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Abstract

Compared to monolingual models, cross-
lingual models usually require a more expres-
sive vocabulary to represent all languages ad-
equately. We find that many languages are
under-represented in recent cross-lingual lan-
guage models due to the limited vocabulary ca-
pacity. To this end, we propose an algorithm
VOCAP to determine the desired vocabulary
capacity of each language. However, increas-
ing the vocabulary size significantly slows
down the pre-training speed. In order to ad-
dress the issues, we propose k-NN-based tar-
get sampling to accelerate the expensive soft-
max. Our experiments show that the multi-
lingual vocabulary learned with VOCAP bene-
fits cross-lingual language model pre-training.
Moreover, k-NN-based target sampling mit-
igates the side-effects of increasing the vo-
cabulary size while achieving comparable per-
formance and faster pre-training speed. The
code and the pretrained multilingual vocab-
ularies are available at https://github.
com/bozheng-hit/VoCapXLM.

1 Introduction

Pretrained cross-lingual language models (Con-
neau and Lample, 2019; Conneau et al., 2020; Chi
et al., 2021b; Xue et al., 2020) have recently shown
great success in improving cross-lingual transfer-
ability. These models encode texts from differ-
ent languages into universal representations with a
shared multilingual vocabulary and a shared Trans-
former encoder (Vaswani et al., 2017). By pre-
training cross-lingual language models on the large-
scale multilingual corpus, the models achieve state-
of-the-art performance on various downstream
tasks, e.g., cross-lingual question answering and
cross-lingual sentence classification.

Although the Transformer architecture used in
most pretrained monolingual and cross-lingual lan-
guage models are almost identical, the vocabularies
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are quite different. The vocabulary sizes in exist-
ing pretrained monolingual language models typi-
cally range from 30K to 60K subword units (Devlin
et al., 2019; Liu et al., 2019; Dong et al., 2019; Bao
et al., 2020). Meanwhile, state-of-the-art pretrained
cross-lingual language models use the shared mul-
tilingual vocabulary of 250K subword units to rep-
resent more than 100 languages (Conneau et al.,
2020; Chi et al., 2021b; Xue et al., 2020). Although
some subword units are shared across languages,
no more than 2.5K language-specific subword units
on average are allocated for each language, which
is still relatively small. Besides, the multilingual
vocabulary is trained on the combined multilingual
corpus with subword segmentation algorithms like
BPE (Sennrich et al., 2015) and unigram language
model (Kudo, 2018). During vocabulary construc-
tion, these algorithms tend to select more subword
units shared across languages with common scripts
like Latin and Cyrillic (Chung et al., 2020b), but
have a lower chance to select language-specific
subword units. It is hard to determine how much
vocabulary capacity a particular language requires
and whether the shared multilingual vocabulary has
allocated enough vocabulary capacity to represent
the language.

In this paper, we propose VOCAP, an algorithm
to allocate large vocabulary for cross-lingual lan-
guage model by separately evaluating the required
vocabulary capacity of each language. First, we
use the average log probability (ALP) to evaluate
the ability of a vocabulary to represent a particular
language. We find that ALP is highly correlated to
the downstream task performance, and we use it
as an indicator to allocate language-specific vocab-
ulary capacity. In addition, the language-specific
pre-training corpus size should also be considered
since the pretrained model can only learn limited
knowledge from low-resource languages where the
pre-training data is scarce. Therefore, allocating
too much vocabulary capacity for low-resource lan-
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guages is inefficient. VOCAP leverages both ALP
and pre-training corpus size to evaluate the required
vocabulary capacity of each language. We finally
allocate a multilingual vocabulary with 500K sub-
word units with VOCAP and show it can signifi-
cantly improve the model performance.

However, increasing the vocabulary size has two
practical drawbacks: slow pre-training speed and
heavy model size. To address the pre-training speed
issue, we propose k-NN-based target sampling, an
approximate algorithm to improve the computing
efficiency in the expensive softmax caused by the
large vocabulary. We pre-train the model with a
small subset of the entire vocabulary constructed
with k nearest neighbors of the target words in
current mini-batch data, evaluated with the inner
product of subword embeddings. As for the model
size, we halve the embedding dimension and draw
a different conclusion from Conneau et al. (2020)
that increasing vocabulary from 250K to 500K with
a fixed capacity model can also improve the perfor-
mance.

Our contributions are summarized as follows:

• We propose VOCAP, an algorithm to allocate
appropriate vocabulary capacity for each lan-
guage in the shared multilingual vocabulary
of cross-lingual language models.

• We propose k-NN-based target sampling, a
softmax approximation algorithm to improve
the computing efficiency during cross-lingual
language model pre-training.

• We evaluate our methods on the XTREME
benchmark (Hu et al., 2020), including three
different tasks on seven datasets. Experiments
show that VOCAP consistently outperforms
previous vocabulary construction methods.
Meanwhile, our k-NN-based target sampling
enables effective acceleration while achieving
comparable performance.

