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Abstract

Precisely defining the terminology is the first
step in scientific communication. Develop-
ing neural text generation models for defi-
nition generation can circumvent the labor-
intensity curation, further accelerating scien-
tific discovery. Unfortunately, the lack of
large-scale terminology definition dataset hin-
ders the process toward definition generation.
In this paper, we present a large-scale termi-
nology definition dataset Graphine covering
2,010,648 terminology definition pairs, span-
ning 227 biomedical subdisciplines. Termi-
nologies in each subdiscipline further form a
directed acyclic graph, opening up new av-
enues for developing graph-aware text genera-
tion models. We then proposed a novel graph-
aware definition generation model Graphex
that integrates transformer with graph neural
network. Our model outperforms existing
text generation models by exploiting the graph
structure of terminologies. We further demon-
strated how Graphine can be used to evaluate
pretrained language models, compare graph
representation learning methods and predict
sentence granularity. We envision Graphine to
be a unique resource for definition generation
and many other NLP tasks in biomedicine.1

1 Introduction

Obtaining the definition is the first step toward un-
derstanding a new terminology. The lack of precise
terminology definition poses great challenges in
scientific communication and collaboration (Oke,
2006; Cimino et al., 1994), which further hinders
new discovery. This problem becomes even more
severe in emerging research topics (Baig, 2020;
Baines et al., 2020), such as COVID-19, where
curated definitions could be imprecise and do not
scale to rapidly proposed terminologies.

∗∗Corresponding author
1Our Dataset is available at https://zenodo.org/

record/5320310#.YSxHgI77Q2w. Our code is avail-
able at https://github.com/zequnl/Graphex

Terminology: Enhancer of variegation
Definition: Genotype g1 is an enhancer of variegation if, and only if, some genotype 
g2 has a variegated phenotype and the degree of variegation caused by g1, g2 is 
greater than that caused by g2 alone.

Terminology: Modifier of variegation
Definition: Phenotype that is reduction in or loss of a stereotypical behavioral 
response to touch.

Terminology: Phenotype
Definition: A defect in or loss of some anatomical structure or biological process 
compared to wild-type.

227 directed acyclic graphs, 2,010,648 terminology definition pairs

Figure 1: Graphine dataset contains 2,010,648 ter-
minology definition pairs organized in 227 directed
acyclic graphs. Each node in the graph is associated
with a terminology and its definition. Terminologies
are organized from coarse-grained ones to fine-grained
ones in each graph.

Neural text generation (Bowman et al., 2016;
Vaswani et al., 2017; Sutskever et al., 2014; Song
et al., 2020b) could be a plausible solution to this
problem by generating definition text based on the
terminology text. Encouraging results by neural
text generation have been observed on related tasks,
such as paraphrase generation (Li et al., 2020),
description generation (Cheng et al., 2020), syn-
onym generation (Gupta et al., 2015) and data
augmentation (Malandrakis et al., 2019). How-
ever, it remains unclear how to generate definition,
which comprises concise text in the input space
(i.e., terminology) and longer text in the output
space (i.e., definition). Moreover, the absence of
large-scale terminology definition datasets impedes
the progress towards developing definition genera-
tion models.

Despite these challenges, scientific terminolo-
gies often form a directed acyclic graph (DAG),
which could be helpful in definition generation.
Each DAG organizes related terminologies from
general ones to specific ones with different granu-

https://zenodo.org/record/5320310#.YSxHgI77Q2w
https://zenodo.org/record/5320310#.YSxHgI77Q2w
https://github.com/zequnl/Graphex
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larity levels (Figure 1). These DAGs have proved
to be useful in assisting disease, cell type and func-
tion classification (Wang et al., 2020b; Song et al.,
2020a; Wang et al., 2015) by exploiting the princi-
ple that nearby terms on the graph are semantically
similar (Altshuler et al., 2000). Likewise, termi-
nologies that are closer on this DAG should acquire
similar definitions. Moreover, placing a new termi-
nology in an existing DAG requires considerably
less expert efforts than curating the definition, fur-
ther motivating us to generate the definition using
the DAG.

