12
EWC 71.66 541.20 223.02
HAT 53.85 212.63 128.67
GEM 94.67 389.04 259.80
EMR 102.97 399.05 214.95

EMAR 139.44 402.64 240.64
ARPER 160.05 901.33 654.51

PROTOPARSER 148.04 490.95 304.45
TR 117.63 549.22 275.09

TR (+EWC) 124.49 540.68 282.87
ORACLE (All Tasks) 712.43 1876.60 1531.05

Table 8: The average training time (seconds) of each
continual learning method on one task. The training
time of the ORACLE setting is reported with training
on all tasks. All the methods are running on a server
with one Nvidia V100 and four cores of Intel i5 5400.

Figs. 5 depicts the performance curve of seman-
tic parsers till the seen tasks on NLMAP(CITY) and
NLMAP(QT) after learning on each task sequen-
tially.

The base parsers are the same for all training
methods in comparison. However, the training
methods are not exactly the same. For exam-
ple, PROTOPARSER and EMAR use meta-learning
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Figure 5: ACCwhole till the seen tasks on
NLMAP(CITY) (Up) and NLMAP(QT) (Bottom)
after learning on each task sequentially.

methods to train the parser. HAT manipulates pa-
rameter gradients during training and uses adapter
layers to modify the weights of model parameters
on different tasks. ARPER and EWC use regular-
ization during continual training. Different training
methods cause the baselines to obtain different re-
sults on the initial and subsequent tasks.

In the first task, Fast-Slow Continual Learning
(FSCL) differs from the traditional supervised train-
ing by updating all action embeddings first, fol-
lowed by updating all model parameters. From Fig.
4 and Fig. 5, we can tell FSCL leads to a significant
performance gain over the baselines in the first task.
In this way, our parser trained with FSCL lays a bet-
ter foundation than the baselines for learning future
tasks in terms of both the forward and backward
transfer. For the new tasks, the fast-learning step
of FSCL leads to minimal changes of model pa-
rameters for task-specific patterns. In contrast, the
baselines modify the majority of model parameters
for each new task, hence easily lead to catastrophic
forgetting. As a result, our model with FSCL could

Figure 6: The training and test error points of se-
mantic parsing models with/without fast-learning on
NLMAP(CITY) (Up) and NLMAP(QT) (Bottom).

achieve better performance than all baselines on
both all tasks and only the initial task as in Fig. 4
and Fig. 5.

F Training Time Analysis

The average training times of different continual
learning models on each task of OVERNIGHT,
NLMAP(CITY), and NLMAP(QT) are depicted
in Tab. 8. On average, the training time of Fine-
tune is 13, 5, and 14 times faster than training the
parser from scratch on the tasks of OVERNIGHT,
NLMAP(CITY), and NLMAP(QT), respectively. In
general, the training times of memory-based meth-
ods are longer than regularization and dynamic
architecture methods due to the replay training.
Since our method, TOTAL RECALL, is a memory-
based method, its training time is comparable to the
other memory-based methods such as GEM, EMR
and EMAR. In addition, EWC slowers the conver-
gence speed of the parser on NLMAP(CITY), and
NLMAP(QT), thus increases the training time of
parsers on each task to achieve their optimal per-
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Figure 7: The conditional probabilities P (at|a<t,x)
of the representative cross-task actions (Up) and task-
specific actions (Bottom) from evaluation on the ini-
tial task after parser being trained on each task on
OVERNIGHT sequentially.

formance. Therefore, the hybrid method, ARPER,
that utilizes both EMR and EWC takes the longest
training time among all continual learning meth-
ods. However, our FSCL could speed up the con-
vergence of the base parser even with EWC; thus,
the training time of TOTAL RECALL (+EWC) is
much less than the one of ARPER.

G Training and Test Error Plots

Fig. 6 provides the training and test error
points of semantic parsers on NLMAP(CITY) and
NLMAP(QT), respectively. As we can see, same
as on OVERNIGHT, the base parser with this fast-
learning step is better optimized than without this
step on NLMAP(CITY) and NLMAP(QT).

H Forgetting Analysis on Actions

Following 4.1, Fig. 7 depicts the conditional
probabilities, P (at|a<t,x), of cross-task and task-
specific actions, respectively, predicted by the base
parser fine-tuned sequentially on each task. Overall,
task-specific actions are more likely to be forgotten
than cross-task actions while learning parsers on
the new tasks. Due to the rehearsal training of the
cross-task actions in the future tasks, the prediction
performance over cross-task actions fluctuates on
different tasks.


