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Abstract

Integrating knowledge into text is a promis-
ing way to enrich text representation, espe-
cially in the medical field. However, un-
differentiated knowledge not only confuses
the text representation but also imports un-
expected noises. In this paper, to alleviate
this problem, we propose leveraging capsule
routing to associate knowledge with medical
literature hierarchically (called HiCapsRKL).
Firstly, HiCapsRKL extracts two empirically
designed text fragments from medical litera-
ture and encodes them into fragment repre-
sentations respectively. Secondly, the capsule
routing algorithm is applied to two fragment
representations. Through the capsule com-
puting and dynamic routing, each represen-
tation is processed into a new representation
(denoted as caps-representation), and we inte-
grate the caps-representations as information
gain to associate knowledge with medical liter-
ature hierarchically. Finally, HiCapsRKL are
validated on relevance prediction and medical
literature retrieval test sets. The experimen-
tal results and analyses show that HiCapsRKL
can more accurately associate knowledge with
medical literature than the mainstream meth-
ods. In summary, HiCapsRKL can efficiently
help selecting the most relevant knowledge to
the medical literature, which may be an al-
ternative attempt to improve knowledge-based
text representation. Source code is released on
GitHub 1.

1 Introduction

Knowledge is known as a triple to describe the rela-
tionship (r) between head entity (eh) and tail entity
(et) with the format of <eh, r, et>. The popular neu-
ral models can improve the ability of learning text
representation by integrating knowledge, because
they usually lack the ability to learn entities and
their relationship in the text. However, the medical

∗Corresponding author.
1https://github.com/Gdls/HiCapsRKL

Title: The clinical observation of amiodarone
combined with metoprolol in the treatment of 
elderly patients with ventricular premature beats. 

Abstract: The study analyzed the clinical 
efficacy and safety of amiodarone combined 
with metoprolol in elderly patients with 
premature ventricular contractions. Ventricular 
premature beats are one of the most common 
arrhythmia in our country. ***. Contrast the 
occurrence of adverse reactions such as chest 
pain after taking the medicine.***
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Figure 1: An example to show the undifferentiated
knowledge in the medical literature. The literature is
from the Chinese Medical Association and is translated
from the Chinese version. ‘***’ represents the omitted
texts in abstract. The entities are highlighted with italic,
and the sentences with underline describe the relation-
ship of two entities.

literature usually contains multiple knowledge, and
not all knowledge is beneficial to its subject. The
integration of undifferentiated knowledge into the
neural models may reduce the accuracy of medical
literature representation. For example, in figure 1,
it lists three knowledge existed in the medical liter-
ature. But, the third knowledge is redundant to the
subject of the literature. Therefore, it is an essen-
tial step to determine the hierarchical association
between knowledge and medical literature before
integrating knowledge.

The hierarchical association between knowledge
and medical literature refers to the definition of the
degree of their relevance according to how the sub-
ject of the medical literature covers the knowledge.
Given a knowledge and a medical literature, the
task asks to predict their relevance from four levels,
namely "Highly relevance (Hr)", "Fairly relevance
(Fr)", "Marginally relevance (Mr)", "Irrelevance
(Ir)" (Kekäläinen, 2005). The public four-point
scale graded relevance assessment (Kekäläinen,
2005) from Text REtrieval Conference (TREC) is
commonly used for the hierarchical association
(See Table 5 in Appendix A.1). But for an intuitive
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Table 1: The definition of RCor and KImp, and the corresponding relevance labels.

Label RCor KImp

Hr positive (Described) Imp (The knowledge is the only subject the literature discusses.)
Fr positive (Described) P-imp (The knowledge is a subset of the subject the literature discusses.)

Mr positive (Described)
M-imp (The knowledge is only mentioned in the literature, and the subject

of the literature does not contain more information about it.)
Ir negative (Not described) U-imp (The knowledge is not pointed to the subject of the literature.)

definition, two information measures, namely rela-
tionship correlation (RCor) and knowledge impor-
tance (KImp) , should be considered. RCor means
whether the texts surrounding two entities describe
their relationship in the medical literature (Labels:
positive/negative), and KImp means how important
the knowledge is to the subject of the medical liter-
ature (Labels: Imp/P-imp/M-imp/U-imp). Table 1
lists the definition of RCor and KImp, and their
corresponding relevance labels. For example, in
figure 1, there are always sentences with underlines
describing the relationships of "indications" and
"combination", and these knowledge is also im-
portant to the literature because they are discussed
as the subject. But for the third knowledge, even
though the RCor is positive, it is unimportant to
the subject of the literature. So, based on RCor and
KImp, one can easily learn that the top-2 knowl-
edge is highly relevant to the literature and the third
one is marginally relevant.

However, it is difficult for the mainstream meth-
ods to capture these two information, mainly be-
cause 1) the subject of medical literature is usually
multi-knowledge entangled, and these methods sel-
dom can learn the unique knowledge from it; 2)
the expression of the relationship information in
medical literature is complex and abstract, which
requires methods with strong distinguishing ability.
This paper proposes leveraging the capsule routing
algorithm to extract RCor and KImp information.
The capsule routing algorithm is proposed for the
capsule network by Sabour et al. (2017), and is an
efficient algorithm for decoupling multiple object
feature. For the multiple entangled knowledge and
complex relationship, the capsule routing algorithm
splits the input feature into multiple capsules, and
the capsule in a lower-level hands out its output
to higher-level capsules through routing algorithm,
completing the extraction and aggregation of infor-
mation flow. After multi-layer capsule calculation,
the final layer capsule represents unique knowl-
edge or relation information to solve the issues of

knowledge entanglement and complex relationship
in medical literature, and then determine the hi-
erarchical association of knowledge and medical
literature.

