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Abstract

Non-autoregressive neural machine transla-
tion, which decomposes the dependence on
previous target tokens from the inputs of the
decoder, has achieved impressive inference
speedup but at the cost of inferior accuracy.
Previous works employ iterative decoding to
improve the translation by applying multiple
refinement iterations. However, a serious
drawback is that these approaches expose the
serious weakness in recognizing the erroneous
translation pieces. In this paper, we propose an
architecture named REWRITENAT to explic-
itly learn to rewrite the erroneous translation
pieces. Specifically, REWRITENAT utilizes a
locator module to locate the erroneous ones,
which are then revised into the correct ones by
a revisor module. Towards keeping the consis-
tency of data distribution with iterative decod-
ing, an iterative training strategy is employed
to further improve the capacity of rewriting.
Extensive experiments conducted on several
widely-used benchmarks show that REWRITE-
NAT can achieve better performance while sig-
nificantly reducing decoding time, compared
with previous iterative decoding strategies. In
particular, REWRITENAT can obtain compet-
itive results with autoregressive translation
on WMT14 En↔De, En→Fr and WMT16
Ro→En translation benchmarks1.

1 Introduction

State-of-the-art neural machine translation (NMT)
systems use autoregressive decoding where the de-
coder generates a target sentence word by word,
and the generation of the latter words depends on
previously generated ones (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). In-
stead of sequential decoding as in the autoregres-
sive translation (AT), non-autoregressive neural ma-
chine translation (NAT) (Gu et al., 2018; Guo et al.,
2019; Ma et al., 2019; Wei et al., 2019; Sun et al.,

1Our code is publicly available at https://github.
com/xwgeng/RewriteNAT.
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Figure 1: Illustration of the difference in masking
words between (a) conventional masked LM-based
NAT (Ghazvininejad et al., 2019) and (b) our proposed
REWRITENAT. Instead of using inefficient heuristic
rules which perhaps mask correct words in some case
(e.g., y1y4), REWRITENAT utilizes an additional loca-
tor module to learn to explicitly distinguish erroneous
translation pieces (e.g., ŷ2ŷ3), annotated as special sym-
bol (i.e., [MASK]).

2019; Ghazvininejad et al., 2020a; Zhou et al.,
2020; Ding et al., 2021a,b) generates the whole
target sentence simultaneously. To enable paral-
lel decoding, NAT imposes a conditional indepen-
dence assumption among words in target sentences,
yielding significantly faster inference speed than
AT. However, since intrinsic dependencies within
target sentence are omitted, NAT suffers from se-
vere inconsistency problem (Wang et al., 2019),
leading to inferior translation quality, especially
when capturing highly multimodal distribution of
target translations (Gu et al., 2018).

Towards tackling above fundamental problem,
iterative decoding (Lee et al., 2018; Ghazvinine-
jad et al., 2019; Gu et al., 2019; Guo et al., 2020b;
Ghazvininejad et al., 2020b) is proposed to improve
NAT by repeatedly refining previously generated
translation. Instead of enforcing NAT to generate
accurate translation by one-pass decoding, these
approaches are expected to revise incorrect transla-
tion pieces through several refinements (Xia et al.,
2017; Zhang et al., 2018; Geng et al., 2018). With
the introduction of iterative decoding, NAT further

https://github.com/xwgeng/RewriteNAT
https://github.com/xwgeng/RewriteNAT
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boosts translation quality, bridging performance
gap between NAT and AT models.

However, existing iterative NAT models expose
the weakness in distinguishing the erroneous words.
The dominant approach to identify the mistakes
is mask-predict algorithm (Ghazvininejad et al.,
2019; Guo et al., 2020b), which employs inefficient
heuristic rules to roughly choose the least confident
words as the erroneous. In some case, mask-predict
may mistake to rewrite correct words while main-
tain erroneous ones, acting as noises to make a
negative impact on subsequent iterations. Without
explicitly classifying translated words into wrong
or right, the translations decode in constant number
of iterations, hindering the further improvement of
inference speed. Besides, decoder inputs of prevail-
ing iterative NAT models (Kasai et al., 2020; Guo
et al., 2020b) almost come from the ground-truth
during training, while target sentences generated
at different refinement steps are taken as decoder
inputs in inference, creating a discrepancy that can
hurt performance.