In this paper, we collectively advance definition
generation in the biomedical domain through intro-
ducing a terminology definition dataset Graphine
and a novel graph-aware text generation model
Graphex. Graphine encompasses 2,010,648 ter-
minology definition pairs encapsulated in 227
DAGs. These DAGs are collected from three major
biomedical ontology databases (Smith et al., 2007;
Noy et al., 2009; Jupp et al., 2015). All definitions
are curated by domain experts. Our graph-aware
text generation model Graphex utilizes the graph
structure to assist definition generation based on
the observation that nearby terminologies exhibit
semantically similar definitions.

Our human and automatic evaluations demon-
strate the substantial improvement of our method
on definition generation in comparison to existing
text generation methods that do not consider the
graph structure. In addition to definition gener-
ation, we illustrate how Graphine opens up new
avenues for investigating other tasks, including
domain-specific language model pretraining, graph
representation learning and a novel task of sen-
tence granularity prediction. Finally, we present
case studies of a failed generation by our method,
pinpointing directions for future improvement. To
the best of our knowledge, Graphine and Graphex
build up the first large-scale benchmark for termi-
nology definition generation, and can be broadly
applied to a variety of tasks.

2 Graphine Dataset

2.1 Data collection and statistics

We collect 2,010,648 biomedical terminology defi-
nition pairs from three major biomedical ontology
databases, including Open Biological and Biomed-
ical Ontology Foundry (OBO) (Smith et al., 2007),
BioPortal (Noy et al., 2009) and EMBL-EBI On-
tology Lookup Service (OLS) (Jupp et al., 2015),
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Figure 2: Bar plot showing the comparison between the
number of words in the definition and in the terminol-
ogy in Graphine.

spanning diverse biomedical subdisciplines such
as cellular biology, molecular biology and drug de-
velopment. For the definition that span multiple
sentences, we only consider the first sentence.

Even though these large-scale terminology defi-
nition pairs have already presented a novel resource
for definition generation, one unique feature of our
dataset is the graphs among terminologies. In par-
ticular, we construct a DAG for each biomedical
subdiscipline using ‘is a’ relationship from the orig-
inal data. As a result, each terminology belongs to
one DAG, where the node is associated with a ter-
minology and its definition and the edge links from
a general terminology to a specific one. We reduce
the number of DAGs from 499 to 227 by merging
DAGs that appear in more than one database.

We notice substantial amount of missing defi-
nitions in the original collection, confirming the
importance of computationally generating defini-
tion. In 81 out of 499 DAGs, more than 50% of
terminologies does not have any definition. We
thus exclude terminologies that do not have a cu-
rated definition. We further observed a substantial
discrepancy between the number of words in the
terminology and the number of words in the defi-
nition. The average number of words in the termi-
nology is 4.55, which is much lower than the 15.58
average number of words in the definition (Figure
2). This discrepancy could pose great challenges to
text generation model. We seek to alleviate it using
graph neighbor’s terminology and definition.

2.2 Data analysis

All definitions in our datasets are curated by do-
main experts, assuring the high-quality. Reassur-
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Figure 3: Analysis of Graphine. a, Violin plot showing the definition similarity between the same terminology and
the terminology synonym curated by different experts. b,c, Box plots showing the terminology similarity (b) and
the definition similarity (c) between nodes of different shortest distances on the DAG.

ingly, we investigate the consistency between ex-
pert curation by comparing the definitions of the
same terminology from different DAGs (e.g., ma-
terial maintenance appears in both obi and chmo).
Different DAGs are curated by different domain
experts in our dataset. We observed a remarkable
cosine similarity of 0.96 between definitions of
the same terminology (Figure 3a). We next exam-
ine the definitions of 67,257 terminology synonym
pairs that presents in different DAGs. Synonyms
are also curated by domain experts in the original
databases. We again observed prominent cosine
similarity 0.97, assuring the consistency between
expert curation.