2 VOCAP: Language-Specific
Vocabulary Capacity Allocation

We attribute the main factors that affect the per-
formance of a particular language in a cross-
lingual language model to language-specific pre-
training corpus size and vocabulary capacity. While
previous work adjusts pre-training corpus size
with an exponentially smoothed sampling distri-
bution (Conneau and Lample, 2019; Conneau et al.,

2020), few existing works have explored the ef-
fect of the language-specific vocabulary capacity
in pretrained cross-lingual language models.

In this section, we first investigate the correlation
between the language-specific vocabulary capacity
and downstream task performance through experi-
ments. Then we introduce our proposed multilin-
gual vocabulary allocation algorithm VOCAP.

2.1 Investigating Language-Specific
Vocabulary Capacity

We start by introducing average log probability
(ALP) to quantify the language-specific vocabulary
capacity in the shared multilingual vocabulary for
a specific language.1 Given a monolingual corpus
composed of sentences Di = {s1, ..., s|Di|} from
the i-th language and tokenized with vocabulary V ,
the average log probability is defined as follows:

ALP(Di, V ) =
1

|Di|

|Di|∑
j=1

|sj |∑
k=1

log puni(s
k
j ) (1)

where skj is the k-th subword of the sentence sj ,
and puni(·) is the unigram distribution counted on
the monolingual corpus Di. It is difficult to count
the language-specific subword units in multilingual
vocabularies since the raw text contains a lot of
code-switched data. By contrast, ALP is a more
convenient indicator of language-specific vocabu-
lary capacity and it is penalized by the subword
units with low-frequency.

To investigate the impact of language-specific
vocabulary capacity, we first learn monolingual
vocabularies in different sizes to obtain vocabu-
laries with different ALP, i.e., language-specific
vocabulary capacity. Then we conduct pre-training
with these monolingual vocabularies on their cor-
responding monolingual corpora. Finally, we eval-
uate these monolingual models on downstream
tasks and study the correlation between language-
specific vocabulary capacity and downstream task
performance.

2.1.1 Setup
To alleviate the bias from the languages’ character-
istics, we first select four languages with different
pre-training corpus sizes from different language
families, which are Hindi (hi), Persian (fa), Italian
(it), Russian (ru). We first learn thirty monolingual

1For brevity and consistency, we refer to the parameterized
tokenizer also as vocabulary, e.g., SentencePiece model.
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Figure 1: ALP of different monolingual vocabularies
with different vocabulary sizes.
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Figure 2: F1 score on POS task with different vocabu-
laries versus their ALP on the monolingual corpus.
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Figure 3: F1 score on NER task with different vocabu-
laries versus their ALP on the monolingual corpus.
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Figure 4: Comparison of vocabulary capacity of
different-resourced languages. Shorter bars indicate
larger vocabulary capacity.

vocabularies for each language on the correspond-
ing monolingual corpus, with vocabulary size rang-
ing from 1K to 30K. Then we pretrain monolingual
language models with the corresponding monolin-
gual vocabularies. We evaluate these pretrained
models on two downstream tasks: NER (Pan et al.,
2017) and POS (Zeman et al., 2019) from the
XTREME benchmark since there is annotated task
data for a large number of languages. The vocab-
ularies are learned on the reconstructed Common-
Crawl corpus (Chi et al., 2021b; Conneau et al.,
2020) using SentencePiece (Kudo and Richardson,
2018) with the unigram language model (Kudo,
2018). The unigram distributions are also counted
on the CommonCrawl corpus. The Wikipedia cor-
pus is used for all pre-training experiments in this
paper since it is easier to run experiments due to
its smaller size. More details about the pre-training
data can be found in the appendix.

2.1.2 Observations
Increasing vocabulary size affects ALP of dif-
ferent languages in varying degrees. In Fig-

ure 1, we show the correlation between vocabulary
size and ALP of four different languages. We ob-
serve the ALP varies across different languages,
mainly because ALP correlates with the lexicon
granularity of the language, i.e., the average num-
ber of tokens per sentence. Besides, when the vo-
cabulary size is larger than 10,000, the gains of
increasing monolingual vocabulary size in hi and
fa are less than it and ru. We attribute it to that hi
and fa does not have extensive compoundings. An-
other observation is that for each language, every
time we increase the vocabulary size by 1K, the
increment in ALP is monotonically decreasing.

