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Abstract

Spelling Error Correction (SEC) that requires
high-level language understanding is a chal-
lenging but useful task. Current SEC ap-
proaches normally leverage a pre-training then
fine-tuning procedure that treats data equally.
By contrast, Curriculum Learning (CL) uti-
lizes training data differently during training
and has shown its effectiveness in improving
both performance and training efficiency in
many other NLP tasks. In NMT, a model’s per-
formance has been shown sensitive to the dif-
ficulty of training examples, and CL has been
shown effective to address this. In SEC, the
data from different language learners are nat-
urally distributed at different difficulty levels
(some errors made by beginners are obvious
to correct while some made by fluent speak-
ers are hard), and we expect that designing
a curriculum correspondingly for model learn-
ing may also help its training and bring about
better performance. In this paper, we study
how to further improve the performance of the
state-of-the-art SEC method with CL, and pro-
pose a Self-Supervised Curriculum Learning
(SSCL) approach. Specifically, we directly
use the cross-entropy loss as criteria for: 1)
scoring the difficulty of training data, and 2)
evaluating the competence of the model. In
our approach, CL improves the model train-
ing, which in return improves the CL measure-
ment. In our experiments on the SIGHAN
2015 Chinese spelling check task, we show
that SSCL is superior to previous norm-based
and uncertainty-aware approaches, and estab-
lish a new state of the art (74.38% F1).

1 Introduction

Spelling Error Correction (SEC) aims to automat-
ically correct the spelling errors in written text ei-
ther at word-level or character-level (Yu and Li,
2014; Yu et al., 2014; Zhang et al., 2015; Wang
et al., 2018; Hong et al., 2019; Wang et al., 2019a).

* Corresponding author.

Although being a very valuable natural language
application, SEC is a challenging task and needs
high-level language understanding.

Curriculum Learning (CL) (Bengio et al., 2009)
facilitates model training in an easy-to-hard order.
Previous studies (Kocmi and Bojar, 2017; Platan-
ios et al., 2019; Zhang et al., 2019; Zhou et al.,
2020) use sentence length or word rarity for CL,
but merely consider features over sentences, which
is not capable to fully reflect the data challenge for
a model. SEC data difficulty is influenced by many
factors, such as sentence length, word rarity and
a great diversity of errors. In addition, previous
CL approaches require careful design for data dif-
ficulty and training curricula. Ruiter et al. (2020)
show that self-supervised learning is a curriculum
learner, which might be useful to avoid such efforts.
In this paper, we propose a novel Self-Supervised
CL (SSCL) approach to evaluating data difficulty
from the model’s perspective and automatically ar-
ranging curricula for the model. Specifically, we
use the training loss as the measurement of data dif-
ficulty (i.e., data of higher loss are harder to learn),
and evaluate the model competence based on the
loss reduction during training (i.e., a model check-
point of lower loss is of higher performance). We
expect CL to improve the model training, which in
return improves the CL measurements in a virtuous
circle.

Our main contributions are as follows:

* We propose a novel SSCL approach which
avoids human design of CL measurements to
improve the SOTA SEC model,

* We empirically show that our SSCL approach
is better than the previous norm-based and
uncertainty-aware CL approaches, and es-
tablish a new SOTA (74.38% F1) on the
SIGHAN 2015 spelling error check task.
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Algorithm 1 Self-Supervised Curriculum Learning Strategy.

Input: Training set D = {(z", y")}N

n=1-
Output: Spelling error correction model 6.

—_

. N

2: Compute data difficulty {d ((x™, y”>)}

3: while 6 is not converged do "

4:  Compute model competence ¢ () using Eq. 7.
5:  Generate training subset D; = {(x”, y") ) :
6:

7

8:

9: end while
10: return 6

d((z",y") <é(t),
Compute instance-level data weight Wy = {wy ((=™,y"), t)[{(z",y") € D;}.

Compute token-level data weight W; = {w; ((«7', y2) , t)[(«?, yl") € (z™,y"), («",y") € D¢}
Update 6 with the loss of examples F(;n ) p, calculated by Wy, W, and Eq. 6.

: Train the initial SEC model 6 on the synthetic training set for one epoch.

. using the pre-trained system 60, Eq. 1 and Eq. 2.