To examine the quality of the graph structure, we
study the consistency between graph-based termi-
nology similarity and text-based terminology simi-
larity. Graph-based terminology similarity is calcu-
lated using the shortest distance on the graph. Text-
based similarity is calculated using BLEU score
(Papineni et al., 2002) between two terminologies.
We observed strong agreement between these two
similarity scores (Figure 3b). This agreement is
even more substantial between graph-based termi-
nology similarity and text-based definition similar-
ity (Figure 3c). Collectively, these results indicate
that nearby nodes exhibit similar terminologies and
definitions, suggesting the opportunity to improve
definition generation using the graph structure.

3 Graph-aware Definition Generation:
Task and Model

3.1 Problem Definition
Our goal is to generate the definition text according
to the terminology text. Meanwhile, terminologies
form a DAG, which could be used to assist defi-
nition generation. More precisely, the input is a

directed acyclic graph G = (V,E, T,D), where
V = {vi} is the set of nodes and E ⊆ V × V is
the set of edges. Each node vi is associated with
a terminology ti ∈ T and a definition di ∈ D. ti
and di are both token sequences defined as ti ,〈
t1i , t

2
i , . . . , t

nti
i

〉
and di ,

〈
d1i , d

2
i , . . . , d

ndi
i

〉
,

where tji ∈ C, dji ∈ C and C is the vocabulary.
In practice, the terminology is often a phrase and
the definition is a sentence. Therefore, ndi is much
larger than nti .

We consider a transductive learning setting
where V composes of Vtrain and Vtest. Vtrain is
the set of nodes that have both terminologies and
definitions. Vtest is the set of nodes that only have
terminologies. The goal of graph-aware definition
generation is to generate di for vi ∈ Vtest accord-
ing to both the terminology ti and the graph G.
Although each graph G in Graphine is a DAG, our
method can be applied to any kind of graphs.

The proposed definition generation task is dis-
tinct from conditional text generation and machine
translation due to the presence of this graph G. G
makes it possible to transfer knowledge between
terminologies based on our previous observation
that nearby nodes on the graph have similar defi-
nitions. We thus aim at propagating terminology
and definition using the graph structure to enhance
definition generation.

3.2 Model
We propose a graph-aware definition generation ap-
proach Graphex that generates definition based on
the global semantic embedding and the local seman-
tic embedding using a two-stage approach (Fig. 4).
At the first stage, global semantic embeddings are
calculated through propagating terminology and
definition on the graph. At the second stage, the lo-
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Figure 4: Flowchart of Graphex. Graphex considers
the graph structure during definition generation by con-
catenating the global semantic embeddings and the lo-
cal semantic embedding.

cal semantic embedding is obtained by embedding
the specific terminology. Finally, Graphex gener-
ates the definition di by using the concatenation of
global and local semantic embeddings as the input
to a Transformer (Vaswani et al., 2017).

3.2.1 Encoding global semantic via graph
propagation

At the first stage, we obtain two global semantic
embedding gti and gdi of each node vi through prop-
agating terminology and definition on the graph, re-
spectively. In particular, we follow a previous work
(Kotitsas et al., 2019) to calculate gti and gdi using
a bidirectional GRU-based neural network, which
aggregates the embeddings of individual words in
ti as the node features of the node vi and then
smooths node features based on random walk.

To encode the network structure, we sample m
random walk paths of fixed length k starting from
each node (Grover and Leskovec, 2016). The r-th
random walk starting from the node vi is denoted as
Pvi,r = 〈p1,r, p2,r, ..., pk,r〉 (r = 1, . . . ,m), where
p1,r = vi. We then learn two embeddings wi and
ui for each node vi based on the arriving proba-
bility calculated from these sampled random walk
paths. In particular, the predicted probability of ar-
riving the node vj through the walk Pvi,r is defined
as:

p(vj |vi) =
exp(uT

j wi)∑
vk∈V exp(uT

kwi)
. (1)

Here, wi is the feature embedding and ui is the
context embedding for node vi.