In summary, in this paper our contributions
include: 1) proposing hierarchically associating
knowledge with medical literature from relation-
ship correlation and knowledge importance, and
recording these information through two empiri-
cally designed text fragments in the medical litera-
ture; 2) proposing leveraging capsule routing algo-
rithm to model the RCor and KImp text fragments
(called HiCapsRKL), and taking them as informa-
tion gain to judge the hierarchical association of
knowledge and medical literature; 3) building a
weakly supervised training set, a relevance predic-
tion test set and a medical literature retrieval test
set, and using these sets to test and analyze the pro-
posed HiCapsRKL and other comparison methods.
The experimental results and analyses prove the
efficiency of HiCapsRKL in associating knowledge
and medical literature hierarchically.

2 Related Works

The neural information retrieval (IR) models are
available techniques for associating knowledge
with medical literature because of their powerful
deep neural architectures, like CNN (Hu et al.,
2014), RNN (Pang et al., 2017), and pre-trained
BERT (Devlin et al., 2019). For example, Guo et al.
(2016) proposed a joint deep architecture to asso-
ciate knowledge with medical literature at the query
term level. Hui et al. (2017) proposed the position-
aware model considering position-dependent in-
teractions. Xiong et al. (2017a) incorporated in-
formation from the word space, the entity space,
and the cross-space connections through the knowl-
edge. Xiong et al. (2017b) used a translation matrix
to model word-level similarities and multi-level
soft match features for their association. Dai et al.
(2018) used CNN for n-grams of various lengths
and soft matched them in a unified embedding
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Figure 2: The brief architecture of the proposed HiCapsRKL model.

space. Liu et al. (2018b) integrated knowledge to
neural models by representing texts with words
and entity annotations. Dai and Callan (2019) sim-
ulated detecting, determining, and aggregating of
human judgement process to associate knowledge
and medical literature. MacAvaney et al. (2019a)
used the pre-trained contextualized language mod-
els to determine their association. However, these
works usually focus on learning rich text interac-
tion features based on the end-to-end training, and
do not thoroughly explore the association informa-
tion in knowledge and medical literature (Qu et al.,
2019).

For this issue in the former works, the indirect
features are used to explore the possible signals
in texts. For example, Luo et al. (2017) used the
user’s click behavior to help the judgement. They
believe if there are more user’s clicks on one docu-
ment then the document and knowledge would be
more relevant. MacAvaney et al. (2019b) yielded
pseudo knowledge-document pairs as relevance in-
dicators that already exhibit relevance. Zheng et al.
(2019) followed the heuristics or users’ interaction
in the result pages to enrich the association fea-
tures. These methods further improved the neural
IR models, but they still did not directly explore
the association semantically (Zheng et al., 2018;
Zhang et al., 2020).

Relatively, the capsule network is newly pro-
posed neural architecture in recent years and
still being explored for its applications in NLP
area (Zupon et al., 2020; Nguyen et al., 2019; Zhao
et al., 2019). Several researches have explored to
apply the capsule network to various NLP tasks,
e,g., sentiment classification (Ke et al., 2021; Du
et al., 2019b; Chen and Qian, 2019), relation extrac-
tion (Liu et al., 2020a), text classification (Chen
et al., 2020; Du et al., 2019a; Xiao et al., 2018;
Zhao et al., 2018), intent detection (Liu et al., 2019;
Zhang et al., 2019; Xia et al., 2018), document
translation (Yang et al., 2019), word sense disam-

biguation (Liu et al., 2020b), etc. Most of these
works followed the convolution and dynamic root-
ing architecture in capsule network and did not
explore the effectiveness of the capsule routing al-
gorithm for NLP tasks alone (Liu et al., 2020b).

In this work, the proposed HiCapsRKL model
uses the capsule routing algorithm to learn the re-
lationship correlation and knowledge importance
information in texts, and it can semantically ex-
plore the hierarchical association of knowledge and
medical literature.

3 Method Description

Figure 2 shows the brief architecture of the pro-
posed HiCapsRKL model. First, the model inputs
include the input texts (i.e. the RCor text frag-
ment, the medical literature, and the KImp text
fragment) and the knowledge triple. Second, each
text and knowledge are pair-wised and passed into
the language encoder to learn the contextual rep-
resentation for each pair, namely RMedL, RRCor,
andRKImp. Third, two representationsRRCor and
RKImp go through two capsule routing algorithms,
respectively. The algorithm in each branch outputs
the corresponding new caps-representation Rc

RCor

and Rc
KImp. Finally, the model integrates three

representations for the relevance prediction. Be-
sides, to learn accurate RCor and KImp features,
the model uses each caps-representation to predict
its RCor or KImp label as defined in Table 1 with
multi-task training. In this section, the paper will
introduce each part of the model in detail.

3.1 Input Pre-processing

First, the input texts include the medical literature,
the RCor text fragment and the KImp text fragment.
The medical literature contains the title, abstract
and keywords. The RCor text fragment is com-
posed of the sentences that simultaneously contain
two entities of the knowledge. If two entities do
not occur in one sentence, then it is composed of
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the sentences that locate between two nearest en-
tities. The KImp text fragment is also composed
of sentences that contain the title, first sentence in
abstract and keywords from the medical literature.
By concatenating each sentence in the text, all in-
put text is a sequence of words, namely SEQMedL,
SEQRCor, and SEQKImp.

