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Abstract

Event detection (ED) aims at identifying event
instances of specified types in given texts,
which has been formalized as a sequence la-
beling task. As far as we know, existing
neural-based ED models make decisions re-
lying on the contextual semantic features of
each word in the input text, which we find is
easy to get confused by varied contexts in the
test stage. To this end, we come up with the
idea of introducing a set of statistical features
from word-event co-occurrence frequencies in
the entire training set to cooperate with the
contextual features. Specifically, we propose
a Semantic and Statistic-Joint Discriminative
Network (S2-JDN) consisting of a semantic
feature extractor, a statistical feature extractor,
and a joint event discriminator. In experiments,
S2-JDN effectively exceeds ten recent state-of-
the-art (SOTA) baseline methods on ACE2005
and KBP2015 benchmark datasets. Further,
we perform extensive experiments to investi-
gate the effectiveness of S2-JDN.

1 Introduction

Event detection (ED) is an important information
extraction task in the NLP field, which aims to
identify event instances of specified types in given
texts. Associated with each event mention is a
phrase, i.e., the event trigger' evoking that event.
More precisely, the task involves identifying event
triggers and classifying them into the specific types.
For instance, according to ACE2005 annotation
guideline, in the sentence “A police officer was
killed in New Jersey today”, an ED model should
be able to recognize the word “killed” as a trigger
for the event type “Die”.

With the development of deep learning, ED has
been formalized as a sequence labeling task and

* Corresponding author.
!The event trigger is usually a single verb or nominaliza-
tion, and some papers also refer to the multi-word trigger as
event nugget. In this paper, we uniformly use “trigger”.

Two texts in the training set: Trigger Event

T1: There have been too many civilians

T2: -+ a sister were wounded late Wednesday - | Wounded | Injure
Four variants of T1 and T2 in testing: DMBERT | Ours

V1: There have been too many civilians . v v
V2: -+ a sister were late Wednesday* Injure  x v
V3: There have been too many civilians % | InjureV
wounded . ..

V4: EU foreign policy supremo Javier Solana Other x | Attackx
likewise slammed the attack, saying, “There

have been too many civilians wounded . . .”

Figure 1: A case study of SOTA model DMBERT
(Wang et al., 2019) and our proposed model. We
train DMBERT and our proposed model on ACE2005,
and select two texts (T1 and T2) with “killed” and
“wounded” as triggers in the training set. For testing,
we change the contexts of the two triggers in T1 and
T2 to obtain V1 to V4, and let the two ED models pre-
dict their event types in the new contexts. We can see
that DMBERT is easy to get confused in the new con-
texts, while our model is obviously more stable. The
detailed explanations are in Section 4.3.5.

implemented by a variety of neural network models
(Chen et al., 2015; Zhao et al., 2018). As claimed
by the famous distributional hypothesis (Harris,
1954; Firth, 1957), the words in a text are charac-
terized by their contexts, i.e., themselves and their
surrounding words. Thus, to fully consider the in-
formation of each word in the sequential prediction
process, existing neural-based ED models make
decisions based on elaborately extracted contex-
tual features of the words (Hong et al., 2018; Tong
et al., 2020b,a), which has become a “standard”
decision-making pattern.

Theoretically, the contextual information in a
given text is enough to determine the event type
of each word. But the fact is an event can be de-
scribed by various contexts, and the contexts in the
test stage are usually not covered by the training
set. Therefore, a common shortcoming of existing
neural-based ED models is that they are prone to
get confused by the changeable contexts during
testing. As shown in Figure 1, the variation of any
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surrounding words will lead to a different set of ex-
tracted contextual features and may misguide their
final judgments.

To alleviate this shortcoming, a natural idea is to
seek an additional “stable” decision-making basis
unchanged across varied contexts to cooperate with
the contextual features. Therefore, we envisage
extracting a set of event features of words from the
entire training set through global statistics—word-
event co-occurrence frequencies.

Global statistics were widely used by many early
pattern-based and feature-based ED models (Liao
and Grishman, 2010; Li et al., 2013). However,
with the introduction of deep learning technologies
(Chen et al., 2015), various powerful neural-based
ED models directly extract contextual semantic
features from each text via end-to-end architectures.
The use of global statistics has gradually faded out
of researchers’ attention. In our work, we find that
the word-event co-occurrence frequencies in ED
datasets have potential to help neural-based ED
models eliminate a large number of interference
options in testing (Section 3.1). Thus, as the title
suggests, the valuable features for neural-based ED
models can be collected outside the contexts.