ALP correlates positively with downstream
task performance. In Figure 2 and Figure 3, we
illustrate downstream task performance of mod-
els pretrained with monolingual vocabularies on
corresponding monolingual corpora. We observe
that ALP correlates positively with downstream
task performance, making language-specific ALP a
valid indicator to allocate multilingual vocabulary.
Another natural option to allocate multilingual vo-
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Algorithm 1 Allocating Multilingual Vocabulary with VO-
CAP

Input: size of target multilingual vocabulary T ; monolin-
gual vocabularies of N languages {V i

ti}
N
i=1; monolingual

corpus of N languages {Di}Ni=1

Output: multilingual vocabulary V
1: for i← 1 to N do
2: for j ← 1 to 50 do
3: ai,j×1000 ← ALP(Di, V

i
j×1000)

4: ti ← 0
5: ai,0 ← −∞
6: do
7: j ← 0
8: δ ← 0
9: for i← 1 to N do

10: if δ < ai,ti+1000 − ai,ti then
11: δ ← ai,ti+1000 − ai,ti
12: j ← i

13: tj ← tj + 1000

14: V ← |
⋃N

i=1 V
i
ti |

15: while |V | < T
16: if |V | > T then
17: Clip the size of V to T

cabulary is directly using monolingual vocabulary
size to indicate language-specific vocabulary ca-
pacity. We compare ALP against vocabulary size
and observe that ALP correlates better than vocab-
ulary size with the downstream task performance.
Besides, ALP reflects the language-specific char-
acteristics, while vocabulary size does not. The
detailed comparison is shown in the appendix.

2.2 Allocating Multilingual Vocabulary with
VOCAP

Based on the observations in Section 2.1.2, we
first give the implementation of our proposed vo-
cabulary allocation algorithm VOCAP. Then we
compare the multilingual vocabulary learned with
VOCAP and directly learned with SentencePiece
on the multilingual corpus.

2.2.1 VOCAP Implementation

We formulate the vocabulary construction of VO-
CAP as the problem of finding the optimal way
to allocate language-specific vocabulary size to
each language, such that the overall ALP of all
languages is maximized. In addition to language-
specific vocabulary capacity measured with ALP
from Equation (1), the language-specific pre-
training corpus size also affects the downstream
task performance. Considering the two factors, the

procedure of VOCAP can be formulated as follows:

argmax
t1,...,tN

N∑
i=1

qβi ALP(Di, V
i
ti) s.t. |

N⋃
i=1

V i
ti | = T

(2)

where ti ∈ {x × 1000 | x ≤ 50, x ∈ N+} is the
number of subword units allocated to the i-th lan-
guage,2 β is a rescaling factor, V i

ti is the vocabulary
of the i-th language with ti subword units, T is the
size of the target multilingual vocabulary, and qi
is the probability of sampling training instances
from i-th language during pre-training (Conneau
and Lample, 2019; Conneau et al., 2020):

qi =
fαi∑N
j=1 f

α
j

with fi =
ni∑N
k=1 nk

(3)

where ni is the number of instances in the i-th lan-
guage, α is a rescaling factor used to alleviate the
bias towards high-resource languages. Since the
increment in ALP when increasing the vocabulary
size by a certain number is monotonically decreas-
ing, Equation (2) can be solved with the greedy
algorithm in Algorithm 1.

2.2.2 Intrinsic Analysis
We compare the multilingual vocabulary learned
with VOCAP and directly learned with Sentence-
Piece on the multilingual corpus. The multilin-
gual corpus to learn vocabularies in this paper is
the concatenation of sentences sampled randomly
from the monolingual corpora. Sentences from the
i-th language is sampled with probability qi from
Equation (3) and use α = 0.7. We filter languages
with corpus size larger than 0.1 GB, resulting in 86
languages.

We evaluate the multilingual vocabularies with
their ALP on each language’s monolingual corpus,
and show results of different-resourced languages
in Figure 4. We refer to languages with less than
1GB and more than 10GB pre-training corpus in
the reconstructed CommonCrawl as low-resource
and high-resource languages, respectively, other-
wise mid-resource languages. When directly learn-
ing vocabulary on the multilingual corpus using
SentencePiece, the vocabulary with 500K subword
units (JOINT500K) only has a negligible improve-
ment compared to the vocabulary with 250K sub-
word units (JOINT250K). Meanwhile, our method

2Since the cost of learning monolingual vocabularies with
arbitrary sizes and getting the corresponding ALP is unafford-
able, we learn monolingual vocabularies with vocabulary size
range from 1K to 50K at intervals of 1K.
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(VOCAP500K) consistently outperforms JOINT500K
in different-resourced languages, especially in mid
and low-resource languages. The statistics of the
allocated vocabulary size for each language in
VOCAP500K are shown in the appendix.

3 Accelerate Large-Vocabulary
Language Model Pre-Training

Although extending the multilingual vocabu-
lary benefits cross-lingual language models, pre-
training with such large vocabularies brings two
practical issues: slow pre-training speed and heavy
model size. To tackle the issues, we first introduce
our k-NN-based target sampling in Section 3.1,
which is a softmax approximation algorithm to im-
prove computing efficiency. Then we describe how
we reallocate the model parameters to keep the
model size fixed in Section 3.2.