(™ y™) € D}.

2 Self-Supervised Curriculum Learning

Curriculum learning requires to evaluate data dif-
ficulty and model competence during training, so
as to selectively feed data of similar competence
as the model’s ability to the model. The algorithm
is shown in Algorithm 1. We use the SEC model
trained on the 5SM synthetic data for one epoch to
compute the data difficulty. For every epoch, we
first compute model competence, and then select
instances whose data difficulties are no more than
the model competence to train model. In every
training step, we compute data weights for back-
propagation.

2.1 Data Difficulty

We use the training loss of each data instance as
the measurement of data difficulty. Intuitively,
the data with a lower loss are easier for the
model. For a dataset with IV instances (X,Y) =
{(z",y™)}_,, where ™ and y" are the input and
the reference respectively, SSCL measures the data
difficulty by the training loss.

d((z",y")) (D

We use the Cumulative Density Function (CDF)
to transfer the distribution of data difficulty into
(0, 1], following Liu et al. (2020):

= —logP (y"|2")

d((z",y")) €

2)

The score of more difficult data tends to be 1,
while that of easier data tends to be 0.

Rather than using the random initialized model

directly for the data difficulty evaluation, the SEC

(0.1] = CDF ({d (" y" 1)

model is first pre-trained for one epoch on the full
synthetic training set to ensure evaluation quality
of the start point.

Compared to previous approaches, SSCL has the
following advantages:

* It does not require manually designed data
difficulty evaluation metrics;

* The evaluation quality of data difficulty can
be improved together with the training of the
model.

2.2 Data Weight

In the training process of competence-based CL
(Platanios et al., 2019), the model treats all the
selected data equally, which may overuse the easy
data with low difficulty. It is however counter-
intuitive and wastes computational resources (Liu
et al., 2020). To address this issue, we additionally
introduce a weight to the loss function at instance-
level or token-level or both levels.

Following Liu et al. (2020), the instance-level
weight is defined as:
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wq ((z",y"), 1) = (

where )\, is the scaling hyperparameter smooth-
ing the data weight, d ((z", y™)) is the loss-based
data difficulty, and ¢ (¢) is the model competence
(described in Section 2.3).

For training step ¢ and the corresponding model
competence ¢ (t), the weighted training loss of the
instance wy ((™,y™), t) is:
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! (<xn’ yn> 7t) = —logP (yn’xn) Wq ((xnv yn> ) t)

4
where wg ((z™,y™) , t) encourages the training to
pay more attention to more difficult data with
higher data weights than to easier data.

Inspired by the token-level confidence (Wan
et al., 2020), we also weigh different tokens of
a data instance differently, and present the token-
level weight based on the squared token-level cross-

entropy loss normalized at the sentence-level:

we ({z, )5 1) = 1+

where [ ((z]',y!") , t) stands for the cross-entropy
loss of the ith token of the example (z",y") of
the tth training step. We ensure all weights to be
larger than 1 to ensure the gradient norm during
backpropagation (Gu et al., 2020).

The token-level weight unties tokens from train-
ing instances and encourages the model to pay
more attention to the difficult tokens in the sen-
tence.

We consider the combination of both instance-
level and token-level as:

((z",y") ; 1) = wa ((2"

! ©)
Z —logP (y a2 yw, (&, yP) , t)

=1

Yt t)*

2.3 Model Competence

To evaluate the model competence during training,
Platanios et al. (2019) use the training step to de-
termine the model competence. Liu et al. (2020)
utilize the norm of the model’s source embedding
to compute the model competence. Based on the
design of Liu et al. (2020), but using the loss re-
duction during training instead of the embedding
norm, we define the model competence as:

2

Aslo

¢(t) =min | 1, 4/l + 2 (7)

where ¢y = 0.01, [; denotes the loss reduction in
the training, [y is the total initial loss, and A; is

a task-independent hyperparameter to control the
length of the curriculum.

With [; increasing from low to high, the model’s
training gradually includes increasingly more diffi-
cult training data.

3 Experiments

3.1 Settings

We apply CL approaches to the SOTA Soft-Masked
BERT model (Zhang et al., 2020) to test their ef-
fectiveness.