In this paper, we propose an architecture named
REWRITENAT, which explicitly learns to rewrite
erroneous translation pieces. Specifically, we in-
troduce a locator module to locate incorrect words
within previously generated translation. The lo-
cated words will be masked out and revised by the
revisor module in subsequent refinement. We frame
learning to rewrite, comprised of two steps: locate
and revise, as an iterative training procedure, where
locate and revise operations are supervised by com-
paring the generated translation with the ground-
truth. Towards keeping the consistency with itera-
tive decoding, iterative training is utilized to further
improve the training procedure. Experimental re-
sults on several typical machine translation datasets
demonstrate that REWRITENAT achieves consis-
tent improvement over iterative decoding baselines,
but with substantially less decoding time. Further
analysis show that REWRITENAT prefers to gener-
ate the “easy” words at the early decoding iteration,
and leaves the more complicated choice later.

2 Background

2.1 Autoregressive Machine Translation

Autoregressive neural machine translation (AT)
draws much attention due to its convenience
and effectiveness on various machine translation
tasks (Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2015). Given a source sentence

X = {x1, · · · , xT } and target sentence Y =
{y1, · · · , yT ′}, AT decomposes translation distri-
bution pAT(X|Y ) into a chain of conditional prob-
abilities in a unidirectional manner:

pAT(X|Y ) =
T ′∏
t=1

p(yt|y<t, X) (1)

where y<t represents the set of generated tokens
before time-step t. Besides, T and T ′ is the length
of the source and the target sequence, respectively.
Sine AT generates translation in an autoregressive
manner, it suffers from low inference speed.

2.2 Non-Autoregressive Machine Translation
Towards alleviating this issue, NAT (Gu et al.,
2018) removes sequential dependencies within tar-
get sentence, and generates target words, simul-
taneously. NAT models conditional probabilities
pNAT(Y |X) of translation fromX to Y as a product
of conditionally independent per-step distributions:

pNAT(Y |X) = p(T ′|X)
T ′∏
t=1

p(yt|X) (2)

Since each target word yt only depends on the
source sentence X , the target distributions p(yt|X)
can be computed in parallel at inference time.

Nevertheless, this desirable property of paral-
lel decoding comes at the cost that the translation
quality is largely sacrificed. Since the intrinsic de-
pendencies within target sentence (yt depends y<t)
are abandoned from decoder input, NAT shows
its weakness in exploiting inherent sentence struc-
ture for prediction. Hence, NAT has to figure out
such target-side information by itself, merely con-
ditioned on source-side information. In contrast,
AT produces current target word, conditioned on
previously generated words, which provides strong
target side context information. Consequently, with
less and weaker information, NAT suffers from in-
ferior translation quality.

3 Architecture

As depicted in Figure 2, our proposed REWRITE-
NAT literally consists of three major components:
an encoder, a revisor and a locator. The encoder
utilizes transformer encoder, comprisedofN e trans-
former blocks (Vaswani et al., 2017), to convert
source sentence into the contextual representations,
similar to previous work (Gu et al., 2018). The
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Figure 2: Architecture of our proposed REWRITENAT model, which consists of three major components: an
encoder, a revisor and a locator. The encoder is utilized to convert the source sentence into contextual representa-
tions. During the decoding, the revisor converts the erroneous words annotated as “[MASK]” into the correct ones,
while the incorrect words within previously generated hypothesis are distinguished, by classifying the words into
two classes: revise and keep. Given previously located hypothesis, M refinements, each of which utilizes a revisor
and a following locator refine the hypothesis, are applied to obtain the final translation. We take an instance from
English→German translation as example, where source sentence is “Thank you .”. REWRITENAT applies two
refinements into the initial hypothesis, merely comprised of “[MASK]”. Subsequently, the decoding terminates
since the locator categorizes the entire sequence into keep, meaning that any word is not required to be revised.

revisor and locator, composing into an decoder,
are employed to revise and locate the incorrect
words within previously generated translation, re-
spectively. We will elaborate the revisor and locator
in the following.

3.1 Revisor
Given altered translation Y r by the locator, the re-
visor is utilized to convert erroneous pieces into the
correct, conditioned on source sentence. Particu-
larly, it’s expected to speculate about correct words
in positions annotated as “[MASK]”, under the con-
text of the remaining translation. Notably, the revi-
sor treats an input merely consisting of “[MASK]”
as initial input, meaning that the whole input is
required to be revised.