3.1 k-NN-Based Target Sampling
To reduce the expensive computation cost of the
softmax function, we propose k-NN-based target
sampling to approximate the expensive softmax.
The original masked language modeling objective
minimizes the cross-entropy loss for every masked
subword wi on the extensive multilingual vocabu-
lary V . The proposed k-NN-based target sampling
instead uses a smaller vocabulary subset V ′. The
approximation of the masked language modeling
loss for the masked subword wi is defined as fol-
lows:

L(wi) = −log
exp(hTvwi + bwi)∑

wj∈V ′ exp(h
Tvwj + bwj )

(4)

where h is the corresponding output vector of the
penultimate network layer, i.e., the output vector
of the Transformer encoder, vwi is the embedding
of the subword unit wi, and bwi is a bias term. We
formulate the construction of the vocabulary subset
V ′ as follows:

V ′ =
⋃

wi∈W
Ik(wi) (5)

Ik(wi) = top-k({vTwi
vwj | wj ∈ V }) (6)

whereW denotes the set of target masked subword
units in the current mini-batch, and Ik(wi) denotes
the k most similar subwords measured with the
inner product of the subword embedding vwi and
vwj .

However, retrieving Ik(wi) at every training step
for every subword unit wi ∈ W requires as much

Algorithm 2 Pre-training with k-NN-based target sampling

Input: multilingual corpus Dm; size k of k-NN-based target
sampling; multilingual vocabulary V ; learning rate τ

Output: model parameters θ
1: while not converged do
2: Sample n mini-batches {X (t),W(t)}nt=1 ∼ Dm .

X (t) is a mini-batch of monolingual text, andW(t) is the
set of masked subwords.

3: Update Ik(wi) for every wi ∈ V
4: for t← 1 to n do . Train the model for n steps.
5: V ′ ←

⋃
wi∈W(t) Ik(wi)

6: g ←
∑

wi∈W(t) ∇θL(wi)

7: θ ← θ − τg

computation cost as softmax, which is unaffordable.
As an alternative, we compute Ik(wi) for every
subword wi ∈ V according to the current subword
embeddings every n training steps and replace the
previous version of Ik(wi) with the new one. We
determine the value of n such that |V | � n× |W|.
We illustrate the pre-training procedure with k-NN-
based target sampling in Algorithm 2.

From a practical point of view under the cross-
lingual setting, the previous sampling-based soft-
max approximation methods either sample sub-
words from recent mini-batches or samples sub-
words from unigram distribution, the task becomes
simpler since a considerable part of the subword
samples is from different languages. Meanwhile,
our k-NN-based target sampling uses subwords
with similar representations like synonyms, which
enforces the model focus on discriminating the
ground-truth subword from a set of noise samples
that are not easy to distinguish. When using an
approximate algorithm, the key point is to remain
the difficult part of the original masked language
modeling objective as much as possible.

3.2 Reducing the Embedding Dimension

In order to keep the number of model parameters
fixed while increasing the vocabulary size, we fol-
low (Lan et al., 2020) and (Chung et al., 2020a)
to reduce both the input and output embedding di-
mension and linearly project the embeddings to
the hidden dimension of the Transformer blocks.
More precisely, we halve the embedding dimension
when the vocabulary size is doubled. This rebal-
ancing strategy only slightly degrades the model
performance but improves pre-training speed and
decreases the model size.

Conneau et al. (2020) also studied the relation
between the size of the shared multilingual vocabu-
lary and downstream task performance with multi-
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Model # Params Speed Pair Sentence Structure Prediction Question Answering
XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

Acc. Acc. F1 F1 F1/EM F1/EM F1/EM Avg.

XLM-R250K 265M 1.00x 68.7 82.6 72.1 60.6 63.4/47.4 57.2/39.6 45.2/29.6 60.7
JOINT250K 265M 1.00x 69.2 83.3 72.4 59.7 63.9/47.9 58.9/40.7 45.4/29.6 61.1
JOINT500K 448M 0.72x 69.4 82.2 72.1 60.5 64.7/48.0 58.2/40.3 48.0/32.6 61.4
VOCAP250K 265M 1.00x 69.3 82.0 71.4 60.0 66.2/50.3 60.1/42.6 45.6/30.6 61.5
VOCAP500K 448M 0.72x 70.5 83.0 72.9 62.7 66.8/50.6 60.9/42.9 50.0/34.5 63.1
+ k-NN 448M 1.18x 70.8 82.6 72.5 61.8 67.1/49.8 61.4/42.5 56.3/39.3 63.7
+ half emb 265M 0.94x 70.3 83.0 72.0 61.7 65.8/49.0 61.0/42.3 49.3/33.0 62.5
+ k-NN & half emb 265M 1.35x 69.8 83.4 72.1 60.1 66.6/49.5 60.8/42.7 50.2/33.9 62.5

Table 1: Evaluation results on the XTREME benchmark. “XLM-R250K” denotes using the XLM-R (Conneau et al.,
2020) vocabulary with 250K subword units. “k-NN” and “half emb” denote our k-NN-based target sampling
method and using half embedding dimension, respectively.

lingual models of the fixed number of parameters.
They keep the overall number of parameters con-
stant by adjusting the width (i.e., hidden size) of the
Transformer. Notice that we only reduce the em-
bedding dimension while keeping the Transformer
blocks untouched.

