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Abstract
While solving math word problems automati-
cally has received considerable attention in the
NLP community, few works have addressed
probability word problems specifically. In this
paper, we employ and analyse various neural
models for answering such word problems. In
a two-step approach, the problem text is first
mapped to a formal representation in a declar-
ative language using a sequence-to-sequence
model, and then the resulting representation
is executed using a probabilistic programming
system to provide the answer. Our best per-
forming model incorporates general-domain
contextualised word representations that were
finetuned using transfer learning on another
in-domain dataset. We also apply end-to-end
models to this task, which bring out the im-
portance of the two-step approach in obtaining
correct solutions to probability problems.

1 Introduction

Solving math word problems automatically is an
active area of research in natural language process-
ing. It poses interesting challenges in extracting
relevant entities and quantities from a concise tex-
tual narrative, and reasoning about the relation-
ships between them to answer the question posed
in the text. While several approaches for different
areas of mathematics have been proposed in the
past, the majority have focused on arithmetic and
algebraic problems where the mathematical repre-
sentation is specified as a simple equation system
that can be used with a standard solver (Hosseini
et al., 2014; Roy and Roth, 2015; Kushman et al.,
2014; Koncel-Kedziorski et al., 2015; Upadhyay
and Chang, 2015; Huang et al., 2016; Wang et al.,
2017; Ling et al., 2017; Amini et al., 2019; Miao
et al., 2020). This paper focuses on a class of
word problems that have not received much atten-
tion: those about probability that may be found,
for example, in introductory textbooks for discrete
mathematics.

Problem text:
A complete cycle of a traffic light takes 80 seconds. During
each cycle, the light is green for 40 seconds, amber for 10
seconds, and red for 30 seconds. At a randomly chosen time,
what is the probability that the light will not be red?

Representation:

group(cycle).
size(cycle, 80).
property(property, [amber, green, red]).
given(exactly(10, cycle, amber)).
given(exactly(30, cycle, red)).
given(exactly(40, cycle, green)).
take(cycle, light, 1).
probability(none(light, red)).

Answer: 5/8

Table 1: An example from the NLP4PLP dataset (Dries et al.,
2017): input text, intermediate representation, and correct
answer.

Table 1 provides an example problem. The over-
all task, to which we adhere in this work, is to
obtain the answer from the text, with the formal
representation as an intermediate step. Generally,
the representation contains one or more multisets
of objects with certain properties, one or more ac-
tions that create new multisets, and a question that
imposes a constraint on the result of the actions
and asks for the probability of that constraint hold-
ing. In the example, we have one multiset or group,
cycle, with size 80. The next four lines define a
property with (at least) three mutually exclusive
values (amber, green, red), and the number of ob-
jects in the multiset that have each of these values.
The take-statement is an action that generates a
new multiset (light) from the given one by taking
1 element (without replacement). The final line
specifies the question by imposing that none of the
taken elements has a property value red.

Automatically constructing such a representation
from the natural language text is challenging for
several reasons. The text may not explicitly state
whether sampling is with or without replacement,
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and this information may need to be inferred. Ques-
tions with co-referring expressions are common,
and may contain noun ellipsis, e.g. “One is selected
at random”, in which the antecedent is mentioned
in a previous sentence. Furthermore, problems may
require access to world knowledge, e.g. distinguish-
ing between male and female names.

Compared to general word problems, the prob-
ability word problems have a number of unique
characteristics. They typically mention several mul-
tisets (e.g. “a deck”) with the objects contained (e.g.
”cards”), and the properties (e.g. “black”, “queen”)
and sizes that the model needs to relate back to the
corresponding objects. The problems rely heav-
ily on Boolean operators to combine the objects’
properties, as well as specify constraints holding on
these properties (e.g., by using quantifiers, such as
“at least”). The Boolean operators and quantifica-
tion feature much less prominently, or not at all, in
other types of math word problems. As we show in
section 6, these are particularly challenging in mod-
elling, leaving ample opportunities for future work.
A distinctive characteristic of probability problems
is the need to construct intermediate sets with a
sampling operation; the resulting sets need to be
kept by the solving system and used when answer-
ing the final probability question. While predicates
in several existing datasets of word problems allow
a straightforward translation into arithmetic oper-
ators, probability word problems usually do not.
This makes the case for modelling the intermediate
meaning representation stronger.