Second, the knowledge triple is input as the con-
catenation of head entity, relationship and tail entity
by using a delimiter, then the knowledge triple is
also converted into a sequence of words, namely
SEQK

Next, the pairwise operation is applied to pair the
knowledge triple with the other three input texts, re-
spectively. Then the inputs of the language encoder
will be three sequence pairs, namely the medical
literature and knowledge pair (<SEQMedL, SEQK>
), the RCor text and knowledge pair (<SEQRCor,
SEQK> ), and the KImp text and knowledge pair
(<SEQKImp, SEQK> ).

3.2 Language Encoder

The language encoder in this paper is the pre-
trained BERT model initialized with the BERT-
Base, Chinese parameters. Three sequence pairs
are input into the same BERT model, respectively.

First, in BERT model, each pair is processed
with the WordPiece tokenization and sequence con-
catenation. The first token of every sequence is
always a special token ([CLS]), and another spe-
cial token ([SEP]) is used as the delimiter and end
terminator. For example, the input <SEQMedL,
SEQK> pair will be converted into the following
format <[CLS], tokenMedL

1 , ... , tokenMedL
m , [SEP],

tokenK1 , ... , tokenKn , [SEP] > , where tokenMedL
i

and tokenKi means the i-th token in SEQMedL and
SEQK . m and n are the maximum token length in
each sequence.

Second, the converted sequence goes through the
multi-layer Transformer architecture (12 layer in
this paper). The model encodes each token with the
contextual information and takes the hidden vector
in the last layer as the contextual representation for
each token. As described in the paper (Devlin et al.,
2019), the hidden vector of the special [CLS] token
is regarded as the classification representation of
the input sequence for down-stream predictions.

Finally, the classification representation of each
input sequence for each pair is represented as
RMedL, RRCor and RKImp, respectively. The
two representationsRRCor andRKImp will be pro-
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Figure 3: The calculation procedure between initial
two layers in capsule routing algorithm.

cessed by the capsule routing algorithm.

3.3 Capsule Routing Algorithm (CapsR(θ))

In this step, RRCor and RKImp are processed with
the same capsule routing function but with different
initial parameters, namely CapsR(θr) for RRCor

and CapsR(θt) for RKImp. Here, this paper only
takes the branch of CapsR(θr) as an example to
explain the calculation in the function. The calcula-
tion procedure between initial two layers is shown
in Figure 3.

First, a multi-head splitting operation is applied
to the input representation RRCor, and RRCor is
split into p sub-vectors with the dimension of D.
Multi-head splitting allows cutting the contextual
representation into different representation sub-
spaces at different positions (Vaswani et al., 2017).
Then RRCor is converted into {v0, v1, .., vp−1},
and each sub-vector v corresponds to one capsule
in the first layer. So, for a capsule capsi in layer
L(1) (abbr. capsL

(1)

i ), its input ui = vi.
Next, a weight matrix Wij with dimensions D×

D is used for building connections with the capsule
capsj in the layer L(2) (abbr. capsL

(2)

j ), and a
prediction vector ûj|i is produced. In CapsR(θr),
the parameter θt actually refers to the weight matrix
Wij . The total input xj to the capsule capsL

(2)

j is a
weighted sum over all ûj|i from the capsules in the
layer L(1).

xj =
p−1∑
i=0

cij · ûj|i, ûj|i =Wijui, (1)

where cij is the coupling coefficient from capsule
capsL

(1)

i to capsL
(2)

j . The coupling coefficients

sum to 1 between capsL
(1)

i and all capsules in L(2),
namely

∑p−1
j=0 cij = 1.

In capsule capsL
(2)

j , a non-linear "squashing"
function as shown in Equation 2 is applied to keep
the length by shrinking short vectors to almost 0
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and long vectors to a length slightly below 1.

vL
(2)

j =
||xj ||2

1 + ||xj ||2
· xj
||xj ||

, (2)

where vL
(2)

j is the squashing output of the capsule

capsL
(2)

j .
The coupling coefficient cij is updated by the

iterative dynamic routing, and it is a softmax result
based on the logic bij .

cij =
exp(bij)∑p−1

k=0 exp(bik)
, (3)

we follow the processing by Sabour et al. (2017).
Initially, bij equals to 0 and is updated as

bij = bij + ûTj|i · v
L(2)

j , (4)

which aims to measure the agreement between the
output vL

(2)

j of capsL
(2)

j and the prediction ûj|i of

capsL
(1)

i .
In the following layers, the function repeats the

same calculation. The output vL
(2)

is passed into
the capsules in the next layer and goes through
the weight matrix, the weighted sum and the non-
linear squashing function. With K layer itera-
tions, we take the outputs of layer K as the re-
lation or topic capsules {vL(K)

0 , vL
(K)

1 , ..., vL
(K)

p−1 }.
Finally, the capsules are concatenated into the new
caps-representation Rc

RCor for RCor. Through
the CapsR(θt) function, we have another caps-
representation Rc

KImp for KImp.

3.4 Multi-task Training
After obtaining these representations RMedL,
Rc

RCor and Rc
KImp, the model integrates three rep-

resentations into the overall representation R
′
MedL

for the relevance prediction. The prediction asks
the model to predict the relevance label from "Hr",
"Fr", "Mr" and "Ir", and the training loss is
marked as LMedL according to the golden label. To
make Rc

RCor and Rc
KImp learn accurate RCor and

KImp information, the model additionally trains
each representation with two specific tasks, namely
the RCor prediction and KImp prediction.

In RCor prediction, the model uses Rc
RCor as

the input feature and predicts the RCor label from
the binary labels. The binary labels correspond to
two cases of the RCor definition in Table 1, namely
whether the medical literature describe the relation-
ship of two entities. Therefore, the training loss of
this task is marked as LRCor.