Given the hypothesis Y r = {yr1, · · · , yrT ′}, we
leverage a stack of transformer blocks (Vaswani
et al., 2017; Gu et al., 2018) to generate the cor-
responding representations Hr = {Hr

1 , · · · , Hr
T ′},

with the glimpse at source representations He:

Hr = TransformerStackr(Y r, He) (3)

where TransformerStackr(·) represents the stack of
N r transformer blocks with respect to the revisor.
Subsequently, the generated representations Hr

with respect to special symbol “[MASK]” are fed
to a classifier πr to generate the target words as

follows:

πr(rt|yrt , X) = softmax(W rhrt + br) (4)

where W r and br are trainable parameters, and rep-
resent weight matrix and bias vector, respectively.
The generated words by πr are treated as the substi-
tute of the incorrect words annotated as “[MASK]”,
yield the revised translation Y l = {yl1, · · · , ylT ′}
as follows:

ylt =

{
rt, if yrt = [MASK]

yrt , otherwise
(5)

where Y l is fed to the locator.

3.2 Locator
Given previously generated translation as input, we
employ the locator to distinguish incorrect words
within entire sequence, conditioned on source sen-
tence. Using the locator, each word within transla-
tion can be categorized into two types: revise (1)
and keep (0). According to resulted classification, it
is required to alter previous translation into another
format, which is then fed to the revisor. In details,
the words annotated as “revise” are substituted by
special symbol, denoted as “[MASK]”, while the
remaining hold.

Given previously generated translation Y l =
{yl1, · · · , ylT ′} to be located, a stack of transformer
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blocks (Vaswani et al., 2017; Gu et al., 2018) are
utilized to transform input translation Y l into a
sequence of hidden states H l = {hl1, · · · , hlT ′},
conditioned on source contextual representations
He:

H l = TransformerStackl(Y l, He) (6)

where TransformerStackl(·) represents the stack of
N l transformer blocks with respect to the locator.
Using induced hidden states H l as input, an addi-
tional classifier πl is employed to decide whether
previously generated word ylt at step t is required
to be revised, and calculated as follows:

πl(lt|ylt, X) = softmax(W lhlt + bl) (7)

where W l and bl are trainable parameters, and
represent weight matrix and bias vector, respec-
tively. Using the classifier πl, input translation
Y l can be converted into an annotation sequence
L = {l1, · · · , lT ′}. Subsequently, dependent on
the annotation L, the translation Y l is altered into
Y r = {yr1, · · · , yrT ′} as follows:

yrt =

{
[MASK], if lt = revise
ylt, otherwise

(8)

where Y r is treated as input of the revisor.

4 Training and Inference

4.1 Training
Towards maintaining the consistency of data dis-
tribution with iterative decoding at inference
time, iterative training strategy is utilized to train
REWRITENAT to learn the ability to rewriting, as
described in Algorithm 1. During training, at m-th
refinement including revise and locate operations,
we compare previously-generated translations (i.e.,
Ŷ r
m and Ŷ l

m) with ground-truth (i.e., Y ) to distin-
guish erroneous translation pieces, and construct
two types of supervised signals (i.e., q(Ŷ r

m) and
z(Ŷ l

m)) to instruct the learning of revisor and lo-
cator modules, respectively. With the introduction
of iterative training with M refinements, training
objective L(θ) can be formalized as:

L(θ) =
M∑
m=1

{
q(Ŷ r

m) log π
r
θ(Y |Ŷ r

m, X)︸ ︷︷ ︸
revisor objective

+ log πlθ(z(Ŷ
l
m)|Ŷ l

m, X)︸ ︷︷ ︸
locator objective

} (9)

Algorithm 1 Iterative Training to REWRITENAT

1: Input: Parallel training dataset (X ,Y), revi-
sor module πrθ , locator module πlθ, maximum
refinement steps M , learning rate γ

2: repeat
3: Sample sentence pair (X,Y ) from (X ,Y)
4: Initialize Ŷ r

1 as a sequence of [MASK] with
same length as Y

5: for m← 1 to M do
6: Generate Ŷ l

m using πr(·|Ŷ r
m, X) as Eq. 5

7: Lrm ← q(Ŷ r
m) log π

r
θ(Y |Ŷ r

m, X)