We follow the approach of Dries et al. (2017),
who solve such problems in two cognitively plau-
sible steps. The first step transforms the text into
a declarative representation of the problem itself,
as in the example above. The second step uses
a dedicated solver implemented in the probabilis-
tic programming language ProbLog (De Raedt
et al., 2007) to compute the final, numerical answer
from the intermediate representation. In probability
problems, an answer can be wrong even if its differ-
ence to the correct answer is numerically small, but
such differences stand out more clearly on the prob-
lem specification level, making the latter a more
appropriate modelling target.

Our main focus is on predicting the intermediate
representation from the problem text, though we
also consider models that directly map the text to
the answer. To map the word problem texts to their
executable representation, we focus here on neural

sequence-to-sequence (seq2seq) models. Our most
important findings are:

• using a pretrained language model to encode
the problem text into contextualised represen-
tations leads to superior performance on the
largest available probability-problem dataset
NLP4PLP (Dries et al., 2017), when compared
to (i) the classical seq2seq model whose en-
coder uses non-contextualised word embed-
dings; (ii) end-to-end sequential approaches
foregoing the solver; (iii) the rule-based sys-
tem of Dries et al. (2017) and the simpler base-
lines,

• starting with the best seq2seq model that uses
contextualised representations, in-domain
transfer learning on the MATHQA dataset
(Amini et al., 2019) containing a broader spec-
trum of math word problems leads to addi-
tional substantial improvements in the number
of word problems answered correctly,

• although end-to-end problem answering can
approximate the true probabilities, a two-step
approach using the solver is crucial in obtain-
ing solutions that are exactly correct.

Finally, we discuss the difficulties commonly
encountered in solving probability word problems
based on an analysis of errors.

2 Background

2.1 Solving general math word problems

The large majority of word problem solving ap-
proaches deal with relatively simple meaning rep-
resentations, typically ranging from simple addi-
tion and subtraction in early (rule-based) research
(Briars and Larkin, 1984; Fletcher, 1985; Bakman,
2007; Yuhui et al., 2010) to solving linear equations
in later statistical-NLP approaches (Hosseini et al.,
2014; Kushman et al., 2014; Koncel-Kedziorski
et al., 2015; Roy and Roth, 2015; Upadhyay and
Chang, 2015). Sequence-to-sequence neural mod-
els have established themselves as a general pur-
pose framework that can be applied to a variety of
math problems and formal representations. They
have been shown to generate equations of which
problem types do not exist in training data (Wang
et al., 2017), and to scale well to generating longer
sequences linearly, as in the case of Ling et al.
(2017).
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predicate description

group a fundamental set of objects
size group’s cardinality
property introduces an attribute and its values
given provides the number of elements in a group having some property, either with numerical values,

i.e. given(exactly(n, group, property)), or in terms of percentages/fractions,
i.e. given(exactly(rel(fraction, group), set, property))

and, or, not Boolean operators used to combine different properties. Boolean algebra laws apply, e.g.
and(red,king) is equivalent to and(king,red).

take, take wr a new set obtained by taking, respectively, with or without replacement n elements from a
group

observe defines a constraint holding on a set created by a take/take wr action
probability specifies a question in the problem; probability of an observable property of a set
at least, exactly,
all, some, . . .

constraints on the properties of the objects in a set

Table 2: Summary of predicates used in the NLP4PLP language.

Among the works that adhere to the conceptual
split between the text-to-representation mapping
and solver application, like in our case, we can
point out the following examples. Liang et al.
(2016) present a hybrid rule-based and ML ap-
proach where the problem texts are first mapped to
a linguistic representation that highlights the syn-
tactic relationships between words, then a logic
representation is built that is passed to the infer-
ence engine, which carries out math operations to
obtain the answer. A similar decomposition of the
problem has been previously studied in Matsuzaki
et al. (2013), where the problems are translated to
logical forms using Combinatory Categorial Gram-
mar and Discourse Representation Structure for-
malisms, then rewritten into the input language of
the solver.

2.2 Probability word problems

The works focusing specifically on probability
word problems are scarce. We now discuss two
largest datasets including such problems, NLP4PLP

and MATHQA, and point to the differences be-
tween them.