Instead of trainingwi and ui solely based on the
network structure, we use text feature from ti to
regularize them. We define q(c) and h(c) to be the

two separate trainable word embeddings for each
token c in the vocabulary C. Then q(tki ) and h(tki )
are the trainable word embeddings of the k-th token
in the terminology ti. We use a shared bidirectional
GRU network to encode ti into ui and wi as:

uf
i = GRUf (q(t

1
i ), . . . , q(t

n
i )) (2)

ub
i = GRUb(q(t

1
i ), . . . , q(t

n
i )) (3)

ui = Max_pooling(ub
i + u

f
i ) (4)

wf
i = GRUf (h(t

1
i ), . . . ,h(t

n
i )) (5)

wb
i = GRUb(h(t

1
i ), . . . ,h(t

n
i )) (6)

wi = Max_pooling(wf
i +wb

i ). (7)

The loss function at the first stage is defined as:

L1 = −
∑
vi∈V

m∑
r=1

k∑
j=2

log p(vj,r|v1,r = vi) (8)

After minimizing this loss function, gti is obtained
by concatenating wi and ui, which represents the
global semantic of node vi using the terminology.
Likewise, we can obtain gdi by first encoding di
into the feature embedding w′i and the context em-
bedding u′i, and then concatenating them. For node
that does not have the definition (i.e., vi ∈ Vtest),
we generate a d′i as replacement by using ti as in-
put to a Transformer trained on other terminology
definition pairs.

3.2.2 Fusing local and global semantic for
definition generation

At the second stage, we generate the definition di
for node vi conditioned on both the local seman-
tic li and the global semantic gti and gdi . The lo-
cal semantic li is obtained by embedding ti using
BioBERT (Lee et al., 2020). We also examined
other BERT-based models in the experiments. Let
P (di|li, gti , gdi ;θ) be the transformer model param-
eterized by θ. The loss function at the second stage
is defined as

L2 = −
∑
i∈|V |

logP (di|li, gti , gdi ;θ). (9)

4 Experimental Results

4.1 Experimental setup
We conduct experiments using DAGs included in
the OBO database. To study the effect of graph
structures, we only consider graphs that show a
high correlation between the graph-based similarity
and the text-based definition similarity as measured
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in Section 2.2. Only definitions of the training data
are used to calculate the correlation. We split the
terminology definition pairs into 70% training, 10%
validation and 20% test. The data split and model
training are done within each DAG separately.

We compare our method with three conventional
conditional text generation models: Seq2Seq (Bah-
danau et al., 2014), CVAE (Yan et al., 2016) and
Transformer (Vaswani et al., 2017). All of them
take the terminology as the input and the definition
as the output. Since none of them considers the
graph structure, our comparison could reveal the
importance of considering graph structures. We
further implement two variants of our model to
investigate the impact of propagating definition
on the graph and propagating terminology on the
graph. In particular, Our Model w/o TG is the
Graphex framework that does not incorporate the
terminology-derived global semantic embedding
gti in eq. 9. Our Model w/o DG is the Graphex
framework that does not incorporate the definition-
derived global semantic embedding gdi in eq. 9.

We used the same pretrained language model for
all the competing methods. We chose BioBERT as
it achieved the best performance among different
pretrained language models. LSTM is used as the
encoder and the decoder of Seq2seq and CVAE
and the dimensions of the word embedding and
the hidden state are set to 768. The dimensions
of the word embedding and the hidden state of
Transformer are also set to 768. In our model, we
used the default hyperparameters in (Kotitsas et al.,
2019) in the first stage and use the same structure
as Transformer baseline in the second stage. The
dimensions of gdi and gti are 768. All the models
were trained using the same data splits.