Soft-Masked BERT (Zhang et al., 2020) is a
model architecture for SEC. It employs a Bi-GRU
as the detection network and the pre-trained BERT
(Devlin et al., 2019) as the correction network. The
detection network predicts the probabilities of er-
rors and the correction network predicts the proba-
bilities of error corrections, while the former passes
its prediction results to the latter.

Experiments were conducted on the SIGHAN
2015 Chinese spelling check task, we followed
Zhang et al. (2020) for experiment settings. Models
were first pre-trained on 5M synthetic data, and
then fine-tuned on the SIGHAN data. Parameters
were initialized under the Lipschitz constraint (Xu
et al., 2020).

We also compared our SSCL approach with the
Norm-Based CL (NBCL) (Liu et al., 2020) and the
Uncertainty-Aware CL (UACL) approaches (Zhou
et al., 2020). NBCL uses the norm of word em-
beddings to measure the difficulty of the sentence,
the competence of the model and the weight of the
sentence. UACL utilizes the average cross-entropy
of words in an example as its data difficulty, and ex-
ploits the variance of distributions over the Monte
Carlo Dropout (Gal and Ghahramani, 2016) results
of the model’s output probabilities to present the
model uncertainty.

Performance of different approaches was evalu-
ated by the sentence-level accuracy, precision, re-
call, and F1 score.

3.2 Main Results

The results of our approach and baselines are
shown in Table 1.

Table 1 shows that: 1) CL methods are able
to significantly further improve the performance
of the SOTA Soft-Masked BERT model (66.4%
F1). Specifically, NBCL and UACL are able to
further improve the Soft-Masked BERT model by
+6.81% and +7.33% F1 respectively; 2) our SSCL

3489



Method Detection Correction

Acc. Prec. Rec. F1. Acc. Prec. Rec. F1.

NTOU (2015) 422 422 418 420 390 38.1 352 36.6
NCTU-NTUT (2015) 60.1 71.7 33.6 457 564 663 26.1 375
HanSpeller++ (2015) 70.1 803 533 640 692 79.7 515 625
Hybird (2018) - 56.6 694 623 - - - 57.1
FASPell (2019) 742 67.6 60.0 635 737 66.6 59.1 62.6
Confusionset (2019a) - 66.8 73.1 69.8 - 715 595 649

BERT-Pretrain (2020) 6.8 3.6 7.0 4.7 5.2 2.0 3.8 2.6
BERT-Finetune (2020) 80.0 730 70.8 719 766 659 640 649
Soft-Masked BERT (2020) 80.9 733 73.2 735 774 6677 662 664
Soft-Masked BERT o,  80.27 86.49 7098 7797 7691 8526 64.14 73.21
Soft-Masked BERT 47, 80.09 85.31 7190 78.03 77.00 84.12 65.62 73.73

Soft-Masked BERT g5,

80.82 86.34 72.46

78.79 77.64 8520 6599 74.38

Table 1: Performances of different methods on the SIGHAN 2015 Chinese spelling check task.

Weisht Detection Correction
g Acc. Prec. Rec. F1. Acc. Prec. Rec. FI1.
wq 80.00 85.27 71.72 7791 76.64 8397 64.88 73.20
Wi 79.55 85.11 70.79 77.30 76.09 83.74 63.77 72.40
both  80.82 86.34 7246 78.79 77.64 85.20 65.99 74.38
Table 2: Ablation study on the instance-level and
token-level weight.
N Detection Correction
s Acc. Prec. Rec. F1. Acc. Prec. Rec. F1.
0.85 80.36 85.87 7190 7827 77.36 8476 6580 74.09
090 80.82 86.34 7246 78.79 77.64 8520 65.99 74.38
095 80.73 86.97 71.53 7850 77.73 8592 6543 7429

Table 3: Impact of different values of ;.

brings about more improvements over both NBCL
(+1.17% F1) and UACL (4-0.65% F1), indicating
that our automatic SSCL is superior to the previ-
ous approaches that require careful design for data
difficulty and training curricula; and 3) our SSCL
approach establishes a new SOTA (74.38% F1).

3.3 Effects of Instance-Level Weight and
Token-Level Weight

We carried out an ablation study for the instance-
level weight and token-level weight mechanisms.
The results are shown in Table 2.