4 Experiment

4.1 Setup

Fine-Tuning Datasets To validate the effective-
ness of our methods, we conduct experiments on
three types of cross-lingual understanding tasks
from XTREME benchmark (Hu et al., 2020), in-
cluding two classification datasets: XNLI (Con-
neau et al., 2018), PAWS-X (Yang et al., 2019),
three span extraction datasets: XQuAD (Artetxe
et al., 2020), MLQA (Lewis et al., 2020), TyDiQA-
GoldP (Clark et al., 2020), and two sequence label-
ing datasets: NER (Pan et al., 2017), POS (Zeman
et al., 2019). The statistics of the datasets are shown
in the appendix.

Implementation Details We adapt the Trans-
former architecture from the base model setting
in Conneau et al. (2020), i.e., 12 layers and 768
hidden dimension size. We use masked language
modeling objective to train our models for 1 million
updates on eight 32GB Nvidia V100 GPUs with
a batch size of 256. We update the top-k indices
for every word in the multilingual vocabulary every
1,000 training steps and use k = 50 in k-NN-based
target sampling. The learning rate is scheduled with
a polynomial decay with 10K warmup steps, where
the peak learning rate is set as 0.0001. We adapt
other hyper-parameters in pre-training from Chi
et al. (2021b). All fine-tuning results are averaged
over five random seeds. The fine-tuning pipeline

is based on the code base of (Zheng et al., 2021).
The fine-tuning implementation details are shown
in the appendix.

4.2 Results

Table 1 shows XTREME fine-tuning results with
models pretrained using different vocabularies
and acceleration strategies. Compared to vocab-
ulary directly learned on multilingual corpus with
SentencePiece, i.e., XLM-R250K and JOINT250K,
our VOCAP250K improves on question answering
datasets but degrades on PAWS-X, POS and NER.
Then increasing the vocabulary from VOCAP250K
to VOCAP500K mitigates the gap and bring im-
provements on six datasets except for PAWS-X,
which only includes seven high-resource languages.
However, increasing the size of vocabulary di-
rectly learned with Sentencepiece from JOINT250K
to JOINT500K does not improve the performance
as our VOCAP method does, showing the impor-
tance of selecting language-specific subword units
and leveraging how much vocabulary capacity each
language requires.

Since increasing vocabulary size brings the is-
sues of model size and pre-training speed, we study
the proposed method to accelerate pre-training:
k-NN-based target sampling (k-NN) and using
half embedding dimension (half emb). Our k-
NN method improves pre-training speed with a
500K vocabulary so that the speed is 1.18 times
that vanilla pre-training with a 250K vocabulary.
Meanwhile, pre-training with our k-NN method
does not significantly degrade the performance, it
even brings improvement on XNLI, MLQA, and
TyDiQA. Then we halve the embedding dimension
of the models with 500K vocabulary and results in a
similar number of parameters to models with 250K
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Method XNLI POS MLQA Speed

VOCAP500K 69.2 72.9 59.9/41.7 1.00x

+ k-NN 69.3 72.1 59.6/40.3 1.64x
+ target sampling 68.8 71.3 57.6/38.8 1.56x
+ NCE 56.0 61.8 41.1/26.2 1.40x
+ NEG 56.5 62.9 40.1/25.6 1.40x

Table 2: Comparison between different sampling-based
softmax approximation approaches with vocabulary
VOCAP500K. Models are pretrained for 0.5M steps.

Method XNLI POS MLQA Speed

VOCAP500K 69.2 71.8 59.9/41.7 1.00x

+ k-NN (k=5) 68.5 71.3 58.6/40.0 1.76x
+ k-NN (k=10) 69.3 71.4 58.9/39.6 1.74x
+ k-NN (k=25) 69.2 71.7 59.8/40.9 1.69x
+ k-NN (k=50) 69.3 72.1 59.6/40.3 1.64x
+ k-NN (k=100) 69.5 72.1 60.0/41.3 1.57x

Table 3: Comparison between different k values in k-
NN-based sampling method. Models are pretrained for
0.5M steps.

vocabulary. The overall performance degrades by
0.6-points but still consistently improves over mod-
els with 250K vocabularies while the speed is com-
parable. Combining the two methods above, we
achieve a 1.35-times speed-up and more than 1
point improvement with a similar model size com-
pared to models with 250K vocabularies.