NLP4PLP is the primary dataset used in our work,
consisting of word problems in English annotated
with declarative problem specifications (Dries et al.,
2017). These contain a list of order-invariant state-
ments, each consisting of predicates and arguments.
The main types of predicates introducing the state-
ments are listed in Table 2. MATHQA (Amini et al.,
2019) is a recently introduced dataset which ex-
tends the AQUA dataset (Ling et al., 2017) with an-
notations of operations. It contains word problems
in English from various math domains, including
663 on probability. These are annotated with for-
mal representations of the steps needed to solve the

problem. There are two fundamental differences
with the NLP4PLP dataset. First, MATHQA consid-
ers multiple choice questions, whereas NLP4PLP

questions ask for a number. Second, MATHQA
annotations describe how to solve the problem,
whereas NLP4PLP describe what the problem is.
The set of predicates in MATHQA defines the ba-
sic arithmetic operations as well as probability-
specific operations. The latter include permutation
and factorials, but they are applied infrequently in
the dataset. The problem texts are similar in both
datasets, whereas the annotations in MATHQA in-
clude only single (nested) statements which can be
sequentially executed.1 The authors apply neural
seq2seq models and find that they improve over
simpler baselines, but the gap to human perfor-
mance remains large.

Another dataset that includes probability ques-
tions is the MATHEMATICS DATASET (Saxton
et al., 2019). The questions are generated auto-
matically, and are much more linguistically im-
poverished compared to ours. All included proba-
bility problems involve sampling without replace-
ment from a bag of repeated letters,2 and no formal
representation of the problem is given. The main
purpose of the dataset is to provide a testbed for
analysing mathematical reasoning capabilities of
neural models.

An early approach to solving probability ques-
tions is Gelb (1971). While Gelb’s high-level ap-
proach is similar to ours, the various components

1E.g. what is the probability that the sum of two dice will
yield a 5 , and then when both are thrown again , their sum will
again yield a 5 ? assume that each die has 4 sides with faces
numbered 1 to 4. → multiply(divide(4, power(4,
const 2)), divide(4, power(4, const 2)))

2E.g. Three letters picked without replacement from
qqqkkklkqkkk. Give prob of sequence qql. → 1/110.
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are tackled in substantially different ways. It in-
cludes no learning in the NLP part, but uses a
heuristic transformation-based approach to deter-
mine semantically-rich phrases in problem texts
which can then be used by the solution generator.
The latter then achieves a solution by constructing
a combinatorial formula in a stepwise manner.

2.3 Mapping to other types of executable
representations

There are similarities between our work and the
existing NLP work on mapping text to other kinds
of executable representations. In text-to-SQL map-
ping, the goal is to encode the database relations
in an accessible way for the semantic parser, and
to model the alignment between database columns
and their mentions in a given query, which is anal-
ogous to our task. Seq2seq models with atten-
tion have been widely studied for this task as well
(Zhong et al., 2017; Iyer et al., 2017). In addi-
tion to SQL representations, more general knowl-
edge base representations (Zettlemoyer and Collins,
2005; Yih et al., 2015) and general-purpose source
code generation for programming languages like
Python and Java (Ling et al., 2016; Yin and Neubig,
2017) are conceptually similar as well.

3 Approaches to Solving Probability
Word Problems

Our ultimate objective is to address the following:

Given: A natural language description of a word
problem involving computing a probability.

Do: Produce the correct answer to the problem.

We will consider two high-level ways for ad-
dressing this task. The two-step approach at-
tempts to encode the natural language description
into the formal representation developed by Dries
et al. (2017) specifically for representing probabil-
ity problems. A dedicated solver exists for this
representation. An advantage of this approach is
that it promotes interpretability as the formal repre-
sentation can be inspected.

The end-to-end approach simply attempts to
train a deep architecture to directly predict the an-
swer to the question based on the text. This by-
passes the solver and hence circumvents the need
to generate the formal representation of the prob-
lem. This is likely a more challenging problem.
Moreover, it does not provide any way to check if
the produced answer is correct.

We explored multiple ways to instantiate each
approach, which we will now describe in more
detail.

3.1 Two-step approach

We consider a baseline seq2seq approach and then
explore how to augment it using contextualised
representations from language models.

BiLSTM The baseline approach is a 400-
dimensional, single-layer bidirectional LSTM
encoder-decoder. The encoding is provided by pro-
cessing the problem text as a sequence of tokens.
The decoder then must generate the question’s rep-
resentation in Dries et al.’s language as a linear se-
quence. The solver will use the output as is. Hence,
the model must generate the structural parts of the
representation such as punctuation and parentheses.
We augment the textual input with three types of
additional features obtained with the CoreNLP
toolkit (Manning et al., 2014): part-of-speech tags
of the entire problem sequence; numerical entities
recognised by the NER component; and depen-
dency label of the relation connecting the word to
its parent.