We used Graphex as a benchmark to compare
pretrained language models on Graphine. We
use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), SciBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2020) and BioBERT (Lee
et al., 2020) to provide the pretrained word em-
beddings for Graphine respectively. SciBERT fine-
tunes BERT on scientific data. PubMedBERT and
BioBERT are domain-specific BERTs on biomedi-
cal domain. The word embedding dimensions are
all set to 768.

We compare different graph embedding methods,
GCN (Kipf and Welling, 2016), HGCN (Chami
et al., 2019a) and GAT (Veličković et al., 2018) on
our dataset. The AUC and AP of link prediction are

used to evaluate the quality of graph embedding.
We compare the three graph neural network meth-
ods with Euclidean embeddings and Poincare em-
beddings methods, Euclidean and PoincareBall
(Nickel and Kiela, 2017), and feature-based meth-
ods, HNN (Chami et al., 2019b) and MLP. We fol-
low the default hyperparameter settings in (Chami
et al., 2019a)

We perform both automatic evaluation and hu-
man evaluation. For automatic evaluation, we
used six standard metrics including BLEU1-4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and NIST (Doddington, 2002). BLEU1-4
measures the n-gram overlap between the generated
sentence and the target sentence. METEOR im-
proves BLEU by considering synonyms when com-
paring unigrams and using F1 instead of precision.
NIST reweights words by frequency when match-
ing n-grams to adjust the contribution of common
words like "is". For human evaluation, we recruited
3 annotators to score the generated sentences of
each method for 50 terminologies. Annotators are
requested to grade each generated definition as 0
(bad), 1 (fair) and 2 (good).

4.2 Graphex improves definition generation
by considering the graph structure

We first evaluated the performance of definition
generation by Graphex. We compared Graphex
with baselines that do not consider the graph struc-
ture (Table 1). We found that Graphex, which
uses both the definition graph and the terminol-
ogy graph, obtained the best performance on all
six metrics. The improvement is most prominent
against baselines that do not use the graph struc-
ture. For example, Graphex obtained 34.35 BLEU1
score, which is 7.65% and 59.62% higher than
Transformer and Seq2seq. Moreover, we observed
decreased performance when only the terminol-
ogy graph (Our Method w/o DG) or the definition
graph (Our Method w/o TG) is considered. Despite
less superior performance, these two variants are
still consistently better than baselines that do not
use graphs, confirming the importance of modeling
graph structures in definition generation.

We showed two examples of how the graph can
help Graphine generate better definition (Table 2).
In both examples, the true definition of the nearby
node is included in the training set, and can thus
be used to capture the global semantic. We found
that Graphex selectively copied tokens in the true
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Model TG DG BLEU1 BLEU2 BLEU3 BLEU4 METEOR NIST Human
Seq2Seq 21.52 14.47 10.82 8.56 9.42 0.69 0.87
CVAE 20.05 13.48 10.02 8.23 8.97 0.67 0.83
Transformer 31.91 25.09 21.26 18.70 15.81 1.06 1.01
Our Model w/o TG X 33.81 26.23 22.16 19.26 16.55 1.10 1.09
Our Model w/o DG X 32.47 25.52 21.73 19.30 16.17 1.11 1.06
Our Model X X 34.35 26.97 22.99 20.21 16.57 1.15 1.12

Table 1: Comparison on the performance of definition generation using automatic and human evaluation. TG (DG)
refers to propagation on terminologies (definitions).

