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Abstract

Multi-head self-attention recently attracts
enormous interest owing to its specialized
functions, significant parallelizable computa-
tion, and flexible extensibility. However, very
recent empirical studies show that some self-
attention heads make little contribution and
can be pruned as redundant heads. This work
takes a novel perspective of identifying and
then vitalizing redundant heads. We propose
a redundant head enlivening (RHE) method to
precisely identify redundant heads, and then
vitalize their potential by learning syntactic re-
lations and prior knowledge in text without
sacrificing the roles of important heads. Two
novel syntax-enhanced attention (SEA) mech-
anisms: a dependency mask bias and a rela-
tive local-phrasal position bias, are introduced
to revise self-attention distributions for syntac-
tic enhancement in machine translation. The
importance of individual heads is dynamically
evaluated during the redundant heads identifi-
cation, on which we apply SEA to vitalize re-
dundant heads while maintaining the strength
of important heads. Experimental results on
WMT14 and WMT16 English→German and
English→Czech language machine translation
validate the RHE effectiveness.

1 Introduction

Recently, self-attention network (SAN) (Lin et al.,
2017) has been applied to various natural language
processing tasks. Instead of drawing distance-
aware dependencies like recurrent neural network
(Hochreiter and Schmidhuber, 1997) and convolu-
tional neural network (Kim, 2014), SAN captures
short- and long-range relations between elements.
SAN involves all signals with a weighted averag-
ing operation, which may incorporate too many
unrelated elements to concentrates on specific rela-
tions. Recent work has modified SAN to enhance
specific relation learning. For example, in (Shen
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Figure 1: Rationale of the multi-head SAN. The left
and middle parts are two existing SAN methods, the
right one illustrates our proposed method. The col-
ored circles represent different functions of individual
heads.

et al., 2018), a directional self-attention network
(DiSAN) uses one to multiple positional masks to
model the asymmetric attention between two ele-
ments and capture context-aware relations for all
tokens. (Yang et al., 2018) modeled the local infor-
mation by revising the attention distribution with
a learnable Gaussian bias to focus on neighboring
relations. (Shaw et al., 2018) extended SAN to
efficiently consider distinct representations of the
relative linear position relations between sequence
elements. However, the above approaches consider
the multi-head SAN as a whole but ignore unbal-
anced contribution distributions between heads.

Furthermore, multi-head SAN combines differ-
ent attentions from multiple subspaces to construct
Transformer (Vaswani et al., 2017) and achieves
the state-of-the-art results in recent neural machine
translation (NMT) tasks (Hassan et al., 2018). The
very recent work (Voita et al., 2019) shows that the
encoder-side individual heads in Transformer make
different contributions, multi-heads can be clas-
sified into important heads and redundant heads
and pruning redundant heads does not seriously
affect performance. They also assume that impor-
tant heads play various roles which influence the
generated translations to different extents, includ-
ing syntactic function (focusing on dependent rela-
tions), positional function (focusing on neighboring
words), and rare words-based function.

To date, our understanding of the roles of dis-
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tinct multi-heads is very limited, with no systematic
analysis available of the roles of different heads. In
this paper, we precisely identify redundant heads at
the encoder-side of Transformer and demonstrate
the potential of syntactically reactivating the redun-
dant heads to improve the multi-head SAN perfor-
mance. Fig. 1 illustrates the different rationales
of existing work against ours in multi-head SAN.
The left part represents those approaches that di-
rectly enhance overall heads as a whole w.r.t. their
designed functions but do not differentiate their
roles. Such approaches may downplay the func-
tions of important heads and the diversity of the
multi-head mechanism. The middle part represents
the methods that analyze contributions and func-
tions of multi-head SAN and then prune the deter-
mined redundant heads but rely on those important
heads only. As shown in the right part, this paper
proposes a dynamic and unified strategy to identify
redundant heads and then enliven them to fulfill
their potential. By enlivening the redundant heads,
our approach enhances the performance of redun-
dant heads without sacrificing the essential func-
tions of important heads. In addition, our method
further increases the scale of important heads.