8: Generate Ŷ r
m using πl(·|Ŷ l

m, X) as Eq. 8
9: Llm ← log πlθ(z(Ŷ

l
m)|Ŷ l

m, X)
10: end for
11: L ←

∑M
m=1(Lrm + Llm)

12: Update model parameters θ ← θ + γ∇θL
13: until convergence

where the translations Ŷ r
m and Ŷ l

m are generated
at m-th refinement step depending on output dis-
tributions of the revisor πl(·|Ŷ l

m−1, X) and locator
πr(·|Ŷ r

m, X), respectively. During training, gener-
ated translation Ŷ r

m and Ŷ l
m have same length with

the ground-truth Y . When calculating revisor ob-
jective, we use q(Ŷ r) as a weight vector to merely
concentrate on optimizing at the incorrect words
(annotated as [MASK] in Ŷ r) but omit the losses
with respect to correctly-generated ones:

qt(Ŷ
r) =

{
1, if Ŷ r

t = [MASK]

0, otherwise
(10)

The locator target z(Ŷ l) is a vector meaning that
the positions where translation Ŷ l is different from
ground-truth Y should be categorized into revise
(1), while the remaining are mapped into keep (0):

zt(Ŷ
l) =

{
1, if Ŷ l

t 6= Yt

0, otherwise
(11)

4.2 Inference

During training REWRITENAT generates the trans-
lations with same length as the ground-truth, while
in inference we apply REWRITENAT over a se-
quence of “[MASK]” with a length predicted by
length classifier (Lee et al., 2018). When locator
module classifies entire sentence into keep or the
classifications of two consecutive refinements keep
the same, decoding stops (a.k.a dynamic halting).
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Model En→De De→En En→Ro Ro→En
Iters. BLEU Iters. BLEU Iters. BLEU Iters. BLEU

TRANSFORMER (Vaswani et al., 2017) N 27.82 N 31.66 N 34.44 N 34.14
NAT w/ Fertility (Gu et al., 2018) 1 19.17 1 23.20 1 29.79 1 31.44
CTC (Libovický and Helcl, 2018) 1 17.68 1 19.80 1 19.93 1 24.71
NAT-REG (Wang et al., 2019) 1 24.61 1 28.90 – – – –
Imitate-NAT (Wei et al., 2019) 1 24.15 1 27.28 1 31.45 1 31.81
Flowseq (Ma et al., 2019) 1 25.31 1 30.68 1 32.20 1 32.84
Hint-NAT (Li et al., 2019) 1 25.20 1 29.52 – – – –
NAT-DCRF (Sun et al., 2019) 1 26.80 1 30.04 – – – –
Bag-of-ngram (Shao et al., 2020) 1 20.90 1 24.61 1 28.31 1 29.29
FCL-NAT (Guo et al., 2020a) 1 25.75 1 29.50 – – – –
TCL-NAT (Liu et al., 2020) 1 25.37 1 29.60 – – – –
EM+ODD (Sun and Yang, 2020) 1 24.54 1 27.93 – – – –
AXE (Ghazvininejad et al., 2020a) 1 23.53 1 27.90 1 30.75 1 31.54
iNAT (Lee et al., 2018) 10 21.61 10 25.48 10 29.32 10 30.19
InsT (Stern et al., 2019) log2 N 27.41 – – – – – –
CMLM (Ghazvininejad et al., 2019) 4 25.94 4 29.90 4 32.53 4 33.23

10 27.03 10 30.53 10 33.08 10 33.31
LevT (Gu et al., 2019) 2.05 27.27 – – – – 2.03 33.26
LaNMT (Shu et al., 2020) 4 26.30 – – – – 4 29.10
SMART (Ghazvininejad et al., 2020b) 4 27.03 4 30.87 – – – –

10 27.65 10 31.27 – – – –
JM-NAT (Guo et al., 2020b) 4 27.05 4 31.51 4 32.97 4 33.21

10 27.69 10 32.24 10 33.52 10 33.72
DisCo (Kasai et al., 2020) 4.84 27.34 4.23 31.31 3.29 33.22 3.10 33.25
OUR PROPOSED REWRITENAT 2.70 27.83 2.42 31.52 2.41 33.63 1.76 34.09

Table 1: Evaluation of translation performance on WMT14 En↔De and WMT16 En↔Ro datasets. TRANS-
FORMER is a strong autoregressive baseline, which is treated as teacher model to distill the datasets. In addition
to purely non-autoregressive baselines (e.g., NAT-DCRF and AXE), we utilizes several typical iterative non-
autoregressive models (e.g., CMLM and DISCO) as comparisons. “Iters.” indicates the number of refinement
steps taken during decoding, averaged over WMT14 En→De test set.