4.3 Analysis and Discussion
We conduct a thorough analysis to understand the
impact of our proposed methods on cross-lingual
language models. To reduce the computation load,
we only pre-train the cross-lingual language models
for 500K steps for some of our settings.

k-NN-based target sampling outperforms previ-
ous sampling-based approaches. To verify the
effectiveness of our proposed k-NN-based sam-
pling method, we compare it against previous
sampling-based approaches used to approximate
softmax, which are target sampling (Jean et al.,
2015), noise contrastive estimation (Mnih and Teh
(2012), NCE) and negative sampling (Mikolov et al.
(2013), NEG). The results are shown in Table 2.
To make a fair comparison, since our k-NN-based
sampling method using k = 50 samples vocabu-
lary subset with less than 50,000 subword units
per batch on average, we here sample 50,000 neg-
ative subword units per batch for target sampling,
NCE, and NEG. Among the four methods, NCE
and NEG are significantly worse than k-NN and

Method XNLI POS NER MLQA

β=0 66.9 71.8 61.5 58.6/41.0
β=0.3 69.0 71.7 61.6 59.2/40.1
β=0.7 69.2 71.8 61.5 59.9/41.7
β=1.0 69.5 71.8 60.9 58.4/40.3

Table 4: Impact of adjusting high-resource versus low-
resource vocabulary capacity trade-off with β. β = 0
indicates the vocabulary is allocated without consider-
ing pre-training corpus size. Models are pretrained for
0.5M steps.

target sampling. We attribute it that NCE and NEG
need more training steps to converge (Mnih and
Teh, 2012). Besides, the original NCE typically
sample different negative samples for every target
word, while we here use 50,000 negative samples
for all target word in current mini-batch, which is
more efficient on GPUs.

Effect of the value of k in k-NN-based target
sampling. We illustrate the downstream task per-
formance when using different values of k in our
k-NN-based target sampling in Table 3. While a
smaller k indicates faster pre-training speed, we
observe even with a small value like 5, the result
does not significantly degrade compared to using
the original softmax. We attribute this to that by
retrieving subword samples that are most similar to
the target subword, the model can focus on the diffi-
cult part of the original masked language modeling
objective. More precisely, the model focus on dis-
criminating the ground-truth subword from a set of
noise samples that are not easy to distinguish. Con-
sidering the overall performance, the pre-training
speed, and running memory to store k-NN indices,
we use k = 50 in all our experiments.

Language-specific pre-training corpus should
also be considered when allocating vocabulary
capacity. The pre-training corpus size varies
across different languages. It is inefficient to al-
locate a large vocabulary capacity for low-resource
languages with rare pre-training data since the pre-
trained model can only learn limited knowledge
from these languages. Here we study the value of
rescaling factor β from Equation (2) in multilingual
vocabulary construction in Table 4. The rescaling
factor β controls the number of selected language-
specific subword units. Increasing the value of β
improves the performance of XNLI, where most
languages are high-resource languages. However,
it degrades the performance of NER, where more
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Figure 5: Performance on XNLI and MLQA versus the
cross-lingual language models’ pre-training cost.

low-resources languages exist. When considering
overall performance, we decide to use β = 0.7 in
our experiments.

The proposed acceleration strategies signifi-
cantly improve the downstream task perfor-
mance under the same pre-training cost. In-
creasing the vocabulary size slows the pre-training
speed, even though there is almost no difference
in fine-tuning speed. We study the relationship be-
tween the downstream task performance and the
pre-training cost under different model settings in
Figure 5. We observe VOCAP500K+k-NN achieves
the best performance. Models trained with 500K
vocabulary consistently outperform 250K vocab-
ulary on XNLI. Besides, we observe the perfor-
mance on MLQA with the model trained using
250K vocabulary degrades as the training contin-
ues while models trained using 500K vocabulary
does not, indicating the sufficient vocabulary ca-
pacity is essential for question answering task.

VOCAP gains more improvement on mid and
low-resource languages than high-resource lan-
guages. In Figure 4 in Section 2, we show that
the vocabulary learned with VOCAP benefits the vo-
cabulary capacity of low-resource languages more
than high-resource languages, indicating the im-
provements should mainly come from low-resource
languages. To verify this, we compare VOCAP

against SentencePiece baseline on the performance
of different-resourced languages on XNLI and
NER in Figure 6. We observe that the vocabulary
learned with VOCAP significantly outperforms the
vocabularies directly learned with SentencePiece
on mid and low-resource languages. This obser-
vation is also consistent with the ALP results in
Figure 4.
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Figure 6: Impact of VOCAP on the performance of
different-resourced languages on XNLI and NER.

5 Related Work

Pretrained Cross-Lingual Language Models
Recent work pre-trains Transformer mod-
els (Vaswani et al., 2017) on the large-scale
multilingual corpus to obtain pretrained cross-
lingual language models (Conneau and Lample,
2019; Conneau et al., 2020; Chi et al., 2020,
2021a,b,c,d; Chung et al., 2020a; Xue et al.,
2020; Ma et al., 2020, 2021). These models are
capable of encoding texts from different languages
into universal representations and significantly
improves cross-lingual transferability.