Specifically, we take NMT as an example to
illustrate our method of identifying and reactivat-
ing the redundant heads in multi-head SAN. We
firstly propose two novel Syntax-Enhanced Atten-
tion (SEA) mechanisms for machine translation:
1) the Dependency-Enhanced Attention to use a
dependent matrix as mask to model the intensive
attention between dependent elements and filter el-
ements without direct dependent relations; and 2)
Local-phrase-Enhanced Attention to incorporate a
distinct and learnable relative local-phrasal posi-
tion matrix as bias, which is transformed from a
constituency tree under the rules of local-phrase.
These syntax-enhanced attention mechanisms sim-
ulate the specific functions of important heads but
differ from the existing self-attention improvement
approaches. Compared to the dependency tree,
there is distinct syntactic layer information for each
word in the constituency tree, which is extracted to
calculate the relative phrasal position to reflect syn-
tactic relations between elements. To this end, we
define a novel phrase type local-phrase to only ex-
tract syntactically related words as phrase by lever-
aging the constituency tree, regardless of sequence
distance. Further, we propose a dynamic and light-
weight Redundant Heads Enlivening (RHE) strat-

egy for multi-head SAN to reactivate and enhance
the roles of redundant heads. Lastly, a dynamic
function gate is designed, which is transformed
from the average of maximum attention weights to
compare with syntactic attention weights and iden-
tify redundant heads which do not capture mean-
ingful syntactic relations in the sequence.

We test the above design on three widely-
used translation tasks WMT14 and WMT16
English→German and WMT16 English→Czech.
Extensive analyses reveal that enlivening redundant
heads in multi-head SAN beats improving overall
heads, and the proposed syntax-enhanced attention
mechanisms with dependency and local phrases
further effectively improve the translation perfor-
mance.

2 Related Work

One popular extension to the SAN is to revise at-
tention distribution by static and dynamic biases.
Different dimensions of biases have been consid-
ered, including directional relation (Shen et al.,
2018) and localness (Sperber et al., 2018; Zhang
et al., 2018a; Yang et al., 2018). (Shen et al., 2018)
improves SAN with directional masks and multi-
dimensional features by explicitly revising atten-
tion distribution. In this paper, we focus on the
explicit syntactic biases by proposing dependency-
enhanced attention and local-phrase-enhanced at-
tention. Several papers show that explicitly mod-
eling dependency (Bastings et al., 2017; Nadejde
et al., 2017) or phrase (Wang et al., 2017; Huang
et al., 2018; Zhang et al., 2018b, 2020) is useful for
tasks such as NMT. Related to our work, (Strubell
et al., 2018) and (Hao et al., 2019) also modify
parts of self-attention heads with syntactic informa-
tion. However, they randomly assign heads instead
of analysing the importance and function of each
head in advance. (Sperber et al., 2018) restricts
SAN with the neighboring elements and performs
better for longer sequences in acoustic modeling
and natural language inference tasks. (Yang et al.,
2018) leverages Gaussian bias predicted by the
query vector to dynamically model the localness
for SAN.

Other work analyzes the attention weights of
different NMT models (Ghader and Monz, 2017;
Voita et al., 2018; Tang et al., 2018; Raganato and
Tiedemann, 2018). (Voita et al., 2019) considers
how different heads correspond to specific relations
and proves that redundant heads can be pruned
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without greatly decreasing translation performance.
However, they disregard the full potential of redun-
dant heads as in our SEA. (Li et al., 2018) real-
izes the diversity of multiple attention heads and
introduces a disagreement regularization to explic-
itly encourage the diversity. Nevertheless, they do
not realize that only partial individual heads are
redundant, which is a prerequisite for optimizing
multi-head diversity.

In summary, while some of the related work
recognizes the approach of revising attention dis-
tribution with bias, our work represents the first
to propose a complement and precise strategy to
analyze individual heads, identify redundant heads
and then enliven them with syntactic bias.

3 Background

3.0.1 Multi-head Self-attention
Multi-head SAN (Vaswani et al., 2017; Shaw et al.,
2018; Shen et al., 2018; Yang et al., 2018) projects
the input sequence to multiple subspaces (h atten-
tion heads), applies the scaled dot-product attention
to the hidden states in each head, and then con-
catenates the output. For each self-attention head
headi (1 ≤ i ≤ h) in the multi-head SAN for
NMT, given an input sequence x = {x1, ...,xn},
each hidden state in the l-layer is constructed
by attending to the states in the (l − 1)-th layer.
Specifically, the hidden states of (l − 1)-th layer
Hl−1 ∈ Rn×dh are firstly transformed into the
queries Q ∈ Rn×dh , the keys K ∈ Rn×dh , and
the values V ∈ Rn×dh with three separate weight
matrices, where dh represents the dimensionality
of each head.