Terminology: estuarine tidal riverine open water pycnocline
True definition: an estuarine open water pycnocline which is composed primarily of fresh tidal water
Parent definition: a pycnocline which is part of an estuarine water body, spanning from a fiat boundary where the estuary

bed below the water column reaches a depth of 4 meters until the end of the estuary most distal from the
coast

Graphex: an estuarine water which extends from an estuarine pycnocline or mid - depth to the estuary bed and
from a fiat boundary where the estuary bed below the water column

Transformer: an area of a planet’s surface which is primarily covered by UNK herbaceous vegetation and where the
underlying soil or

Terminology: increased eye tumor incidence
True definition: greater than the expected number of tumors originating in the eye in a given population in a given time

period
Child definition: greater than the expected number of neoplasms in the retina, usually in the form of a distinct mass, in a

specific population in a given time period
Graphex: greater than the expected number of neoplasms in the gastric tissue usually in the form of a distinct mass

, in a specific population in a given time period
Transformer: greater than the expected number of UNK in the lung , usually in the form of a distinct mass

Table 2: Comparison between definitions generated by Graphex and the best baseline Transformer. True definitions
of the nearby node are also listed to illustrate the effect of considering graph structures.

definition of the parent node, leading to a more
accurate generation. For example, in the first case,
Graphex successfully generated estuarine water
and estuary bed below the water column. In the
second case, Graphex propagated in a given popu-
lation in a given time period from the child node,
resulting in the correct generation of in a given
population in a given time. In contrast, the Trans-
former baseline is not able to generate such detailed
information in both examples due to the ignorance
of graph structures. Since the pretrained language
model and the graph representation method are two
important model selections in Graphex, we next
leverage Graphex to compare different pretrained
language models and graph representation meth-
ods, shedding light on future directions in definition
generation.

4.3 Comparing Pretrained Language Models

Domain-specific pretrained language models have
achieved impressive performance on tasks such
as named entity recognition, information extrac-
tion and relation extraction in biomedicine (Beltagy
et al., 2019; Lee et al., 2020). One barrier to more
thoroughly comparing these pretrained language

Pretrain BLEU1 BLEU2 BLEU3 BLEU4 METEOR NIST
BERT 30.83 23.72 19.95 17.50 14.70 1.02
RoBERTa 25.12 18.36 14.95 12.73 12.17 0.80
SciBERT 33.95 26.55 22.53 19.96 16.21 1.15
PubMedBERT 31.35 24.31 20.57 18.01 15.12 1.05
BioBERT 34.35 26.97 22.99 20.21 16.57 1.15

Table 3: Comparison on the performance of definition
generation using different pretrained language mod-
els. SciBERT, PubMedBERT, BioBERT are domain-
specific pretrained language models.

models is the lack of domain-specific benchmarks.
Graphine could be used as a novel domain-specific
benchmark in biomedicine. As a proof-of-concept,
we compared five pretrained language models, in-
cluding three biomedical domain-specific models,
by using it to generate the local semantic li in
eq. 8 (Table 3). We found that domain-specific
pretrained language models have consistently bet-
ter performance than general pretrained language
models, which agrees with previous findings on
the value of domain-specific language models in
biomedicine (Gu et al., 2020; Lee et al., 2020; Belt-
agy et al., 2019). Within the three domain-specific
pretrained language models, BioBERT and SciB-
ERT obtained the most prominent performance.
This might be due to the corpus these two models
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Model AUC AP
Euclidean 0.8979 0.9307
PoincareBall 0.9069 0.9346
HNN 0.9023 0.9211
MLP 0.8892 0.9258
GCN 0.9493 0.9659
HGCN 0.8996 0.9365
GAT 0.8867 0.9179

Table 4: Comparison on the performance of link predic-
tion using different graph representation learning meth-
ods.

were trained on, suggesting the possibility to use
Graphine to further compare different biomedical
corpus (Wang et al., 2020a; Lo et al., 2020).