Besides, we further set a maximum number of it-
erations to guarantee constant-time complexity in
worst case.

5 Experiments

5.1 Settings
Datasets We evaluate REWRITENAT on two
standard machine translation datasets: WMT14
En↔De (4.5M pairs) and En→Fr (36M pairs)2,
WMT16 En↔Ro3 (610K pairs) and WMT17
En→Zh4 (20M pairs). For WMT14 En↔De trans-
lation, we use script from fairseq (Ott et al.,
2019) to preprocess dataset, where the preprocess-
ing steps follow Vaswani et al. (2017). The new-
stest2013 and newstest2014 are treated as devel-
opment and test sets, respectively. For WMT14
En→Fr, we borrow the setup of Gehring et al.
(2017), validate on newstest2012+2013 and test
on newstest2014. For WMT16 En↔Ro transla-
tion, we use the dataset released by Lee et al.
(2018), where newsdev2016 and newstest2016 are

2https://www.statmt.org/wmt14
3https://www.statmt.org/wmt16
4https://www.statmt.org/wmt17

taken as development and test sets. For WMT17
En→Zh translation, we pre-process the dataset fol-
lowing Hassan et al. (2018). We treat newsdev2017
as the development set and newstest2017 as the test
set. The datasets are tokenized into subword units
using BPE (Sennrich et al., 2016). We evaluate
performance with BLEU (Papineni et al., 2002) for
all language pairs, except for En→Zh, where we
use SacreBLEU (Post, 2018) 5.

Distillation Knowledge distillation (Kim and
Rush, 2016; Hinton et al., 2015) is utilized
to train the NAT models due to its effective-
ness of alleviating multimodality (Gu et al.,
2018) using the generated translation by TRANS-
FORMER (TRANSFORMER-BIG for WMT14
En↔De and En→Fr as well as WMT17 En→Zh,
TRANSFORMER-BASE for WMT16 En↔Ro) as a
substitute for target-side ground-truth (Ghazvinine-
jad et al., 2019).

Hyperparameters We follow most of the
standard hyperparameters for TRANSFORMER-

5SacreBLEU hash: BLEU+case.mixed+lang.en-zh
+numrefs.1+smooth.exp+test.wmt17+tok.zh+version.1.4.14

https://www.statmt.org/wmt14
https://www.statmt.org/wmt16
https://www.statmt.org/wmt17
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BASE (Vaswani et al., 2017): 6 layers per stack, 8
attention heads per layer, 512 model dimensions,
2048 hidden dimensions. We follow the weight
initialization schema from BERT (Devlin et al.,
2019), and sample weights from N (0, 0.02), set
biases to zero, and set layer normalization param-
eters to β = 0 and γ = 1. For regularization, we
use dropout (En↔De and En↔Ro: 0.3, En→Fr:
0.1, En→Zh: 0.25), 0.01 L2 weight decay, and
smoothed cross validation loss with λ = 0.1. we
adopt the Adam optimizer (Kingma and Ba, 2015)
using β1 = 0.9, β2 = 0.98, ε = 1e−8. The
learning rate is scheduled using inverse_sqrt
with a maximum learning rate 0.0005, and 10,000
warmup steps except for TRANSFORMER which
sets warmup steps as 4000. All the models are
run on 8 Tesla V100 GPUs for 300,000 updates
with an effective batch size of 128,000 tokens apart
from En→Fr where we make 500,000 updates to
account for the data size. During decoding, we use
a beam size of b = 5 for autoregressive decoding,
while length beam (Ghazvininejad et al., 2019) is
applied to obtain the translation with respect to
non-autoregressive counterpart.