The hidden state Hi of the l-th layer is calculated
as:

Hl
i =

n∑
j=1

Att(Qi,Kj)(VjW
V ) (1)

where Att(·) is a scaled dot-product attention
model, defined as:

Att(Qi,Kj) = softmax

(
(xiW

Q)(xjW
K)

T

√
dk

)
(2)

where
√
dk is the scaling factor with d being the

dimensionality of layer states.

3.0.2 Multi-head Analysis
In (Voita et al., 2019), a “confidence” scalar hconf

is calculated as the average of maximum attention

weights of all n source tokens in one head:

hconf =
1

n

n∑
i=1

Max (Att(Qi,Kj)) (3)

Max (Att(Qi,Kj)) represents the maximum at-
tention weight to xi among all source tokens xj in
the sequence. Further, a fixed gate value fgate (0 <
fgate ≤ 1) is given that judges a head as impor-
tant if hconf > fgate for all training examples
and epochs. In addition, three head functions are
identified according to the frequency of maximum
attention weight assigned to a specific position:
syntactic function, positional function, and rare
words function.

4 The RHE Design

Fig. 2 shows the architecture of our proposed re-
dundant heads enlivening (RHE) approach to iden-
tify redundant heads and then enliven them by revis-
ing self-attention distributions with a syntactic bias.
RHE takes full advantage of the multi-head SAN
by capturing both dependent and distinct phrasal
relations. First, two Syntax-Enhanced Attention
(SEA) mechanisms: Dependency Enhanced Atten-
tion (DEA) and Local-phrase Enhanced Attention
(LPEA), are proposed. DEA disables the attention
between elements without dependencies by lever-
aging the dependency mask, and LPEA precisely
regulates the self-attention distribution by a distinct
and learnable local-phrase bias. The bias repre-
sents relative local-phrasal position transformed
from a constituency tree. LPEA precisely captures
both short- and long-term syntactic relations. Sec-
ond, the Redundant Head Identification module
dynamically determines the importance and func-
tion of each head during the training process per the
average sum of syntactic attention weights. Lastly,
the self-attention of redundant heads is replaced by
SEA to enliven their full potential and roles.

4.1 SEA: Syntax-Enhanced Attention
4.1.1 DEA: Dependency-Enhanced Attention
DEA is a syntactic extension of standard self-
attention. DEA focuses on the internal dependency
between elements. We place a dependency mask
bias d to the logit similarity in Eq. (2):

Att(Qi,Kj) =

softmax

(
(xiW

Q)(xjW
K)

T

√
dk

+Di,j1

)
(4)
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Figure 2: The architecture of our Redundant Head En-
livening model. The darker colored blocks in individ-
ual heads represent higher attention weights of the cur-
rent element.

Given a dependency mask D ∈ {0,−∞}n×n,
we set the bias d to a constant vector Di,j1 in
Eq. (4), where 1 is an all-one vector. Note that,
due to the exponential operation in the softmax
function, adding the alignment score with a bias
d ∈ {0,−∞}n×n approximates to multiplying
the attention distribution by a weight ∈ [1, 0).

To encode the dependency information into this
mask, we define the value of Di,j according to
head-dependent relations Dep (xi,xj) between
elements xi and xj :

Di,j =

{
0, xi, xj in Dep (xi,xj) or i = j
−∞, xi, xj not in Dep (xi,xj)

(5)
In fact, Eq. (5) shows that we ignore the relations
between independent word pairs (xi,xj) by set
Di,j = −∞; meanwhile, the attention weights are
more concentrated on dependent word pairs. By
assuming each dependent relation to be equally
important, we do not assign different biases for
different dependency word pairs by set Di,j = 0.
This enhances the ability of self-attention to capture
dependent relations.