Multilingual Vocabulary Construction Cross-
lingual language models need large vocabularies
to ensure all languages are adequately represented.
Recent research work on constructing multilingual
vocabulary for cross-lingual language models can
be categorized into two groups. mBERT (Devlin
et al., 2019), XLM (Conneau and Lample, 2019),
and XLM-R (Conneau et al., 2020) learn vocab-
ularies on a combined multilingual corpus with
WordPiece (Wu et al., 2016), BPE (Sennrich et al.,
2015), and unigram language model (Kudo, 2018)
from SentencePiece (Kudo and Richardson, 2018),
respectively. Chung et al. (2020b) propose to bal-
ance the trade-off between optimizing for cross-
lingual subword sharing and the need for robust
representation of individual languages. They first
group languages into clusters and learn vocabular-
ies individually on each cluster, then combine all
cluster-vocabularies to form a single unified mul-
tilingual vocabulary. Compared to Chung et al.
(2020b), our advantage is that we separately quan-
tify the vocabulary capacity each language needs
with average log probability and balance the con-
struction procedure with pre-training corpus size.
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Softmax Approximation Approximating the
softmax was a core problem in training NLP tasks
with a large vocabulary, e.g., neural machine trans-
lation, language modeling. With the rise of sub-
word representations (Sennrich et al., 2015; Wu
et al., 2016; Kudo, 2018), the vocabulary size sig-
nificantly decreases, and the problem has been less
studied recently. Nevertheless, the need for train-
ing cross-lingual language models with a large
multilingual vocabulary has drawn our attention
again to the softmax approximation approaches.
The existing softmax approximation approaches
can be grouped into softmax-based and sampling-
based approaches. Softmax-based approaches in-
cludes hierarchical softmax (Morin and Bengio,
2005), differentiated softmax (Chen et al., 2016),
and CNN-softmax (Kim et al., 2016). However,
these approaches improve the softmax efficiency
by changing its architecture, which is unsuitable
for either training on GPUs or multilingual set-
tings. Sampling-based approaches instead opti-
mize some other easy-to-compute loss function to
approximate the original softmax, including tar-
get sampling (Jean et al., 2015), noise contrastive
estimation (Mnih and Teh, 2012), negative sam-
pling (Mikolov et al., 2013). Our k-NN-based tar-
get sampling is also a sampling-based approach.

6 Conclusion

In this paper, we study pre-training cross-lingual
language models with large vocabulary capacity.
First, we propose VOCAP to construct large multi-
lingual vocabulary in cross-lingual language mod-
els. We conduct a quantitative analysis to show
that average log probability is an valid indicator
of vocabulary capacity for a particular language,
which also correlates with downstream task perfor-
mance on the language. VOCAP uses the language-
specific average log probability and pre-training
corpus size to allocate appropriate vocabulary ca-
pacity for each language in the multilingual vo-
cabulary. Moreover, we propose k-NN-based tar-
get sampling to accelerate pre-training with the
allocated large multilingual vocabulary by approxi-
mating the expensive softmax. We also show that
reducing the embedding dimension is an effective
way to keep the improvement brought by the large
vocabulary without increasing the number of model
parameters. The experiments demonstrate the effec-
tiveness of the proposed vocabulary construction
method as well as the acceleration methods.
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Language Task ρ(ALP,F1) ρ(|V |,F1)

hi
POS 0.922 0.787
NER 0.879 0.890

fa
POS 0.905 0.700
NER 0.912 0.872

it
POS 0.665 0.422
NER 0.899 0.900

ru
POS 0.423 0.327
NER 0.872 0.833

Table 5: Pearson correlation coefficients between ALP
and downstream task performance and between vocab-
ulary size and downstream task performance.

Task Dataset |Train| |Lang|

Classification
XNLI 392K 15
PAWS-X 49.4K 7

Structured POS 21K 33
Prediction NER 20K 40

Question
Answering

XQuAD 87K 11
MLQA 87K 7
TyDiQA 3.7K 9

Table 6: Statistics for the datasets in the XTREME
benchmark. we report the number of training examples
(|Train|), and the number of languages (|Lang|).

C Fine-tuning Settings

Implementation Details For the POS dataset,
we use the average-pooling strategy on subwords to
obtain word representation since part-of-speech is
related to different parts of words, depending on the
language. We tune the hyper-parameter and select
the model with the best average results over all the
languages’ development set. There are two datasets
without development set in multi-languages. For
XQuAD, we tune the hyper-parameters with the de-
velopment set of MLQA since they share the same
training set and have a higher degree of overlap in
languages. For TyDiQA-GoldP, we use the English
test set as the development set.