5.2 Main Results

Table 1 shows the results of REWRITENAT, to-
gether with a series of purely NAT baselines and
representative iterative NAT approaches. Our pro-
posed REWRITENAT can achieve consistent and
remarkable improvements over both pure and it-
erative NAT baseines across different translation
tasks despite significantly fewer iterations on aver-
age (e.g., 2.7 iterations in En→De and 1.76 itera-
tions in Ro→En), except for De→En (i.e., 31.52 vs.
32.24). The possible reason is that JM-NAT utilizes
a more powerful TRANSFORMER-BASE architec-
ture (32.69 vs. 31.66) than the one we use. Despite
inferior performance, when achieving same perfor-
mance (e.g., 31.52 vs. 31.51), REWRITENAT takes
2.42 iterations in average, less than JM-NAT. Par-
ticularly noteworthy is that REWRITENAT obtain
competitive performance with autoregressive base-
line on En→De (i.e., 27.83 vs. 27.82), De→En
(i.e., 31.52 vs. 31.66) and Ro→En (i.e., 34.09 vs.
34.14) translation, demonstrating its effectiveness.

Instead of using constant number of iterations
(e.g., 4 or 10) for iterative NAT baselines, important
advantage of REWRITENAT is dynamic halting
(Section 4.2) which can choose suitable iterations
with respect to different sentences, leading to high

inference speed. As shown in Table 2, in most
cases (i.e., 89.4%), REWRITENAT can produce
final translations within 4 iterations. Furthermore,
it’s surprising that one-shot decoding (using single
iteration) makes up 20.6% of test set.

Iters. 1 2 3 4 ≥ 5

Per. (%) 20.6 31.7 24.5 12.6 10.6

Table 2: Percentage of different iterations taken during
decoding with respect to REWRITENAT on En→De
test set.

Towards verifying the robustness on large-scale
datasets, we evaluate the translation performance of
REWRITENAT on En→Fr and En→Zh. As shown
in Table 3, our proposed REWRITENAT obtains
consistent improvement in both translation qual-
ity and speed compared with dominant CMLM
baseline. It’s particularly important that our ap-
proach can achieve competitive results (i.e., 41.36
vs. 41.59) with autoregressive baseline on En→Fr
despite the average of 2.11 iterations.

Model En→Zh En→Fr
Iters. BLEU Iters. BLEU

TRANSFORMER N 35.44 N 41.59
CMLM 4 33.18 4 39.94

10 33.80 10 40.53
REWRITENAT 3.06 34.32 2.11 41.36

Table 3: Average number of iterations (“Iters.”) and
performance (“BLEU”) with repsect to REWRITENAT
on large-scale WMT17 En→Zh and WMT14 En→Fr
datasets.

5.3 Decoding Speed

As shown above, REWRITENAT can obtain sub-
stantial improvements than strong iterative NAT
baselines while reducing the number of iterations.
Here we compare them in terms of speedup with re-
spect to TRANSFORMER, as depicted in Figure 3. It
can be clearly observed that REWRITENAT can ob-
tain same performance but with substantially higher
speedup than iterative NAT baselines. When maxi-
mum iteration is set as 2 (i.e., T = 2), REWRITE-
NAT obtains competitive result to CMLM and
TRANSFORMER with b = 1 (i.e., 27.03 vs. 27.05)
but with higher speedup (i.e., 7.02×). The perfor-
mance of REWRITENAT benefits much from the
growth of T until T = 4. Particularly, REWRITE-
NAT with T = 4 achieves comparable result
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Figure 3: Relative decoding speedup on WMT14
En→De test data with respect to autoregressive model
(indicated as N) with beam sizes b = 1 and b = 5. T
denotes a (max) number of iterations taken during de-
coding (T = 2, . . . , 10). “Relative Decoding Speedup”
is calculated over TRANSFORMER with beam size as 5.

(27.77 vs. 27.82, 3.86×) with TRANSFORMER

with b = 5. Furthermore, REWRITENAT with
T = 4 outperforms the strongest SMART (i.e.,
27.56 vs. 27.77) but using about half of decoding
time. Afterwards, performance gain is relatively
subtle but with a slight decrease of speedup due to
dynamic halting.