We consider including three types of contextu-
alised representations to the encoder:

FrozenEncoder uses the contextualised represen-
tations of the input text, but randomly ini-
tialises the BiLSTM encoder of our model
and freezes it during training. Prior research
indicates that using such random encoders
can lead to performance that is robust and
sometimes even competitive with finetuned
encoders, since this approach maximally ex-
ploits the information present in the pretrained
representations (Wieting and Kiela, 2019).

BERT is a transformer-based encoder that outputs
context-dependent token activations. We use
the pretrained uncased model.3

GPT-2 is another well-known transformer-based
language model (Radford et al., 2019).4

For BERT and GPT-2 we consider two options: (i)
a “frozen” variant that directly uses the provided
representations as input for the decoder and (ii) a
“finetuned” variant that is adapted by training on
our corpora.

3https://bit.ly/2SPUJQE
4http://huggingface.co/gpt2

https://bit.ly/2SPUJQE
http://huggingface.co/gpt2
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3.2 End-to-end models

We explore two approaches for directly predicting
the answer to a probability problem based on the
problem’s text.

Continuous-BiLSTM This is a regression
model that encodes the text with a BiLSTM using
the baseline architecture described in the previous
section. It then predicts the final probability using
a regression output layer consisting of single
output node. The model is trained to minimise the
squared error loss.

Discretised-BiLSTM Here, we treat the task as
a multi-class classification problem where the prob-
ability space is segmented into k bins. The dis-
cretised approach simplifies the original problem
which requires computing the exact probability to
be given as answer. Varying k ∈ {2, 5, 10, 20}
enables comparing the network’s performance at
different resolutions, although the smaller values
are clearly less valuable due to oversimplification.
Bin widths are chosen such that each bin contains
an approximately equal percentage of total data.
Again, the same encoder is used. The decoder
now has a single softmax node and is trained using
cross-entropy as the loss function.

4 Experimental setup

4.1 Data

We split the NLP4PLP dataset5 into training/devel-
opment/test (80/10/10%) parts. The statistics of the
dataset are reported in Table 3.

n train 1,720
n dev 217
n test 214
n tokens in problem texts 100,205
vocabulary size (lowercased) 4,686
avg. problem length (in tokens) 47

Table 3: Data statistics.

We pre-process the annotations in the following
way. For numeric arguments, we do not use their
actual values since the space is very large. Instead,
we map the numbers to numbered symbols accord-
ing to the order in which they occur in the text, e.g.

“2 accidents in 1 year”→“n0 accidents in n1 year”.
The numbered symbols generated by the model are
mapped back to the original numbers before execut-
ing the solver. Although we have also considered

5https://bit.ly/33TYas2

using a pointer-based approach, the instances in our
dataset generally do not contain indices for number
locations in the problem text, while creating them
automatically would be noisy.

4.2 Evaluation
We evaluate two aspects of the performance. The
surface evaluation simply checks the correctness
of the generated representation against the formal
ground-truth representation. We report the accu-
racy (representations need to match exactly), as
well as the F1 score, which also rewards the repre-
sentations that are partially correct. The F1 score
represents the average F1 over per-instance F1
scores; it measures the overlap between the gener-
ated and the ground-truth representations, which
are split into tokens and treated as bags of words.6

The execution-level evaluation first passes the gen-
erated representation to the solver, then compares
its output to that of the ground-truth answer (prob-
ability). We report the accuracy, in which the prob-
abilities rounded to four decimal digits need to
match exactly, as well as the mean-absolute error
(MAE) to summarise the magnitude of prediction
error.

4.3 Baselines
NearestNeighbour The nearest-neighbour base-
line vectorises the problem text using pretrained 50-
dimensional embeddings. Then, for test instance i,
it finds the most similar training instance using:

argmax
n∈N

cos
( 1

|Cn|
∑
j∈Cn

cj ,
1

|Q|
∑
k∈Q

qk
)
, (1)

where c, q ∈ Rd, the multiset Cn contains all words
in the training instance n, Q contains all words
from the current test instance, and cos is the cosine
similarity. In the two-step setting, the method re-
turns the formal representation for the most similar
training instance. In the end-to-end setting, the
method predicts the probability that is the correct
answer to the training instance.