Hyper-Parameters For XNLI, PAWS-X, POS,
and NER, we fine-tune 10 epochs. For XQuAD
and MLQA, we fine-tune 4 epochs. For TyDiQA-
GoldP, we fine-tune 6 or 8 epochs and select the
best number of epochs with the English test set as
the development set. For learning rate, we select

Code Size (GB) Code Size (GB) Code Size (GB)

af 0.2 hu 9.5 pl 28.6
am 0.4 hy 0.7 ps 0.4
ar 16.1 id 17.2 pt 39.4
as 0.1 is 0.5 ro 11.0
az 0.8 it 47.2 ru 253.3
ba 0.2 ja 86.8 sa 0.2
be 0.5 ka 1.0 sd 0.2
bg 7.0 kk 0.6 si 1.3
bn 5.5 km 0.2 sk 13.6
ca 3.0 kn 0.3 sl 6.2
cs 14.9 ko 40.0 sq 3.0
cy 0.4 ky 0.5 sr 7.2
da 6.9 la 0.3 sv 60.4
de 99.0 lo 0.2 sw 0.3
el 13.1 lt 2.3 ta 7.9
en 731.6 lv 1.3 te 2.3
eo 0.5 mk 0.6 tg 0.7
es 85.6 ml 1.3 th 33.0
et 1.4 mn 0.4 tl 1.2
eu 1.0 mr 0.5 tr 56.4
fa 19.0 ms 0.7 tt 0.6
fi 5.9 mt 0.2 ug 0.2
fr 89.9 my 0.4 uk 13.4
ga 0.2 ne 0.6 ur 3.0
gl 1.5 nl 25.9 uz 0.1
gu 0.3 nn 0.4 vi 74.5
he 4.4 no 5.5 yi 0.3
hi 5.0 or 0.3 zh 96.8
hr 1.4 pa 0.8

Table 7: The statistics of the reconstructed Common-
Crawl corpus for learning vocabularies.

in [7e-6, 1e-5] for XNLI and PAWS-X, [1e-5, 2e-
5] for POS and NER, [2e-5, 3e-5] for XQuAD,
MLQA and TyDiQA-GoldP.

D Pre-Training Data

We use the reconstruct CommonCrawl corpus in
Chi et al. (2021b) to learn vocabularies in our paper.
Because tokenizing the pre-training data is time-
consuming, we instead conduct our pre-training
on Wikipedia since it has a smaller size. We only
consider the languages that are shared by the re-
constructed CommonCrawl corpus and Wikipedia.
The statistics of the Wikipedia corpus and the re-
constructed CommonCrawl corpus are listed in Ta-
ble 8 and Table 7.
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Code Size (GB) Code Size (GB) Code Size (GB)

af 0.12 hu 0.8 pl 1.55
am 0.01 hy 0.6 ps 0.04
ar 1.29 id 0.52 pt 1.5
as 0.04 is 0.05 ro 0.42
az 0.24 it 2.69 ru 5.63
ba 0.13 ja 2.65 sa 0.04
be 0.31 ka 0.37 sd 0.02
bg 0.62 kk 0.29 si 0.09
bn 0.41 km 0.12 sk 0.21
ca 1.1 kn 0.25 sl 0.21
cs 0.8 ko 0.56 sq 0.1
cy 0.06 ky 0.1 sr 0.74
da 0.33 la 0.05 sv 1.7
de 5.43 lo 0.01 sw 0.03
el 0.73 lt 0.19 ta 0.46
en 12.58 lv 0.12 te 0.44
eo 0.25 mk 0.34 tg 0.04
es 3.38 ml 0.28 th 0.52
et 0.23 mn 0.05 tl 0.04
eu 0.24 mr 0.1 tr 0.43
fa 0.66 ms 0.2 tt 0.09
fi 0.68 mt 0.01 ug 0.03
fr 4.0 my 0.15 uk 2.43
ga 0.03 ne 0.06 ur 0.13
gl 0.27 nl 1.38 uz 0.06
gu 0.09 nn 0.13 vi 0.76
he 1.11 no 0.54 yi 0.02
hi 0.38 or 0.04 zh 1.08
hr 0.28 pa 0.1

Table 8: The statistics of the Wikipedia corpus used for
pre-training.

Code Size (K) Code Size (K) Code Size (K)

af 2 hu 12 pl 20
am 3 hy 5 ps 3
ar 15 id 13 pt 20
as 2 is 3 ro 13
az 5 it 22 ru 34
ba 2 ja 23 sa 1
be 3 ka 4 sd 2
bg 9 kk 4 si 3
bn 6 km 4 sk 11
ca 8 kn 2 sl 8
cs 14 ko 17 sq 7
cy 3 ky 3 sr 10
da 9 la 3 sv 18
de 24 lo 2 sw 3
el 17 lt 7 ta 6
en 23 lv 6 te 4
eo 4 mk 4 tg 5
es 26 ml 3 th 14
et 5 mn 3 tl 4
eu 4 mr 3 tr 18
fa 9 ms 4 tt 3
fi 9 mt 3 ug 3
fr 25 my 2 uk 12
ga 2 ne 3 ur 5
gl 5 nl 14 uz 2
gu 2 nn 3 vi 12
he 6 no 7 yi 2
hi 6 or 2 zh 30
hr 6 pa 3

Table 9: The statistics of the allocated vocabulary size
for each language.