6 Analysis

6.1 Word Repetitions

With decoupling the sequential dependencies
among target sentence, NAT shows the serious
weakness in modeling highly multimodal distri-
butions (Gu et al., 2018), often manifest as word
repetitions (Wang et al., 2019) in generated transla-
tions. Towards evaluating the multi-modality, we
follow Ghazvininejad et al. (2019) to measure the
percentage of consecutive repetitive words as a
proxy metric. As shown in Table 4, the proportion
of repetitive words with respect to REWRITENAT
is significantly lower than most relevant CMLM
baseline, especially when decoding using single
iteration (-6.05%). Simultaneously, REWRITE-
NAT can achieve substantial performance over
CMLM. These results demonstrate the superiority
of REWRITENAT over CMLM in alleviating word
repetitions.

Iters. CMLM REWRITENAT
BLEU Reps BLEU Reps

T = 1 18.05 16.72% 21.17 10.67%
T = 2 22.91 5.40% 27.03 1.95%
T = 3 24.99 2.03% 27.54 0.97%
T = 4 25.94 1.07% 27.76 0.59%

Table 4: The performance (“BLEU”) and percentage of
repetitive words (“Reps”) when decoding with a differ-
ent number of iterations on WMT14 En→De test set.
Notably, with respect to REWRITENAT, T denotes the
max number of iterations taken during decoding.

6.2 Effect of Weight Sharing
Towards evaluating the effectiveness of weight shar-
ing between revisor and locator modules, we con-
duct some experiments to make the further anal-
ysis. As shown in Table 5, the performance of
REWRITENAT using sharing parameters (i.e., +
w/ sharing) shows a slight decrease (i.e., 27.54
vs. 27.83) on WMT14 En→De translation task,
but still surpasses the most relevant baseline (i.e.,
CMLM). Besides, it’s observed that the proposed
REWRITENAT with weight sharing can consumes
less iterations taken during decoding, leading to a
slightly high inference speed.

Model Iters. BLEU 4
CMLM 10 27.03 –
REWRITENAT 2.7 27.83 + 0.80
+ w/ sharing 2.5 27.54 + 0.51

Table 5: Average number of iterations (“Iters.”) and
performance (“BLEU”) when sharing weights of revi-
sor with locator on WMT14 En→De test set.

6.3 Iterations vs. Length
As described above, compared with previous iter-
ative NATs, the number of iterations taken during
decoding significantly decreases with respect to our
proposed REWRITENAT. Towards exploring the
impact of length, we compare the number of re-
quired iterations and the length of target sentences,
as illustrated in Figure 4. It’s clearly observed that
REWRITENAT can properly choose the number
of iterations accordingly. In general, as the length
of target sentences grows, REWRITENAT also re-
quires more iterations to produce the translation.

6.4 Analysis on Part-of-Speech
Despite proving the effectiveness, we doubt
whether the number of iterations has any prefer-
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Figure 4: # Iters. vs. length of target sentences with
respect to the different instances (denoted as ×) on
WMT14 En→De test set.

ence towards different Part-of-Speechs 6. For each
Part-of-Speech 7, we calculate average percentage
of required iterations to produce the words with
respect to different Part-of-Speechs. As shown in
Figure 5, REWRITENAT tends to generate punctu-
ation words (i.e., PUNC) early in decoding. Sub-
sequently, nouns are next easiest to predict. Condi-
tioned on generated nouns, other Part-of-Speechs
(e.g., CONJ, ADJ, DET, ADV, PREP), which often
act as modifiers, prefers to come out in the gen-
erated translation. Finally, the most difficult for
REWRITENAT is to generate verbs (i.e., VERB)
and particles (i.e., PRT). These observations are
consistent with easy-first generation hypothesis:
early decoding iterations mostly generate words
which are the easiest to predict based on input
data (Emelianenko et al., 2019).

6.5 Case Study
As illustrated in Figure 6, we present a translation
example to compare REWRITENAT with CMLM.
The number of maximum decoding iterations is
set as 10. We can observe that REWRITENAT can
generate the reasonable translation with 3 decod-
ing iterations and terminate the decoding due to
the locator module, automatically. In addition, the
erroneous translation pieces (e.g., “are children
children”) can be accurately distinguished. In con-
trast, strong CMLM baseline shows their weak-
ness at tackling the incorrect ones. Consequently,

6STANFORD CORENLP TOOLKIT (Manning et al., 2014)
is utilized to annotate translation output with Part-of-Speechs.