Table 2: Comparison in terms of Macro-F1 and Micro-F1
scores (%) considering the label prediction on the relevance
prediction test set.

Type Method Micro-F1 Macro-F1
Baseline 1.RCor&KImp 33.1 24.8

unIR
2.TF · IDF 35.5 30.4
3.BM25 38.7 33.2

NeuL2R

4.KNRM 40.1 35.2
5.Conv-KNRM 45.2 40.4
6.BERT 59.7 49.2
7.SiameseBERT 59.1 48.4

KGemb

8.MedL+transH 58.3 46.9
9.MedL+rotatE 58.8 47.9
10.MedL+transD 59.7 48.6
11.MedL+transE 58.4 49.2

Ours 12.HiCapsRKL 64.9 54.8

In KImp prediction, the model uses Rc
KImp as

the input feature and predicts the KImp label. The
KImp labels correspond to four cases of the KImp
definition in Table 1, namely how important the
knowledge is to the subject of the medical literature.
Therefore, the training loss of this task is marked
as LKImp.

Finally, the total training loss of the model is
the sum of three prediction loss, namely L =
LMedL+LRCor+LKImp. According to the loss L,
the model fine-tunes the parameters in BERT en-
coder and updates the parameters in capsule routing
algorithms during the training.

4 Experiments and Results

4.1 Experimental Datasets and Metrics

In this work, the medical literature is collected
from the Chinese Medical Association in 2019,
and each literature is represented with a title, an
abstract, and keywords. The knowledge triples
are from the Chinese medical knowledge graph
(CMeKG (Odmaa et al., 2019)).

In the experiment, the training data are automat-
ically constructed based on the RCor and KImp
labels. We first calculated the RCor and KImp
labels between knowledge and medical literature
respectively, and then mapped to the relevance la-
bels according to Table 1. Two manually-labeled
test sets are proposed to evaluate the HiCapsRKL
and comparison methods. The knowledge and med-
ical literature in both sets are independent of the
training set without any intersections. Both test sets
are labeled with professional annotators according
to the TREC graded relevance assessment. In the
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Table 3: Comparison in terms of P@10, NDCG@10, MRR, and MAP scores (%) on the medical literature test set. The methods
in each type are ranked according to NDCG@10. In MRR, MAP, and P@10 metrics, the scores before “/” are calculated based
on the "Hr" literature, and the scores after “/” are based on the "Hr" and "Fr" literature simultaneously.

Type Method MRR MAP P@10 NDCG@10
Baseline 1.RCor&KImp 54.6/73.5 43.4/67.7 47.8/67.7 76.1

unIR
2.BM25 53.6/74.8 43.0/70.7 42.6/69.4 74.4
3.TF · IDF 54.8/76.9 43.3/70.7 43.4/69.9 75.8

NeuL2R

4.KNRM 53.9/78.1 43.2/72.1 42.7/70.2 77.1
5.Conv-KNRM 54.1/78.9 43.3/72.5 43.5/70.9 77.5
6.BERT 54.0/83.4 42.4/73.6 39.1/70.8 78.2
7.Siamese BERT 55.2/83.3 44.6/73.7 42.9/72.2 80.1

KG emb

8.MedL+rotatE 52.7/78.7 43.5/73.1 41.7/71.3 76.7
9.MedL+transH 57.6/80.3 44.7/73.4 43.2/72.0 78.4
10.MedL+transD 56.9/82.6 44.7/73.2 43.9/71.3 78.5
11.MedL+transE 54.7/81.6 44.9/74.5 44.6/73.7 79.2

Ours 12.HiCapsRKL 59.8/83.7 46.0/75.2 46.6/74.1 81.2

relevance prediction test set, the set asks the model
to predict the relevance label of the pair, and the
Macro-F1 and Micro-F1 are used as the evaluation
metrics. In the medical literature retrieval test set,
given a knowledge, the set asks the model to rank
the candidate documents based on their relevance
to the knowledge. The evaluation metrics on this
test set are normalized discounted cumulative gain
at 10 (NDCG@10), precision at 10 (P@10), mean
reciprocal rank (MRR), and mean average preci-
sion (MAP). More details about the data sets are
listed in the Appendix A.

4.2 Baseline and Comparison Methods

In this work, the baseline and comparison meth-
ods are the RCor&KImp baseline, the unsuper-
vised IR methods (unIR, namely TF · IDF and
BM25 (Robertson and Zaragoza, 2009)), the neu-
ral learning-to-rank models (NeuL2R, namely
KNRM (Xiong et al., 2017b), Conv-KNRM (Dai
et al., 2018), BERT (Devlin et al., 2019), and
Siamese BERT (Reimers and Gurevych, 2019)),
and the Translation based KG embedding meth-
ods (KGemb, namely transE (Bordes et al., 2013),
transH (Wang et al., 2014), transD (Ji et al., 2015),
and rotatE (Sun et al., 2019)). More details about
the method selection, descriptions, implementa-
tions and settings are listed in the Appendix A.

4.3 Experimental Results

Experimental results of all comparison methods
on the relevance prediction test set and medical
literature retrieval test set are listed in Table 2 and 3.