4.1.2 LPEA: Local-phrase-Enhanced
Attention

LPEA includes a distinct and learnable syntactic
bias to revise the attention weights. A local-phrase
bias p represents relative phrasal position informa-
tion between xi and xj (xj ∈ local_phrase(xi)).
Meanwhile, it masks the attention between words
not in local_phrase(xi). Similar to DEA, we mod-
ify Eq. (2) as:

Att(Qi,Kj) =

softmax

(
(xiW

Q)(xjW
K)

T

√
dk

+Pi,j

)
(6)

We further introduce the concept of local-phrase
obtained from the constituency tree in terms of two
rules, different from general phrases which mostly
consist of neighboring words. A local-phrase con-
tains syntactically related words regardless of se-
quence distance, hence local-phrase carries the dis-
tinct and hierarchical syntactic relations between
elements.

• Rule 1: Given a constituency tree with m
layers, the word xi and its ancestor node
sequence ast = (astlayer(xi)−1, ..., ast0),
we assume that its local_phrase(xi) con-
tains words which belong to the low-
est multi-descendant ancestor astlayer(xi)−m
(0 ≤ m ≤ layer(xi)).

• Rule 2: If word xi ∈
local_phrase(xj) (j < i) accord-
ing to Rule 1, we assume that word
xj ∈ local_phrase(xi).

To obtain the local-phrase bias p, we firstly ex-
tract a relative phrasal position matrix RP from
the constituency tree.

As Fig.3 shows, first, given a matrix of RP ∈
Rn×n , where each element represents the relative
syntactic distance between words xi and xj . Then,
for words xi and xj not in the same local-phrase
(e.g. “Sharon” and “talk”), we set the relative
position as∞ (3th row, 6th column). Finally, for
words which in a local-phrase, such as “held” and
“talk”, we calculate the relative phrasal position
distance according to their relative phrase layer
(Layer3 − Layer4 = −1) and set the RP2,4 = 1.
Accordingly, we obtain the matrix RP.

As the RP matrix cannot be directly encoded
in attention distribution, inspired by (Shaw et al.,
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2018), We use a group of vectors to represent the
relative phrasal position between words in RP.

Considering that the precise relative phrasal po-
sition information beyond a certain distance is not
useful, the maximum relative phrasal position is
clipped to a maximum absolute value of k. There-
fore, we consider 2k + 1 unique edge labels for
relative phrasal position vectors and transform the
integral matrix RP into the corresponding vector
matrix M ∈ Rn×n×dh , where:

Mij = wclip(j−i,k)

clip(x, k) = max(−k,min(k, x))
(7)

Then, we learn the relative phrasal position repre-
sentations w = (w−k, ...,wk), where wi ∈ Rdh .
After obtaining the matrix M, we apply a feed-
forward network to transform the relative local-
phrasal position vector Mij to a relative local-
phrasal position hidden state. It is further mapped
to a negative scalar Pij of local-phrase bias matrix
p by a linear projection UP ∈ Rdh×1, namely:

P = −| tanh(WPM+ bP )UP | (8)

WP ∈ Rdh×dh and bP ∈ Rdh are model parame-
ters. Fig. 3 shows the process of extracting relative
local-phrase bias p from the constituency tree.
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Figure 3: The process of extracting relative phrasal po-
sition bias.

4.2 Incorporating SEA into Multi-head
Self-attention

4.2.1 Redundant Head Identification
We enhance the syntactic function of self-attention
heads by dynamically identifying the redundant
heads that lack the ability of capturing both short-
and long-term syntactic relations to enhance these

heads by incorporating SEA. We firstly apply
the dependency mask Dep_mask to the attention
weight matrix to obtain the corresponding syn-
tactic attention weights which reflect short- and
long-term syntactic relations. Then, we sum the
syntactic attention weights for each xi among all
syntax-related source tokens xj in the sequence.
Finally, we calculate the average of syntactic atten-
tion weight scalar Synattn as follows:

Synattn =
1

n

n∑
i=1

n∑
j=1

Dep_mask (Att(Qi, Kj))