7PUNC-punctuation, NOUN-noun, PRT-particle, DET-
determiner, CONJ-conjunction, ADJ-adjective, ADV-adverb,
PREP-preposition, VERB-verb
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Figure 5: Average percentage of required iterations to
generate different Part-of-Speechs of total iterations on
De→En test set.

CMLM generally spend more decoding iterations
than REWRITENAT, but achieving inferior perfor-
mance. These results confirm the effectiveness and
efficiency of the proposed REWRITENAT.

7 Related Work

Gu et al. (2018) first proposed NAT to generate the
translation in parallel, boosting the inference speed.
Towards mitigating the performance degradation,
a series of works were proposed to strengthen the
capacity of capturing the dependencies among out-
put words, including adding a lite autoregressive
module (Kaiser et al., 2018; Wang et al., 2018; Sun
et al., 2019), training with well-designed objec-
tives (Guo et al., 2019; Libovický and Helcl, 2018;
Shao et al., 2020; Ghazvininejad et al., 2020a; Du
et al., 2021), modeling with latent varibles (Ma
et al., 2019) and mimicking hidden states of autore-
gressive teacher (Wei et al., 2019; Li et al., 2019).

Despite above improvements, decoding incon-
sistency can still be observed in the translation.
Towards eliminating the errors, iterative decod-
ing (Xia et al., 2017; Zhang et al., 2018; Geng
et al., 2018) was proposed to employ multiple it-
erations to polish previously generated translation.
As an early alternative, Lee et al. (2018) corrected
the original non-autoregressive output by passing
it multiple times through a denoising autoencoder.
Instead of generating in discrete space of sentences,
continuous latent variables were utilized to improve
iterative refinements (Shu et al., 2020; Lee et al.,
2020). Subsequently, Ghazvininejad et al. (2019)
introduced mask-predict, which first generate tar-
get words non-autoregressively, and then repeat-
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SOURCE Den Kindern stehen regionale Handwerker von 11 bis 17 Uhr helfend zur Seite .

CMLM
1∼8 Regional craftsmen are at their children from 11 a.m. to 5 p.m .

9 Regional craftsmen are assist their children from 11 a.m. to 5 p.m .
10 Regional craftsmen are helping the children from 11 a.m. to 5 p.m .

REWRITENAT
1 Regional craftsmen are children children children from 11 a.m. to 5 p.m .
2 Regional craftsmen are assist the children from 11 a.m. to 5 p.m .
3 Regional craftsmen will assist the children from 11 a.m. to 5 p.m .

Figure 6: An example from the WMT14 De→En translation that illustrates how REWRITENAT, together with
CMLM generate text with iterative decoding. The translation pieces to be revised in next iteration are annotated
as strikethrough, and the erroneous ones within the final translation are underlined. Notably, we remove the BPE
tokens in the generated translation, leading to the unreasonable words (e.g., cra@@ fts@@ from→ craftsfrom).

edly mask out and re-generate the subset of words
that model is least confident about (Ghazvininejad
et al., 2020b; Guo et al., 2020b).

However, a serious drawback is that previous iter-
ative NAT approaches exposes fundamental weak-
ness in distinguishing erroneous translation pieces.
Precisely, previous iterative NAT models based on
mask-predict utilizes heuristic rules to consider the
least confident words as the ones to be revised,
but it struggles to perfectly make correct classifica-
tions simply relying on the probability distribution
of the generated translation. Despite LevT (Gu
et al., 2019) can alleviate the issue to some extent
by adopting two basic operations (i.e.,insert and
delete), a serious discrepancy in input data distri-
bution between training and decoding exists due
to the utilization of iterative strategy into decod-
ing but not training. Towards address above issues,
REWRITENAT adopts an additional locator module
specialized to distinguish the erroneous translation
pieces, and iterative training strategy is utilized to
maintain the consistency of data distribution with
iterative decoding.

8 Conclusion

In this work, we propose an architecture named
REWRITENAT, which explicitly learns to rewrite
the erroneous translation pieces, and iterative train-
ing is utilized to train this architecture. Extensive
experimental results demonstrate REWRITENAT
can achieve remarkable improvement over previous
iterative NAT models, but with significantly less
decoding iterations. The further analysis reveals
that the generation orders of REWRITENAT mea-
sured by the percentage of decoding iterations are
consistent with easy-first hypothesis.
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