4.4 Comparing graph representation
methods

We next sought to compare graph representation
methods using a link prediction task based on our
dataset. Graphs in our dataset present a hierarchi-
cal structure, which poses a unique challenge for
graph representation methods. The results are sum-
marized in Table 4 . We found that methods that
consider the graph structure have overall superior
performance, conforming the importance of the
graph structure in definition generation. Among all
approaches, GCN obtained the best performance.
We didn’t observe improved performance by em-
bedding graphs into the hyperbolic space, which is
contradictory to prior work showing that hyperbolic
embedding can better model hierarchical structures
(Nickel and Kiela, 2017; Chami et al., 2019a). We
attribute this to the more complicated node features
in contrast to previous work. In our dataset, node
features are text that has arbitrary length and large
vocabulary, introducing new challenges to hyper-
bolic embedding-based methods.

4.5 Sentence granularity prediction
Finally, we exploited Graphine for a novel task of
sentence granularity prediction. Measuring sen-
tence semantic similarity is crucial for many NLP
tasks. Existing sentence similarity benchmarks
only provide binary labels indicating similar or dis-
similar (Li et al., 2006; Mueller and Thyagarajan,
2016). In contrast, our dataset is able to charac-
terize the specific granularity of sentences beyond
similarity. We define the ground truth granularity
of a definition sentence as its depth in the DAG,
where a smaller (larger) depth indicates a more
coarse-grained (fine-grained) sentence. Based on
this granularity benchmark, we define two specific

tasks: relative granularity prediction and absolute
granularity prediction. Relative granularity pre-
diction aims at predicting which sentence is more
fine-grained between two given sentences. Abso-
lute granularity prediction aims at predicting the
specific granularity of a given sentence. The in-
comparable granularity levels from different graphs
could introduce systematic bias to comparing sen-
tences from different graphs. To tackle this prob-
lem, we first performed a graph alignment among
all DAGs using terminologies that appeared in mul-
tiple DAGs as anchors. After the alignment, all
sentences are associated with a granularity level be-
tween 1 and 17, where 1 indicates the most coarse-
grained sentence.

To predict the relative granularity, we used the
concatenation of the BERT embeddings of two sen-
tences as features to train an multi-layer percep-
tron (MLP). When comparing sentences within the
same DAG, 76% of graphs obtained an accuracy
larger than 0.80 (Figure 5a). We next examined
the accuracy of classifying a pair of sentences from
two different DAGs and also observed a good ac-
curacy of 0.81. To predict the absolute granularity,
we used the BERT embedding of each sentence as
features to train an MLP-based multi-class classi-
fier. We again observed desirable accuracy of 0.71
and 0.81 and Spearman correlation 0.60 and 0.69
within each graph and across all graphs (Figure
5b,c). In addition to predicting sentence granular-
ity, we envision this new benchmark of sentence
granularity could provide deeper insight into evalu-
ating existing sentence similarity models through
transforming it from a binary classification task to
a ranking task.

5 Future work motivated by an opposite
generation

Despite the overall improved performance of
Graphex, we found that some definitions gener-
ated by Graphex present an opposite meaning to
the truth definition. We showed one of such exam-
ple in Figure 6 . Although the definition generated
by Graphex for hyperlasia matches the true defini-
tion well, the generated definition has the opposite
semantic meaning (e.g., reduction, reduced) to the
true definition (e.g., increase, increased). Notably,
such failed generations cannot be captured by exist-
ing n-gram based metrics, leading to artificial im-
provement. After a closer examination, we found
that this opposite generation is caused by using
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Figure 5: Sentence granularity prediction. a, Bar plot showing the accuracy of relative granularity prediction within
each DAG. b,c, Heatmaps showing the accuracy of absolute granularity prediction within each DAG (b) and across
all DAGs (c).

Cell number 
defective

Decreased 
cell number

Increased 
cell number

Terminology: Hyperplasia
True definition: phenotype that is an increase in size of a tissue or organ due to increased 
numbers of cells,  where the affected tissue or organ maintains its normal form.