(9)
We propose a function gating criteria: when the

average of syntactic attention weights is higher
than the average of maximum attention weights,
the head is regarded as important and contains syn-
tactic functions. Different from the work in (Voita
et al., 2019) which simply uses a fixed gate value to
measure the importance of individual head for all
training examples and epochs, our method dynami-
cally identifies individual heads for each sentence
during the training process. We compare syntac-
tic attention weights Synattn with dynamic and
learnable syntactic gate Syngate transformed from
head confidence hconf in Eq. (3) by sigmoid acti-
vation functions, i.e., Syngate = sigmoid(hconf )
to determine the head function. If Synattn is lower
than Syngate, we treat the corresponding head as
redundant.

hlabel =

{
1, Synattn > Syngate

0, other
(10)

hlabel represents whether a head is important
(hlabel = 1) or redundant (hlabel = 0). Another
aspect of additional reason for comparing with the
head confidence is that some

4.2.2 Enlivening Redundant Heads
After differing redundant heads from those impor-
tant ones in the multi-head self-attention, we fur-
ther enliven the redundant heads with a syntactic
bias per Eq. (4) or Eq. (6) without interfering with
the important head functions. (Voita et al., 2019)
shows that redundant heads are mostly distributed
in the lower encoder layers, meanwhile (Hao et al.,
2019; Yang et al., 2018) shows that the bottom
layer in the encoder, which directly takes word
embedding as input, benefits more from modeling
local relations. We evaluate the performance of
applying our method on the low- and high-level en-
coder layers in the next section, and obtain the best
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performance when applying on the first encoder
layer.

5 Experiments

5.1 Settings
We carry out experiments on the English→German
(En→De) and English→Czech (En→Cs) language
translation. For En→De, the classic WMT14 data
consists of 4.5M sentence pairs (newstest2013 and
newstest2014 as development set and test set), and
the WMT16 News Commentary v11 data con-
sists of 0.22M sentence pairs (newstest2015 and
newstest2016 as development and test sets). For
En→Cs, the WMT16 News Commentary v11 data
data consists of approximately 0.18M sentence
pairs (newstest2015 and newstest2016 as devel-
opment set and test set). We evaluate our approach
in terms of different languages and data sizes. We
use the Berkeley Neural Parser (?) to generate
constituency trees for English, and an open-source
tool spaCy1 to parse dependency trees for English.
Besides, we make statistical significance test with
the method in (Collins et al., 2005). The byte-pair
encoding (BPE) toolkit2 (Sennrich et al., 2016)
is used with 32K merge operations. The 4-gram
NIST BLEU score (Papineni et al., 2002) is used as
the evaluation metric. We implement the proposed
RHE and all the baselines on top of Transformer
model (Vaswani et al., 2017) by using open-source
toolkit OpenNMT (Klein et al., 2017). Please refer
to the Appendix for more details of dataset and
parameter setting .

5.2 RHE for NMT Results
Table 1 shows the ablation study results of the
Transformer enabled by the two proposed SEA
mechanisms DEA and LPEA and the RHE ap-
proach.

First, the Rows of “+DEA” and “+LPE” repre-
sent the models with all heads of the first encoder
layer, including original important heads, are re-
placed by the syntax-enhanced attention networks
DEA and LPEA respectively. Second, the RHE
approach (containing the Rows of “+DEA+RHE”
and “+LPEA+RHE” ) significantly lifts both DEA
and LPEA mechanisms across all small and large
language pairs. This tests the effectiveness of iden-
tifying and modifying redundant heads without
interfering important head functions. RHE lifts

1https://spacy.io
2https://github.com/rsennrich/subword-nmt

the LPEA, which together i.e. LPEA+RHE sub-
stantially outperforms Transformer by +1.0 BLEU
points on En→De (WMT16), +0.96 BLEU points
on En→De (WMT14), and +0.81 BLEU points on
En→Cs (WMT16). These results demonstrate the
efficacy and applicability of both SEA and RHE
designs.

The upper part of Table 1 shows the results of
Transformer enabled by two SAN enhancement
strategies: the relative position encoding method
(Rel_Pos) (Shaw et al., 2018) which considers
the relative position between sequence elements,
and the modeling localness (Localness) (Yang
et al., 2018) method which enhances the ability
of capturing local context for self-attention with
a learnable Gaussian bias. While both Rel_Pos
and Localness make improvement over Trans-
former owing to their strategies of enhancing SAN,
our DEA, DEA+RHE, LPEA and LPEA+RHE-
enabled Transformers substantially and consis-
tently beat the standard Transformer and both
Rel_Pos and Localness-enhanced Transformers.
For example, our DEA+RHE on Transformer out-
performs Rel_Pos by over 0.49 BLEU points on
En→De (WMT16), 0.29 BLEU points on En→De
(WMT14), and 0.36 BLUE points on En→Cs
(WMT16). This is owing to the SEA and RHE
design of assigning a distinct syntactic bias for
each word and modeling both short- and long-term
syntactic relations.