In Table 2, the HiCapsRKL model outperforms

all the other methods with Micro-F1 of 64.9% and
Macro-F1 of 54.8%. The Micro-F1 indicates that
HiCapsRKL gives more correct label predictions
than other methods, and the Macro-F1 indicates
that HiCapsRKL brings the overall improvements
on four categories because it is the average of the
F1 score of each category. Since the limitation of
generalization of RCor&KImp baseline, it may per-
form well on the covered cases but perform poor
on the un-covered ones. This may be the reason for
its poor performance on both metrics. The unsu-
pervised TF · IDF and BM25 methods show simi-
lar performance on both metrics, which indicates
the upper bound of the unsupervised methods. In
NeuL2R methods, CNKM and Conv-CNKM out-
perform the unsupervised methods with about 5-7%
improvement, which mainly benefits from the train-
ing set. When the BERT-based models (Line 6-7)
are trained, much higher performance is obtained.
The knowledge graph embeddings (Line 8-11) con-
tribute a lot to the performance improvement, but
they are unstable with about 2% differences com-
pared to BERT. The HiCapsRKL model integrates
the RCor and KImp information by capsule routing
algorithm, and it reaches the best performance.

In Table 3, the HiCapsRKL model also obtains
the best performance on all evaluation metrics. The
P@10 and NDCG@10 metrics reflect the relevance
situation of the top-10 literature among all the re-
trieved literature, while the MRR and MAP metrics
reflect the situation among all the retrieved litera-
ture. The NDCG@10 metric not only considers the
relevance label of each literature but also considers
its position in the top-10 literature. Therefore, it is a
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Table 4: The performance in ablation study on both test sets when removing one component from the HiCapsRKL model.

Method Micro-F1 Macro-F1 MRR MAP P@10 NDCG@10
HiCapsRKL 64.9 54.8 59.8/83.7 46.0/75.2 46.6/74.1 81.2

w/ CapsRMedL 64.1 53.8 59.5/83.4 45.6/74.6 45.1/72.3 80.4
w/o CapsRKImp 63.8 53.1 58.8/81.7 45.3/73.6 43.2/72.0 80.1
w/o CapsRRCor 63.5 52.5 57.9/82.7 45.4/74.4 44.2/71.7 79.8
w/o CapsR 63.1 50.7 53.3/81.3 42.8/74.1 40.6/71.4 79.1
w/o KImp 62.2 50.1 55.6/81.2 44.8/74.1 44.0/71.3 78.9
w/o RCor 60.5 49.2 54.0/81.4 42.4/73.6 39.1/70.8 78.2
w/o RCor&KImp 59.7 49.2 53.6/80.2 43.3/72.4 42.8/70.4 77.4

comprehensive metric to express the capabilities of
the model, and here we use it as the main basis for
ranking comparison methods. In the NDCG@10
column, each method can bring a certain improve-
ment. Especially, the NeuL2R and KGemb methods
outperform the unsupervised methods, and benefit-
ing from different mechanisms, they show different
improvements. Of all these results, the result of
HiCapsRKL indicates ranking more literature with
higher relevance in the front, and the improvement
is a large margin compared to other methods. The
P@10 metric counts the literature with a given la-
bel in the top-10 literature, and it mainly indicates
how much literature that meets the label can be
retrieved. Also, from the P@10 column, either on
the "Hr" label or on both "Hr" and "Fr" labels,
HiCapsRKL retrieves the most literature than oth-
ers. The MAP and MRR metrics report the ranking
performance of each method on all the retrieved
literature. They mainly report the position of the
relevance literature in all literature. The results on
these two metrics are roughly consistent to those
on the P@10 and NDCG@10 metrics. The results
on this set indicate that HiCapsRKL is effective
for retrieving the relevant literature, and it is also
proven to be useful for such tasks and is worthy of
further research.

4.4 Significance Test
The significance test was performed based on the
comparison methods that were implemented in this
paper. The well-known Wilcoxon signed-rank test
was used to measure whether the improvement be-
tween the corresponding data distributions in two
samples are significant. In the Wilcoxon signed-
rank test, we first randomly sampled 50% data in
each test set for 20 times and used these trained
methods to predict the results on the sample data.
Second, we scored the sample data with the eval-
uation script to obtain each metric score. After

sampling 20 times, we had a sequence of metric
scores with the length of 20 for each method. Fi-
nally, the corresponding metric score sequences of
any two methods were input into the "wilcox.test()"
function in R Tutorial, and the function will output
the P-value of two sequences to indicate the signifi-
cance. If P-value<0.05, the improvement between
two methods are significant, otherwise not. Finally,
in Table 2 and 3, on both test sets, the improvement
between HiCapsRKL and any comparison method
on each metric is significant (P-value<0.05).

5 Discussion

5.1 Cohen’s Kappa Coefficient

Cohen’s kappa coefficient (Artstein and Poesio,
2008) is a statistic to measure inter-rater reliability
for qualitative items between two categorical vari-
ables (McHugh, 2012). In this experiment, we used
the coefficient to measure the agreement between
the weakly supervised training set and the golden
standard.

First, we randomly sampled 25 pairs for each
relevance label from the training set, and obtained
a random subset with 100 pairs. Second, we man-
ually annotated these pairs. Finally, on the subset,
we calculated the Cohen’s kappa coefficient score
between the automatic labels and the annotated
labels. The calculation is completed by the "co-
hen_kappa_score" function in sklearn toolkit.

The final coefficient score for the random subset
is 0.707. Based on the interpretation of Kappa co-
efficient in Han (2020), the Kappa coefficient score
ranging between 0.61 and 0.80 means two variables
are "Substantial agreement". The higher the score
is, the more perfect the agreement is. For example,
the scores ranging between 0.81 and 0.99 means
"Near-perfect agreement". The Cohen’s kappa co-
efficient experiment indicates the good quality of
the training set. Since the training set is constructed
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Figure 4: Visualization of two examples for the relationship "indications" to show the attentive weights between
each caps-representation and its input text. Their golden labels are "Hr" and "Fr". The cube color in the heat map
is darker if the information rely more on these words or characters. For clarity, only the title is listed in KImp text.

from a large-scale knowledge and medical litera-
ture pairs, it only keep the pairs with high confi-
dence. As a result, the training set presents a higher
Kappa coefficient to indicate the substantial agree-
ment with the golden standard.