Rule-based system Dries et al. (2017) present
a semi-rule-based system that is specifically tai-
lored to the NLP4PLP dataset. They focus on those
word problem descriptions that mention groups of

6E.g. size(cycle, 80).→{’size’, ’(’,
’cycle’, ’,’, ’80’, ’)’, ’.’}. In calculating
the precision, the number of correct words is divided by the
number of all predicted words. In recall, the former is divided
by the number of words in the ground-truth representation.

https://bit.ly/33TYas2
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objects explicitly. The representations can only
contain a single action and only represent a subset
of the complete formal language.7 The approach of
Dries et al. first PoS-tags and syntactically parses
the dataset to extract numbers, which are linked to
their respective entities by a multilayered percep-
tron. Using handcrafted rules, textual descriptions
of the properties of entities are extracted from the
parse trees. The problem question is identified with
text search criteria, and then transformed using
handcrafted rules into a structured form. A post-
processing step removes any inconsistencies. The
authors were able to apply the described approach
to 41% cases from the entire dataset, of which 31%
were solved correctly. When comparing our mod-
els to their system in Table 4, we take their test set
predictions, and count those test instances that were
not supported by their system (n=130) as incorrect.

Other baselines In the end-to-end approach,
we also report the results of a random predictor
(Random) that randomly samples from a uniform
distribution [0, 1), and those of a MeanProbabil-
ity baseline which invariably predicts the mean
probability as estimated on the training set.

4.4 Implementation details

When producing the formal intermediate represen-
tation during decoding, our BiLSTM model uses
the additive attention mechanism (Bahdanau et al.,
2014), and teacher forcing during training (Good-
fellow et al., 2016). The BiLSTM models are
trained for 30 epochs with the Adam optimiser
(Kingma and Ba, 2014), and early-stopped based
on the performance on the development set. We
train and evaluate each model five times with differ-
ent random seeds, and finally report the averaged
performance.

Each additional linguistic feature is embedded
into a 10-dimensional randomly-initialised vector.
The BiLSTM models that use non-contextualised
word representations use 50-dimensional word2vec
embeddings (Mikolov et al., 2013) pretrained on
Wikipedia and news corpora.

For the BiLSTM model, we consider two addi-
tional modifications to the testing regime. First, we
use a beam search decoding that keeps the 10 best
candidate outputs throughout the decoding process
and then report the result for the best generated

7“we excluded problems that are based on events (e.g.,
coin tosses), require observations [...], or that have aggregate
or sequence constraints.”

representation. Second, as a variation on reporting
the averaged performance over different runs, we
can instead combine the predictions from differ-
ent models by taking a majority vote after finding
the best candidate representation using the beam
search.

5 Results and discussion

5.1 Seq2seq models and the advantage of
contextualised representations

The results for the two-step approach to solving
probability word problems are shown in Table 4.
Taking the BiLSTM model as the starting point
of our discussion, we see that it accurately maps
19% of the problems to their ground-truth repre-
sentation, with an F1 score of 0.88. This trans-
lates into execution-level accuracy of 0.32 for the
cases among which a solution was found. When
including also the representations with no solution,
the corrected accuracy is 0.26. Here and through-
out our results, we see that the execution accuracy
surpasses that measured at the surface-level; this
effect arises since some parts of the problems can
be specified in alternative ways, which is penalised
by the surface-level accuracy but not by the exe-
cution one. Introducing the beam decoding and
majority-vote ensembling leads to further benefi-
cial effects: the first boosts the execution-level ac-
curacy by around 0.03 point, and the second, when
coupled with beam search, brings the accuracy at
execution time to around 0.37 (0.31 when discount-
ing for solver errors). When including pre-trained
contextualised representations, the GPT-2 model
is competitive with our original BiLSTM encoder,
while the BERT encoder is superior both when fine-
tuned or frozen. The frozen BERT encoder clearly
has the lowest MAE of all models, and as such con-
tains the most easily exploitable domain-specific
information.