Table 2 depicts that the instance-level weight
brings more improvements (4-0.80% F1) than the
token weight. But they are complementary and
their combination leads to the best performance.

3.4 Effects of Hyperparameter )

We study the effects of the hyperparameter A (in
Equation 7), and the results are shown in Table 3.

A larger \s; value means a more elaborate CL
process for the model. Table 3 shows that the high-
est F1 score was obtained with 0.90 as A\, which
indicates that 0.9 is a proper value for the learning
with the curriculum.

4 Related Work

Spelling Error Correction. SEC is helpful for
many applications, such as essay scoring (Burstein
and Chodorow, 1999), search (Martins and Silva,
2004; Gao et al., 2010), Optical Character Recogni-
tion (OCR) (Afli et al., 2016), machine translation
and tagging (Heigold et al., 2018), and many stud-
ies have been conducted on the SEC task. Unsuper-
vised approaches using language models and rules
(Yu and Li, 2014; Tseng et al., 2015) are widely
adopted. SEC is treated as a sequential labeling
problem in machine learning approaches, and con-
ditional random fields or hidden Markov models
(Tseng et al., 2015; Zhang et al., 2015) are previ-
ously employed. Recently, Guo et al. (2019); Wang
et al. (2019a) apply deep learning approaches to
spelling error correction, and based on the BERT
encoder, Hong et al. (2019) build a seq2seq model
for SEC.

Curriculum Learning. CL (Bengio et al., 2009)
aims to facilitate the model training in an easy-to-
hard order, which leads to improved model perfor-
mance (Tsvetkov et al., 2016; Sachan and Xing,
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2016; Amiri et al., 2017). Many studies adopt
CL to reinforce learning to optimize the model
parameters (Saito, 2018; Kumar et al., 2019). CL
also has shown to be useful for data processing to
improve the quality of the training data (Huang
and Du, 2019). Recently, CL has been widely
employed in the machine learning for NLP. It im-
proves the performance and the training efficiency
of the NMT models based on linguistic features
(Liu et al., 2020; Zhou et al., 2020; Wang et al.,
2020a), enhances the multi-domain correlation, and
addresses the domain imbalance issue (Wang et al.,
2020b). It also has been explored in other tasks,
such as response generation (Shen and Feng, 2020)
and reading comprehension (Tay et al., 2019).

Self-Supervised Learning. The basic idea of
self-supervised learning (SSL) is to automatically
generate or find supervision signals to solve tasks.
For instance, it is used to learn representations from
unlabeled data (Raina et al., 2007; Bengio et al.,
2013). Tang et al. (2019) use SSL to mine useful
attention supervision information from the train-
ing corpus to refine attention mechanisms. Kedia
and Chinthakindi (2021) combine the SSL with
pseudo-labels and meta-learning during inference
to improve generalization. Ruiter et al. (2019) use
an emergent NMT system to simultaneously select
training data and learn internal NMT representa-
tions in a SSL way without parallel data. SSL is
also adopted to solve many other problems, such as
document-level context or sentence summarization
(West et al., 2019; Wang et al., 2019b), dialogue
learning (Wu et al., 2019), improving data scarcity
or labeling costs (Fu et al., 2020; Yuan et al., 2020)
and generating meta-learning tasks from unlabeled
text (Bansal et al., 2020).

Comparison to Previous Work. Compared to
previous CL studies, we apply SSL to CL and
propose SSCL that uses the model to measure
data difficulty for training instance selection in an
easy-to-hard order. Compared to previous SEC ap-
proaches, we employ SSCL for the training of SEC,
which establishes a new SOTA (74.38% F1) on the
SIGHAN 2015 Chinese spelling check task.

5 Conclusion

In this paper, we applied curriculum learning to
spelling error correction and present a novel Self-
Supervised Curriculum Learning method.

We verify the effectiveness of the SSCL ap-

proach on the SIGHAN 2015 Chinese spelling
check task. Experiment results show that SSCL
is able to significantly improve the performance
of the state-of-the-art Soft-Masked BERT model
and establishes a new state-of-the-art performance
(74.38% F1). The fact that SSCL brings about
more improvements than the previous norm-based
and uncertainty-aware CL approaches also supports
its effectiveness as a CL approach.
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