Generated definition: phenotype that is a reduction in size of an organ or tissue compared 
to wild - type due to reduced

Terminology: Hypoplasia

True definition: Phenotype that is a reduction in size of an organ or tissue compared to 
wild-type due to reduced numbers of cells being produced during its development or growth.

Training Test

Figure 6: A failed generation that cannot be captured by existing evaluation metrics. Graphex generated a sentence
that has the opposite meaning to the true definition.

the definition from a cousin node hypolasia in the
graph. Moreover, existing BERT-based models are
not able to effectively associate subword hypo (hy-
per) in the terminology with reduce (increase) in
the definition. We plan to explore the possibility of
developing faithful generation models (Wang et al.,
2020d) to address this problem and leave it as an
important future work.

6 Relate Work

Existing works related to terminology definition
mainly focus on definition extraction (Westerhout,
2009; Anke and Schockaert, 2018; Veyseh et al.,
2020; Li et al., 2016) and technology entity recog-
nition (Fahmi and Bouma, 2006; Gao et al., 2018).
Definitions are extracted from different sources,
such as Wikipedia (Espinosa-Anke and Saggion,
2014; Li et al., 2016) and scholarly articles (Jin
et al., 2013; Spala et al., 2019). In contrast to previ-
ous work, We study the novel problem of terminol-
ogy definition generation. Notably, the proposed
dataset Graphine can also be used as a new bench-
mark to evaluate existing approaches on extracting

definitions from the free text.

Many scientific literature datasets have been
curated for a variety of tasks, such as hypothe-
sis generation (Spangler et al., 2014), scientific
claim verification (Wadden et al., 2020), paraphrase
identification (Vinyals et al., 2016; Dong et al.,
2021; Xu et al., 2016) and citation recommendation
(Saier and Färber, 2019). Paraphrase identification
datasets, such as MSCOCO, Quora, MSR, ParaSCI,
are most related to our work (Vinyals et al., 2016;
Dong et al., 2021; Xu et al., 2016). Distinct from
these datasets, we focused on a different task (i.e.,
definition generation) and a different domains (i.e.,
biomedical domain).

Graph2text and data2text, which aim at generat-
ing text from structured data, have attracted increas-
ing attention (Marcheggiani and Perez-Beltrachini,
2018; Cai and Lam, 2020; Yao et al., 2020; Guo
et al., 2020; Wang et al., 2019). Among them,
AMR-to-text Generation and knowledge graph to
text generation also consider graph structures. The
Abstract Meaning Representation (AMR) repre-
sents the semantic information of each sentence
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using a rooted directed graph, where each edge
is a semantic relations and each node is a con-
cept (Song et al., 2018; Zhu et al., 2019; Mager
et al., 2020; Wang et al., 2020c). Knowledge graph
to text generation has advanced tasks such as entity
description generation and medical image report by
generating text from a subgraph in the knowledge
graph (Cheng et al., 2020; Li et al., 2019). De-
spite all considering graph structures, our method
generates one sentence for each node on a large
directed acyclic graph, whereas AMR-to-text and
knowledge graph to text generate sentences for a
subgraph or the entire graph.

7 Conclusion

We have introduced a novel dataset Graphine for
studying definition generation. Graphine includes
2,010,648 terminology definition pairs from three
major biomedical databases. Terminologies in
Graphine form 227 directed acyclic graphs, which
make Graphine a unique resource for exploring
graph-aware text generation. We have proposed a
graph-aware definition generation method Graphex,
which takes the graph structure into consideration.
Graphex has obtained substantial improvement
against methods that do not consider graph struc-
tures. Moreover, we have illustrated how Graphine
can be used to evaluate other tasks, including
comparing pretrained language models, comparing
graph representation learning methods and predict-
ing sentence granularity. Finally, we have analyzed
the definition generated by our method and pro-
posed future directions to improve. Collectively,
we envision our dataset to be a unique resource for
definition generation and could be broadly utilized
by other natural language processing applications.
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