The rule-based system of Dries et al. (2017)
performs less well than the BiLSTM models, al-
though it still has a clear advantage over the nearest-
neighbour baseline and the randomly-initialised
frozen encoder (Wieting and Kiela, 2019). In both
baselines, no case can be exactly matched to the
expected formal representation, and only one case
was solved correctly (due to the leniency of the
solver). The frozen encoder cannot provide mean-
ingful information to the decoder, and confirms in
our case that the BiLSTM encoder model effec-
tively learns to encode task-specific information.
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execution surface

Model acc accdisc MAE acc. F1

NearestNeighbour 0.005 0.005 0.317 0.0 0.773
Rule-based system 0.149 0.145 0.205 n/a n/a

EncoderDecoder
BiLSTM 0.318 0.262 0.212 0.187 0.882
BiLSTM (beam search) 0.352 0.290 0.210
BiLSTM (majority vote) 0.367 0.308 0.208
FrozenEncoder 0.005 0.005 0.277 0.0 0.612
BERT (finetuned) 0.424 0.327 0.194 0.220 0.934
BERT (frozen) 0.385 0.322 0.171 0.234 0.932
GPT-2 (finetuned) 0.330 0.290 0.203 0.187 0.918
GPT-2 (frozen) 0.220 0.178 0.240 0.136 0.906

Transfer learning
MathQA-BERT (frozen) 0.376 0.327 0.190 0.215 0.921
MathQA-BERT (finetuned) 0.425 0.346 0.183 0.243 0.923

Table 4: Test set results, averaged over 5 runs for all models with random weight initialisation. The execution evaluation is
based on solver outputs, with accuracy on instances not resulting in an error shown first, and the accuracy discounting for errors
shown under accdisc. The surface evaluation compares the generated problem definitions with the gold ones. For the rule-based
system, we were unable to obtain its intermediate representations, so the surface evaluation scores are marked as “n/a”.

Furthermore, since the nearest-neighbour approach
fails to map any case correctly, and yields the an-
swers that are on average more than 0.3 points away
from the true answer probability, this speaks in
favour of the diversity of word problems included
in the NLP4PLP dataset. Naturally, performing
more complex matching between the testing and
the training problems could allow for associating
number and entities more precisely, and therefore
lead to improvements over the simple approach
included here.

Another observation about the results in Table 4
is that the models tend to score high in F1 even
when their accuracy is low. This happens because
large parts of the predicted representations still
overlap with the gold ones, e.g. the names of pred-
icates and the punctuation markers. For the best-
performing models that use contextualised repre-
sentations, all F1 scores exceed 0.9, in which case
only small parts of the generated representations
are expected to be incorrect. We shed more light
on this in section 6.

Transfer learning on MATHQA While we have
experimented with various pretrained encoders,
none of them were in any way pretrained for our
specific domain. As a first inquiry into the possi-
ble impact of domain-specific pretraining, we fine-
tune the BERT encoder using the masked language

modelling objective on the raw unannotated data of
MathQA (Amini et al., 2019), a large-scale dataset
of math word problems. Such domain-specific but
task-agnostic finetuning has proven effective for a
wide range of NLP tasks and domains (Gururangan
et al., 2020). In order to avoid overfitting, we train
the BERT encoder for a single epoch on all 37,297
sentences of the MathQA dataset. The results in
Table 4 show that finetuning this domain-adapted
BERT encoder has a positive impact on the accu-
racy metrics, while the frozen encoder is less robust
than the BERT encoder which was not domain-
adapted. This demonstrates the potential of the
approach while also highlighting the importance of
the bias-variance tradeoff between general-domain
and domain-specific pretraining.

5.2 End-to-end models

We now turn our discussion of the results to direct
prediction of answer probabilities with the goal
of discovering the effect of absence of intermedi-
ate representations and subsequent application of
a dedicated solver. We see in Table 5 that our
continuous-output neural model (BiLSTM regres-
sor) beats all included baselines with a MAE of
0.2. This result is interesting since it represents a
slight improvement even over the MAE score of
the vanilla BiLSTM discussed among the two-step
approaches (0.212; Table 4). However, a signif-
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Model acc. MAE

Random 0.0 0.349
NearestNeighbour 0.0 0.307
MeanProbability 0.0 0.247

Continuous-BiLSTM 0.0 0.204

Discretised-Random (k = 20) 0.051
Discretised-BiLSTM (k = 20) 0.160
Discretised-Random (k = 10) 0.096
Discretised-BiLSTM (k = 10) 0.232
Discretised-Random (k = 5) 0.199
Discretised-BiLSTM (k = 5) 0.369
Discretised-Random (k = 2) 0.51
Discretised-BiLSTM (k = 2) 0.677

Table 5: End-to-end results on the test set, averaged over 5
runs. k represents the number of bins (classes) used when
discretising the probability range. We omit the MAE scores
when reporting the results for the discretised setting.

icant distinction is that the end-to-end regressor
discussed here cannot find exactly correct solutions
to any of the test problems. A conclusion we can
draw is that—although the encoding part of the
model is the same in both end-to-end and two-step
approaches—modelling the intermediate represen-
tation appears to be a crucial step in arriving at
exactly correct solutions.