5.3 RHE Mechanism Analysis

Here, we analyze the RHE generalizability, the im-
pact of different factors, and the visualization of
multi-head attention matrices. Owing to space lim-
itation, we only report the testing results on the
En→De (WMT16) set, and explore the influence
caused by syntax parsing quality and applied en-
coder layers in Appendix.

5.3.1 The RHE Applicability
Table 2 shows that RHE lifts Rel_Pos and Lo-
calness by +0.28 and +0.20 BLEU point respec-
tively. This proves (1) RHE is general and can
enhance other multi-head SAN; and (2) the neces-
sity of preserving important heads while improving
multi-head self-attention mechanisms. By pruning
redundant heads, the experiment also shows that
RHE can precisely identify redundant heads and the
RHE-enabled Transformer only drops 0.1 BLEU
point after pruning the identified redundant heads,
meanwhile the training speed improves slightly.
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Architecture
En→De (WMT16) En→De (WMT14) En→Cs (WMT16)
#Para BLEU #Para BLEU #Para BLEU

Transformer 71.82M 25.28 88.00M 27.31 70.02M 15.46
+ Rel_Pos 71.85M 25.49 88.10M 27.53 70.05M 15.60
+ Localness 71.84M 25.53 88.80M 27.61 70.04M 15.65

+ DEA 71.82M 25.75 88.10M 27.71↑ 70.02M 15.84↑

+ DEA + RHE 71.82M 25.98⇑ 88.10M 27.82↑ 70.02M 15.96⇑

+ LPEA 71.82M 25.90⇑ 88.10M 27.96↑ 70.02M 15.97⇑

+ LPEA + RHE 71.82M 26.28⇑ 88.10M 28.27⇑ 70.02M 16.27⇑

Table 1: Test results of SEA and RHE against baseline SAN-enhanced Transformer for NMT on WMT16 and
WMT14 En→De, and WMT16 En→Cs. “# Para” denotes the trainable parameter size of each model (M = million).
Symbols “↑ /⇑” refer to the improvement significance level over the self-attention baseline (p < 0.05/0.01) tested
by bootstrap resampling.

This shows the importance of precisely identify-
ing redundant heads, and only by then pruning
redundant heads would trivially affect the learning
performance as shown in (Voita et al., 2019).

Systems Speed BLEU 4
Transformer 1.21 25.28 -
+RHE (Prune) 1.23 25.18 - 0.10
Rel_Pos 1.17 25.49 + 0.21

+RHE 1.17 25.77 + 0.49
Localness 1.18 25.53 + 0.25

+RHE 1.17 25.73 + 0.45

Table 2: Impact of RHE on two multi-head SAN
methods Rel_Pos and Localness and pruning redun-
dant heads. “Speed” denotes the training speed
(steps/second).
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red line), and the black dashed line represents the base-
line.

5.3.2 Selection of Multi-head Function Gate
Two strategies can be used to select the multi-head
function gate: one is a fixed gate by a constant num-
ber throughout the whole training process; the other

is a dynamic gate transformed from the average of
maximum attention weight c of an individual head,
which provides a flexible criteria to determine the
head function.

Fig. 4 shows the comparison between multiple
fixed gate values and the dynamic gate. We adjust
the value of the fixed gate in a range (0.1, 0.5)3.

The results show that the dynamic gate strat-
egy significantly outperforms all fixed gate values.
The performance becomes unstable when the fixed
gate value increases. Self-attention heads develop
their ability to capture syntactic relations during the
training epochs; accordingly, the average syntactic
attention weights Synattn increase gradually. Low
fixed gate value reduces the recall of RHE because
Synattn goes high in later epochs; high fixed gate
value reduces the accuracy of RHE as all important
heads and redundant heads receive small Synattn

in the initial epochs. Hence, the high fixed gate
might mistakenly treat a high portion of heads as
redundant.