5.2 Ablation Study

We conducted experiments on removing one com-
ponent from HiCapsRKL to validate how it per-
forms on two test sets. The experimental results
are listed in Table 4. The removed component
each time is the capsule routing algorithm for
RCor (CapsRRCor), the capsule routing algorithm
for KImp (CapsRKImp), the capsule routing al-
gorithm for both (CapsR), the RCor part (RCor),
the KImp part (KImp), and the RCor&KImp parts
(RCor&KImp). Especially, an additional experi-
ment of applying capsule routing to RMedL is also
included as w/ CapsRMedL.

In table 4, from the last 3 lines, we can see that
the RCor&KImp information plays an important
role, and the RCor information shows greater in-
fluence than the KImp information. This is mainly
because the relation information is hard to capture
in the long medical literature. Moreover, the cap-
sule routing algorithms further improve the perfor-
mance when they are used for information extrac-
tion ("w/o Caps" 3 lines), which indicates that the
powerful ability of the capsule routing algorithms.
However, it is inappropriate to apply the capsule
routing to RMedL ("w/ CapsRMedL" line). This is
mainly because RMedL is learnt from the entire
medical literature, and it is usually asked to learn
comprehensive features to determine the hierarchi-
cal association, so there is no clear specific feature
to extract from it for this task. Overall, all these
components are still important in HiCapsRKL and
contribute to associating knowledge with medical
literature.

5.3 RCor&KImp Information Visualization

To clearly present how the learned caps-
representations in HiCapsRKL are related to their
input text fragment, we visualized the attentive
weights between the caps-representation and its in-
put text fragment. This analysis is performed on
the relevance predication test test.

First, we output the caps-representation Rc
RCor

and Rc
KImp in Section 3.3 using the trained HiCap-

sRKL model. Second, we output each token rep-
resentation in the RCor and KImp text fragments.
Each token representation is from the language
encoder. Finally, for RCor, we compute the co-
sine similarities as the attentive weights between
Rc

RCor and each token representation in RCor text
fragment, and visualize the attentive weights with
heat map. For KImp, the computation is between
Rc

KImp and each token representation in KImp text
fragment.

Figure 4 lists two typical examples for the most
common relationship "indications" due to page
limitations, which are randomly selected from all
samples to better present the relation between the
caps-representation and its input text fragments.
In Figure 4, in each example, the heat map in the
second block is used for the RCor text fragment
(RCor block), and the third block is for the KImp
text fragment (KImp block). Each block includes
the English text translated from its Chinese ver-
sion, heat map, corresponding Chinese characters
and English words. For the relationship, we can
see that the characters or words "in the treatment
of" in the heat map usually have a larger attentive
weight value than others. This indicates that the
Rc

RCor indeed contains the relationship informa-
tion. For the subject, the heat map in KImp block
is absolutely different. In the left example, the sub-
ject in the medical literature is about "pituitrin",
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"pulmonary tuberculosis", "evaluation of the effec-
tiveness". The knowledge is related to these words,
and the words also present larger attentive weight
values. The right example also proves the subject
information. The heat map of attentive weights
indicates that the caps-representations from HiCap-
sRKL have learnt the RCor&KImp information in
knowledge and medical literature.

6 Conclusion

In this paper, we proposed HiCapsRKL to lever-
age capsule routing to associate knowledge with
medical literature hierarchically. This is a worthy
research work for better integrating knowledge to
learn rich text representation. On two manually
labeled test sets, namely the relevance prediction
test set and medical literature retrieval test set, the
proposed HiCapsRKL model has shown SOTA per-
formances than other comparison methods. Ex-
haustive experimental results and analyses have
proven the excellent ability of the proposed model,
and showed its potential on learning association
features.

In the future, we will focus on applying this work
to improve the text representation of the knowledge
integration methods by the hierarchical knowledge.
For example, the HiCapsRKL can be used as multi-
task, using the relevance of the knowledge, e.g. the
softmax probability or relevance label, as a weight
or filter to control the integrating process. HiCap-
sRKL will help to reduce the effect of the noisy
knowledge and may further improve the quality of
text representation. Besides, this work can also
contribute to other NLP researches (e.g., the med-
ical information processing, question answering,
information retrieval, reading comprehension, etc),
which may benefit from integrating knowledge.
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A Appendix

A.1 The definition of four-point scale graded
relevance assessment

The four-point scale graded relevance assess-
ment (Kekäläinen, 2005) from Text REtrieval Con-
ference (TREC) is shown in Table 5. The assess-
ment has been adaptive for this work properly. In
this work, the TREC graded relevance assessment
is used as the standard to guide annotators to manu-
ally annotate the test sets and the subset from train-
ing set for Cohen’s kappa coefficient computing in
Section 5.1.

A.2 Constructing Training and Test sets
A.2.1 The weakly supervised training set
In this set, the relevance label between knowledge
and medical literature is automatically mapped ac-
cording to the RCor and KImp labels in Table 1. So
each training pair is assigned a relevance label, a
RCor label and a KImp label.