An alternative approach to end-to-end modelling
is to transform the problem answer space by dis-
cretising it into k bins. The BiLSTM classifier
greatly improves over the random baseline for all
values of k, but the absolute accuracies remain low
for larger values of k. For example, when classify-
ing with k = 20, the BiLSTM classifier correctly
predicts three examples out of 20. While this repre-
sents a 200% improvement over the random base-
line (which predicts correctly only one out of 20),
a large majority of cases still remain incorrect even
though we are already allowing simplified solutions
that are not exactly correct but only approach the
true answers.

6 Qualitative analysis

We base the error analysis on the investigation of
the predicates in the gold representation from the
test set that are not found in the predicted one.
We classify an output with respect to the first type
of predicate that does not find a correspondence
in the predicted representation, according to the
following order: group, size, given, take,
observe, probability. We choose such or-

der because each predicate type relies on the in-
formation provided by the previous ones. In fact,
errors usually result in incorrect predictions for
the following types in the order as well. We take
as source of our analysis the predictions of the
best-performing model, i.e. MathQA-BERT (fine-
tuned). Of the 214 predictions, 75 are correct and
139 present a missing statement on one of the afore-
mentioned levels.

Broadly speaking, two types of errors stand out:
i) those involving confusion about what kind of
modifier or Boolean operator to choose, and ii)
those involving extracting the right numeric argu-
ment for a predicate (e.g. how many items to sam-
ple using a take statement). We now analyse the
errors in more detail.

Object sets and their cardinality There are
6 group statements that were not predicted
(e.g. Error A1 in the appendix), 4 of them
on problems with two different groups g1 and
g2 with a fine-grained composition of the form
given(exactly(rel(...,g1)): the net-
work predicts only one group and links the compo-
sition of both sets to a single group. There are 10
problems with size statements not found in the
corresponding prediction: 5 because the predicted
size was wrong (e.g. Error A2) and 2 because the
statement was missing at all. In both cases the
following given(exactly...) statements do
not add up to the correct size.

Subset recognition based on a property The
statements with given are the most difficult with
54 errors. 24 regard again statements of the form
given(exactly(rel(...,...),...)):
the network struggles to correctly identify all
the subsets and their numerical relation with
the whole group of objects (e.g. Error A3). In
fact, other 5 predictions present errors related to
sets defined in terms of union and intersection
of existing groups (and/or(...,...)). To
deal with these errors, more complex syntactic
features may be useful, e.g. features capturing
coordination. 13 problems define the wrong
number of objects in a given subset. Similar
issues emerge from the predicates take (see
Error A5): 7 of the 14 errors are due to a wrong
number of taken objects and 4 due to taking from
the wrong subset of a group defined (correctly)
with given(exactly(rel(...,...))
statements. An alignment between the numeric
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arguments and their position in the text could help.
An observe statement was missing in 3 cases.

Question understanding Finally, the errors
about probability correspond to cases that are
almost correct (i.e. all previous statements are cor-
rect), and are mostly related to quantifiers. Of
the 25 errors, 4 predict the wrong quantifier (all,
exactly, atmost, . . . ), e.g. Error A6, 4 use
the correct one on the wrong set, and 3 fail to
correctly identify nested properties of the form
and/or(...,...) (e.g. Error A7).

Syntax errors Finally, we report 8 cases contain-
ing syntax errors, either due to unmatched paren-
thesis or unspecified arguments (e.g. or(,)).

7 Conclusion

We have investigated the use of neural sequence-
to-sequence models to generate intermediate repre-
sentations for solving probability word problems,
and shown the benefit of introducing contextualised
word representations together with transfer learn-
ing on another dataset of math word problems. Our
results also suggest that mapping to a problem spec-
ification followed by the application of a dedicated
solver is preferable to end-to-end modelling where
the answer probabilities are predicted directly from
the encoded text. The qualitative analysis of re-
sults reveals that the extraction of relevant entities
and quantities from concise textual descriptions, as
well as reasoning about the relationships between
them are still challenging, and therefore provide
possible directions for future work.
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A Appendix: error examples

A1) Error type: missing group (Example l63)

The drama school is getting ready for the play. Since the play is an exercise in learning, a random drawing
will take place to assign parts. There are 37 boys and 51 girls in the school. There are 35 parts in the
play for boys and 42 parts in the play for girls. Dominique is hoping for the female lead role. 5 female
roles have been chosen and the lead female role is still available. What is probability that Dominique will
land the role now?