5.3.3 Effect of Maximum Relative
Local-Phrasal Position

Compared to the dependency tree, the constituency
tree characterizes the distinct relative phrasal po-
sition for each word, which enriches the syntactic
relations between elements. We thus evaluate the
effect of varying the clipping distance k of the max-
imum absolute relative local-phrasal position. The
results in Table 3 show that the performance in-
creases with the increase of k from 0 to 6, while

3Once the average of syntactic attention weights satisfies
Synattn > 0.5, it is higher than the average non-syntactic
attention weights, hence we assume that the head is functional.
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(a) Redundant Head (b) LPEA+RHI Head (c) Rel_Pos Head (d) Localness Head (e) Important Head

Figure 5: Visualization of attention matrices of the same input sentence and the same encoder layer.The darker
color of a cell represents higher attention weight of the source token.

this trend does not hold when k = 8.
The average of maximum phrase layers of the

training set is 11.13, which is close to the maximum
absolute relative phrasal position k = 5 and k = 6
(where 2k + 1 is 11 and 13). This result indicates
that the best performance appears when the relative
phrasal position vector exactly covers the average
of the maximum phrase layer.

k 0 2 4 6 8

BLEU 25.28 25.57 25.86 26.28 25.51

4 - +0.29 +0.58 +1.0 +0.23

Table 3: Results w.r.t. the clipping relative local-phrase
layer distance k.

5.3.4 Visualization of LPEA+RHE-enlivened
Attention

To evaluate the effect of LPEA+RHE-enlivened
redundant heads against Rel_Pos and Localness,
we further visualize the attention matrices of an
individual head in the first encoder layer. The
source sentence is Relations between Obama and
Netanyhu have been strained for years 〈EOS〉.

The improvement between redundant head and
LPEA+RHE-enlivened head is shown in Fig. 5 (a)
and (b). In Fig. 5 (a), the distribution of original
redundant head attention concentrates more on the
end of the sentence (16th column) but less on the
specific meaningful words. In Fig. 5 (b), SEA
masks those words that do not belong to the local-
phrase in each row and improves the attention in
local-phrase: 1) ‘have been ... for years’ in rows 8
and 9, which is a long-distance and discontinuous
phrase; 2) SEA strengthens the attention between
‘Relations’ and ‘Obama’, ‘Netanyhu’ in the 1st row,
which has the nmod dependency.

Fig. 5 (c) and (d) shows the results of Rel_Pos
and Localness, both explicitly models the locality
for self-attention networks. Both of their attention

weights mainly distribute along the diagonal and
some short-range elements. Rel_Pos captures the
phrase ‘have been’ in rows 8 and 9 but ignores
long-range phrase elements ‘for years’ since the in-
fluence of relative position representation decays as
the sequence distance increases. In Fig. 5 (d), the
attention weight distribution of Localness is more
flexible because they assign a distinct Gaussian
bias to each position, which pays more attention to
the local syntactic context. It captures the phrase
‘between...and’ in the 6th row. However, the atten-
tion may focus on the word itself sometimes, such
as the high attention weights of ‘Relations’ (‘R el
ations’ in the subword form) in the 1st column and
‘strained’ (‘st ra in ed’ in the subword form) in the
11th column. In contrast, LPEA+RHE enlivens
the redundant head by modeling the latent syntac-
tic localness beyond the constraints of sequence
distance. Fig. 5 (e) shows the attention matrix of
an important head, which focuses on neighboring
words. This result is consistent with the previous
findings in (Voita et al., 2019).

6 Conclusions

While multi-head self-attention networks show a
significant potential in improving learning tasks
such as NMT, an open challenging topic is to quan-
tify the redundancy and importance of each head
and further improve the weak heads. This paper
makes one step forward by not only precisely an-
alyzing and identifying redundant heads but in-
troducing a dynamic redundant heads enlivening
(RHE) mechanism to identify and enliven each re-
dundant head toward full potential without affect-
ing the function of other important heads as in
alternatively enhancing all heads. The proposed
dependency-enhanced attention and local-phrase-
enhanced attention effectively capture the different
syntactic relations between elements. We’ll work
on strategies to integrate DEA and LPEA in future.
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A Appendix

A.1 Setting Details

Our experiment dataset statistics are summarized
in Table A1.