To calculate the RCor label of a pair, we first col-
lected the RCor texts as described in Section 3.1,
and grouped these texts based on the relationship
of two entities. Since two entities will only have
one relationship in CMeKG, the texts in one group
are the possible candidates to describe it. Second,
we replaced all the entities in the texts with a place-
holder e (denoted as e-placed texts) according to
CMeKG entities. Third, we used the KNN algo-
rithm to cluster the e-placed texts, and ranked the
clusters based on its text quantity. Next, we se-
lected top 15 clusters for each group, and randomly
sampled the e-placed texts in each cluster to manu-
ally check whether the texts describe the relation-
ship. When over 70% of the sampled e-placed
texts did describe, we regarded this cluster as the
correct one to describe the relationship. Finally,
when a new RCor text of one knowledge comes,
the KNN cluster algorithm is used to calculate the
distance with the known clusters in its group. Once
the text is clustered into the correct ones, the text
is regarded as describing the relationship, and the
training data pair is assigned a positive RCor label,
otherwise a negative RCor label.

To calculate the KImp label of a pair, we
first used the optimized latent Dirichlet allocation
(LDA) (Blei et al., 2003) model in Gensim toolkit
to learn a topic model with all the medical literature.
When training the LDA model, each literature is
considered to discuss one independent subject. We
passed the medical literature into the LDA model

sequentially, and used it to construct the word fre-
quency matrix for training. After the training, the
LDA model could output the subject probability
of each word in each medical literature. The word
probability has been normalized, and all values add
up to 1. Secondly, we used the trained LDA model
to output the subject probabilities of the entities
and relationship in knowledge related to one medi-
cal literature, respectively. Next, we added up the
entity and relationship probabilities as the subject
probability of the knowledge related to the medical
literature. Finally, based on the scope of the knowl-
edge subject probability, we set the KImp label at
four levels, roughly corresponding to the definition
in Table 1.

At last, for each knowledge and medical litera-
ture pair, we have its RCor label and KImp label,
and based on the mapping definition in Table 1 we
will also have an overall relevance label, which can
be used to train the matching model.

A.2.2 The manually-labeled relevance
prediction test set

In this set, the data pairs are randomly selected
from the whole resource that excludes those in the
training set. First, we recruited several professional
annotators with the language skills, and they were
trained in advance according to the TREC four-
point scale graded relevance assessment to deter-
mine the label of a pair. These annotators knew
nothing about the RCor and KImp or their defini-
tions. Second, for each data pair, we assigned three
annotators to annotate it simultaneously. Each an-
notator needs to assign one label from "Hr", "Fr",
"Mr" and "Ir" to a data pair. Finally, we deter-
mined the label of a pair by the crowd-sourcing
principle (Liu et al., 2018a). The crowd-sourcing
principle is that two or more annotators give the
same label, and if necessary, the third annotator
will not give a label that conflicts with other an-
notators (Liu et al., 2018a). The label from one
annotator conflicts with the other one if two la-
bels follow one of the cases, namely ("Hr", "Mr"),
("Fr", "Mr"), and ("Ir", "Hr" or "Fr" or "Mr"
). For these annotations, they will further discuss
them until no conflict.

A.2.3 The manually-labeled medical
literature retrieval test set

In this set, each knowledge corresponds to multi-
ple medical literature. These medical literature is
collected from the whole resource with the pooling
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Table 5: The four-point scale graded relevance assessment to indicate the relevance between the medical literature
and knowledge in this work.

Label Relevance Definition

Hr Highly relevance
The retrieved literature discusses the themes of the knowledge exhaustively.
In case of multi-faceted knowledge, all or most sub-themes or viewpoints are covered.

Fr Fairly relevance
The retrieved literature contains more information than the knowledge description
but the presentation is not exhaustive. In case of multi-faceted knowledge, only
some of the sub-themes or viewpoints are covered.

Mr Marginally relevance
The retrieved literature only points to the knowledge. It does not contain more
or other information than the description.

Ir Irrelevance The retrieved literature does not contain any information about the knowledge.

method. The annotators need to give the relevance
label between the knowledge and each medical liter-
ature. First, we randomly selected 100 knowledge
from CMeKG. Second, we trained the compari-
son and proposed models with the training set, and
then applied these trained models on knowledge to
retrieval medical literature from the whole medi-
cal literature resource. Third, the popular pooling
method (Spark-Jones, 1975) in IR was used, in
which the top-5 literature from the retrieval results
of each model was collected. All the literature
(total 5,500) from these models was gathered and
de-duplicated to obtain the candidate medical liter-
ature for each knowledge. Finally, the annotators
manually annotated the relevance label between
knowledge and its corresponding medical literature
from "Hr", "Fr", "Mr" and "Ir". Therefore, in the
medical literature retrieval test set, each knowledge
is assigned multiple literature. The annotations
and label determination process for each pair fol-
low the same crowd-sourcing process as that in the
relevance prediction test set.

The distributions of these datasets are shown
in Table 6, including the numbers of each label,
medical literature, knowledge, and relationship in
three datasets.

A.3 Comparison Methods
RCor&KImp Baseline: The baseline uses the
RCor and KImp labels to automatically determine
the relevance label of a pair on the relevance pre-
diction test set or rank the candidate literature on
the medical literature retrieval test set.
Unsupervised IR methods (unIR) (Robertson
and Zaragoza, 2009): The unsupervised IR meth-
ods are TF · IDF and BM25 (Robertson and
Zaragoza, 2009), which are popular unsupervised
methods based on the term frequency (TF) and in-
verse document frequency(IDF) to calculate the