Gold Predicted

group(girls).
size(girls,51).
group(rest(roles)).
given(exactly(1,girls,lead)).
take(rest(roles),dominique,1).
take(girls,roles,5).
observe(none(girls,lead)).
probability(all(dominique,lead)).
property(property0,[lead]).

group(girls).
size(girls,51).

given(exactly(1,girls,lead)).

take(girls,dominique,1).

probability(all(dominique,lead)).
property(property0,[lead]).

A2) Error type: wrong size (Example l15)

Half the face of a fair die are painted blue, half yellow. The die is rolled twice. What is the probability
the die will turn up blue both times?

Gold Predicted

group(die).
size(die,6).
given(exactly(1,die,blue)).
given(exactly(1,die,yellow)).
take_wr(die,rolled,2).
probability(all(rolled,blue)).
property(property0,[blue,yellow]).

group(die).
size(die,2).
given(exactly(1,die,blue)).
given(exactly(1,die,yellow)).
take_wr(die,rolled,2).
probability(all(rolled,blue)).
property(property0,[blue,yellow]]).
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A3) Error type: wrong rel (Example h595)

A man finds that on the average he hits the target 9 times out of every 10 times and scores a bull’s eye on
the average once every 5 rounds. He fires 4 rounds. What is the probability that he scores at least 2 bull’s
eyes?

Gold Predicted

group(scores).
given(exactly(rel(’/’(1,5),scores),

scores,bull)).
take_wr(scores,round,4).
probability(atleast(2,round,bull)).
property(property0,[bull]).

group(scores).
given(exactly(rel(’/’(9,10),scores),

scores,bull)).
take_wr(scores,round,5).
probability(atleast(2,round,bull)).
property(property0,[bull]).

A4) Error type: wrong subgroup size (Example l1137)

A jar contains 6 blue marbles, 12 green marbles and 7 yellow marbles. Find the probability of randomly
drawing a green marble.

Gold Predicted

group(jar).
given(exactly(6,jar,blue)).
given(exactly(12,jar,green)).
given(exactly(7,jar,yellow)).
take(jar,marble,1).
probability(all(marble,green)).
property(property0,[blue,green,yellow]).

group(jar).
given(exactly(12,jar,blue)).
given(exactly(7,jar,green)).
given(exactly(12,jar,yellow)).
take(jar,marble,1).
probability(all(marble,green)).
property(property0,[blue,green,yellow]).

A5) Error type: wrong take (Example l847)

In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6.
What is the probability that he will knock down fewer than 2 hurdles?

Gold Predicted

group(hurdles).
given(exactly(rel(’/’(5,6),hurdles),

hurdles,clear)).
take_wr(hurdles,cross,10).
probability(less than(2,cross,not(clear))).

property(property0,[clear]).

group(hurdles).
given(exactly(rel(’/’(5,6),hurdles),

hurdles,clear)).
take wr(hurdles,cross,4000).
probability(atmost(2,cross,clear)).
property(property0,[clear]).
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A6) Error type: wrong quantifier (Example l228)

Two cards are drawn at random from a deck of 52 cards without replacement. There are 4 Kings. What is
the probability that exactly one is a King, given that at most one is a King?

Gold Predicted

group(deck).
size(deck,52).
given(exactly(4,deck,king)).
take(deck,cards,2).
observe(atmost(1,cards,king)).
probability(exactly(1,cards,king)).
property(property0,[king]).

group(deck).
size(deck,52).
given(exactly(4,deck,king)).
take(deck,cards,2).
observe(atmost(1,cards,king)).
probability(atleast(1,cards,king)).
property(property0,[king]).

A7) Error type: wrong logic (Example l794)

A couple have three children. What is the probability that among the children, there will be at least one
boy or at least one girl?

Gold Predicted

group(children).
size(children,2).
given(exactly(1,children,boy)).
given(exactly(1,children,girl)).
take_wr(children,couple,3).
probability(or(atleast(1,couple,boy),

atleast(1,couple,girl))).
property(property0,[boy,girl]).

group(children).
size(children,2).
given(exactly(1,children,boy)).
given(exactly(1,children,girl)).
take_wr(children,couple,3).
probability(atleast(1,couple,boy)).

property(property0,[boy,girl]).