Dataset Train Val. Test

En-De (WMT16) 226822 2168 2999
En-De (WMT14) 1945614 2168 2999
En-Cz (WMT16) 181112 2656 2999

Table A1: The number of train set, development set and
test set sentences of three experiment datasets.

We follow the Transformer (base model) setting
in (Vaswani et al., 2017) to train the models and
reproduce their reported results on the En→De task.
The hidden size is 512, filter size is 2,048, and the
number of attention heads is 8. All models are
trained on four NVIDIA TITAN Xp GPUs where
each is allocated with a batch size of 4,096 tokens.
We average the last 10 checkpoint models to ensure
the robustness of translation performance.

A.2 Effect of Enhancing Different Layers in
Encoder

The work in (Voita et al., 2019) shows that there is
only one important head associated with rare words
function on the first layer, while more heads are
with positional and syntactic functions on higher
layers. Their work indicates the necessity of lifting
individual heads rather than treating them same.
In this experiment, we test this by applying the
local-phrase-enhanced attention to different combi-
nations of layers in the encoder.

As shown in Table A2, enhancing the syntactic
function on the first layer outperforms applying it
to any other layer combinations for translation and

achieves the fastest training speed due to only mod-
ifying one layer; and the performance drops with
the increase of layers from bottom to top (Rows
2-5 in the table). However, enhancing the syntactic
function on the higher three layers and the overall
layers (Rows 6 and 1) decreases the translation per-
formance. These results reveal that lower layers
may have fewer important heads to be enhanced,
while higher layers may have too many important
heads, leading to harder differentiation in the en-
hancement. In addition, our results are consistent
with the analysis in the related work (Yang et al.,
2018) and (Hao et al., 2019), which shows that the
lower encoder layers benefit more from modeling
the localness and phrase structure. Accordingly, we
only enhance the first layer of SAN in the following
experiments.

# Layers Speed BLEU 4
0 [0-0] 1.21 25.28 -
1 [1-6] 1.10 24.68 - 0.60
2 [1-1] 1.18 26.28 + 1.0
3 [1-2] 1.17 25.93 + 0.65
4 [1-3] 1.15 25.66 + 0.38
5 [1-4] 1.15 25.43 + 0.15
6 [4-6] 1.16 24.96 - 0.32

Table A2: Effect of enhancing different layers of the
encoder by the local-phrase-enhanced attention without
enlivening redundant heads.

A.3 Effect of Syntax Parsing Quality

We use an external constituency tree parser to gen-
erate the syntactic structure for the source sentence.
Based on that, we can extract the local-phrase and
characterize the relative local-phrasal position fea-
tures to modify the self-attention network. Hence,
the impact of the quality of different parsers on
translation performance is necessary to be anal-
ysed.

We compare the effect of two classical con-
stituency tree parser tools, PCFGs-based Parser
(Petrov and Klein, 2007) and Neural-based Parser
(Kitaev and Klein, 2018), on the performance of
the LPEA+RHE mechanism. Table A3 shows the
reported parsing performance (F1 score) on the
Penn Treebank WSJ test set (for English) and its
corresponding translation BLEU score in this work.

The results indicate that, the higher quality of
parsing trees, the better performance of the syntax-
enhanced NMT model across dataset sizes and lan-
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guages, with about 0.30 BLEU points improvement.
We think that the improvement of parsing and trans-
lation is owing to that the neural-based parser lever-
ages Transformer as encoder to represent the sen-
tence. Although exploring the best performance
of parsing tools is not the focus of this work, we
believe that, with higher quality of parsing tool, our
SEA mechanisms have more potential to represent
the syntactic bias for self-attention network.

Metric Task PCFG Neural
F1 WSJ Parsing 91.20 93.55

BLEU
En-De (WMT16) 25.98 26.28
En-De (WMT14) 28.02 28.27
En-Cs (WMT16) 15.92 16.27

Table A3: Performance of two classical constituency
tree parser tools on the Penn Treebank WSJ test set (F1
score) and its corresponding effect on the LPEA+RHE
NMT model (BLEU score).