relevance degree of knowledge and medical liter-
ature pair. On the relevance prediction test set,
we set the thresholds based on the training set for
different labels in both methods. On the medical
literature retrieval test set, the literature is ranked
based on their values.
Neural Learning-to-rank models (NeuL2R)
(Xiong et al., 2017b; Dai et al., 2018; De-
vlin et al., 2019; Reimers and Gurevych,
2019): The general NeuL2R models include the
KNRM (Xiong et al., 2017b), Conv-KNRM (Dai
et al., 2018), BERT (Devlin et al., 2019), and
Siamese BERT (Reimers and Gurevych, 2019),
which have shown promising performance on many
relevance prediction or ranking benchmarks. The
KNRM and Conv-KNRM models take the medi-
cal literature and knowledge as input and output
the relevance label for prediction or the relevance
probability for ranking. The BERT and Siamese
BERT models are pre-trained matching methods.
After fine-tuned training, they can also output a rel-
evance label for each medical literature and knowl-
edge pair. In BERT model, the medical literature
and knowledge are converted into one sequence
and modeled with multi-layer Transformer archi-
tecture. The Siamese BERT model is a modifica-
tion of BERT, in which the knowledge and medical
literature are fed into the shared BERT encoder
to learn independent representations, respectively.
Two representations are fused in the last layer for
the final label prediction. The source codes for
KNRM, Conv-KNRM, and BERT are from the of-
ficial release in GitHub. For Siamese BERT, we
follow the structure described in the paper (Reimers
and Gurevych, 2019) for this experiment. Besides,
we have tried to implement more recent matching
models (Liu et al., 2018b; Hofstätter, 2020) and
BERT-based variant models (Boualili et al., 2020;
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Table 6: The distributions of the medical literature (MedL), relationship (R), knowledge (K), and the pairs with different labels
under the graded relevance assessment in each dataset. "*": For clarity, these data are represented with the mapped labels as
shown in Table 1. There are no overlaps of medical literature or knowledge among three datasets.

Dataset Hr Fr Mr Ir Total MedL R K
Training∗ 14,792∗ 8,990∗ 9,249∗ 16,592∗ 49,623 36,048 97 24,160

Relevance Prediction 370 221 102 357 1,050 1,050 48 848
Ranking 1,393 857 799 420 3,469 3,469 50 100

Rudra and Anand, 2020), but we do not obtain the
expected excellent results. For fair comparison,
these methods are not included in this paper.
Translation based KG embedding methods
(KGemb) (Bordes et al., 2013; Wang et al.,
2014; Ji et al., 2015; Sun et al., 2019): The trans-
lation based knowledge graph embedding methods
learn the entity or relationship representation by en-
tity prediction. They are widely used to model the
knowledge in low dimensional vector space, and
also maintain the attributes of entity and relation-
ship. First, four well-known methods are applied
in this experiment, namely transE (Bordes et al.,
2013), transH (Wang et al., 2014), transD (Ji et al.,
2015), and rotatE (Sun et al., 2019). They are pre-
trained on the knowledge in CMeKG respectively,
and every method could output an embedding file
containing the entity embeddings and relationship
embeddings. These methods are implemented from
the OpenKE toolkit (Han et al., 2018). Second, in
each KGemb matching model, the knowledge rep-
resentation is the concatenation of the KG embed-
ding of entities and relationship, and the medical
literature presentation is from the BERT encoder.
Finally, Both representations are fused in the last
layer for the relevance prediction or ranking liter-
ature. Since the graph-based embedding methods,
e.g. node2vec (Grover and Leskovec, 2016) and
graph2vec (Narayanan et al., 2017), only focus on
the node embedding in the graph and ignore the
relationship, they are not included for comparison
in this work.
Our implementations: In this work, first we im-
plemented the proposed HiCapsRKL model accord-
ing to each part description in Section 3. Sec-
ond, we implemented seven additional models
for the ablation study experiment. These models
are CapsRMedL, CapsRRCor, CapsRKImp, CapsR,
RCor, KImp, and RCor&KImp. Each model is
one component different from the proposed HiCap-
sRKL model.

A.4 Experimental setup:
Some experimental settings or hyper parameters
in this work are listed below: The Chinese text
segmentation tool for sentence processing is Jieba.
During the processing, the entities in CMeKG and
keywords in the literature are also added into the
Jieba dictionary. The language encoder in all exper-
iments is the BERT-base, Chinese. The max length
of input pairs for modeling RCor and KImp texts is
256, and that of knowledge and medical literature
pair is 512. In multi-head splitting operation, the
splitting head is 12. In capsule routing method, the
number of capsules is 12, and the dimension D
of the input and output capsules is 64. The layer
iteration K is 3. The threshold scopes of distin-
guishing four relevance labels in TF · IDF method
are [0.75, 1.0), [0.6, 0.75), [0.45, 0.6), and (0.0,
0.45), respectively, and in BM25 method they are
[0.6, 1.0), [0.45, 0.6), [0.35, 0.45), and (0.0, 0.35),
respectively. The threshold scopes in Section A.2.1
for different KImp labels are [0.5, 1.0), [0.15, 0.5),
[0.05, 0.15), and (0.0, 0.05), respectively.

In Section 3.1 the sentences in KImp text frag-
ment are selected based on the distribution of the
top-10 words in the literature. As described in Sec-
tion A.2.1, we ranked and selected the top-10 words
based on the subject probability of each word, and
made statistics on which sentences cover the most
of these top-10 words, and selected them into the
KImp text fragment. Based on the coverage in the
statistics, these words mostly locate in the title, key-
words, first sentence, tail sentence, and other parts
in descending order. The work integrates three
representations in Section 3 to get the R

′
MedL by

using the "add" operation, and the cross-entropy
function is the loss function in HiCapsRKL model
training. Early stopping is used for parameter se-
lection when training all models. All the NeuL2R,
KGemb and our implemented methods are trained
with the weakly supervised training data, and all
comparison methods are evaluated on two test sets.