Specifically, we design a simple but novel
Semantic and Statistic-Joint Discriminative
Network (S2-JDN) to implement the new decision-
making pattern, which consists of three modules.
(1) Semantic feature extractor takes Dynamic
Multi-pooling BERT (Wang et al., 2019) as the
prototype and is used to obtain the token-level
contextual features in each text. (ii) Statistical fea-
ture extractor mines event features in both direct
and indirect ways from word-event co-occurrence
frequencies, and then fuses and rescales them as
the final statistical event features. (iii) Joint event
discriminator adopts a layer normalization to unify
the two types of event features and combines them
for decision-making.

In experiments, we compare with ten strong base-
lines on ACE2005 and KBP2015 datasets, where
S2-JDN exceeds the state-of-the-art (SOTA) mod-
els by 1.9% and 1.9% in trigger classification F1,
respectively. Further, we perform extensive experi-
ments and draw multiple useful conclusions about
S2-JDN.

Our contributions can be summarized as follows:

(1) As far as we know, all existing neural-based
ED models make decisions entirely based on con-
textual features (i.e., the standard pattern) in the

NLP field, and we are the first to explore to intro-
duce the statistical features as an additional stable
decision-making basis.

(2) We propose S2-JDN for ED task, which takes
into account both the (contextual) semantic features
and statistical features of each word to make a de-
cision. Specifically, the statistical feature extractor
of S2-JDN mines features in both direct and indi-
rect ways from word-event co-occurrence frequen-
cies, thereby acquiring abundant statistical event
features.

(3) We demonstrate that S2-JDN effectively
exceeds ten strong baselines on ACE2005 and
KBP2015 datasets, and conduct extensive explo-
ration experiments to comprehensively probe S2-
JDN.

2 Related Work

As the key component of the event extraction sys-
tem (Yang et al., 2019; Li et al., 2020; Ferguson
et al., 2018), the research of ED has experienced
the periods of traditional methods and deep learn-
ing methods.

During the period of traditional methods, global
statistics collected from the training set were
widely used as the knowledge sources or decision-
making basis of different ED models (Sauri et al.,
2005; Ahn, 2006; Ma and Cisar, 2009; Liao and
Grishman, 2010; Li et al., 2013). Grishman et al.
(2005) and Shinyama and Sekine (2006) used statis-
tical information to train a MaxEnt event classifier.
Wan et al. (2009) constructed a frequency pattern-
based framework for ED. Ji and Grishman (2008)
obtained document-wide and cluster-wide statis-
tics to correct the results of ED. Qin et al. (2013)
proposed a classifier-based method to process sta-
tistical features for event filtering. Cao et al. (2015)
recorded the frequency that each pattern is associ-
ated with an event type, and treated the frequencies
as core features.

With the introduction of deep learning technolo-
gies, many neural-based ED models extracted con-
textual semantic features from each text via end-to-
end architectures (Orr et al., 2018; Liu et al., 2019;
Lai et al., 2020). Chen et al. (2015) acquired the
contextual features via convolution and dynamic
multi-pooling techniques. Liu et al. (2018) and
Zhao et al. (2018) employed the attention mecha-
nisms during contextual feature extraction. Nguyen
and Grishman (2015), Ding et al. (2019), and Yan
et al. (2019) introduced external knowledge to as-
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sist neural networks to better understand each given
text. Recently, many studies applied powerful pre-
trained language models to better comprehend con-
texts (Du and Cardie, 2020; Liu et al., 2020a,b;
Huang and Ji, 2020).

Neural-based ED models significantly outper-
form the traditional ones, and become the new
research hotspot. Accordingly, the use of global
statistics has faded out of researchers’ attention. As
far as we know, there is no neural-based ED model
explicitly using global statistics in the training sets.
Although neural networks possess powerful learn-
ing ability in theory, their training is based on in-
dividual sentences, and thus it’s not easy for them
to capture the global statistics. More importantly,
we observe that the word-event co-occurrence fre-
quencies for most words concentrate on only a few
events, which are potential to help neural-based
ED models eliminate a large number of interfer-
ence options in testing (Section 3.1). To this end,
we propose S2-JDN, which takes into account both
the (contextual) semantic features and statistical
features of each word to make a decision. Besides
employing the collected global statistics as features
directly like traditional ED models, S?-JDN also
leverages the property of neural networks to indi-
rectly extract more abundant features from word-
event co-occurrence frequencies (Section 3.2.2).

3 Methodology

In this section, we first elaborate the motivation for
introducing word-event co-occurrence frequencies
(Section 3.1), then propose a concrete instantiation
called Semantic and Statistic-Joint Discriminative
Network (S2-JDN) (Section 3.2), and finally de-
scribe the training details of S2-JDN (Section 3.3).

3.1 Motivation for Introducing Word-Event
Co-occurrence Frequencies

The benefits of word-event co-occurrence frequen-
cies for neural-based ED models are as follows:

Stability and Accessibility. First of all, word-
event co-occurrence frequencies are collected from
the entire training set and will not be disturbed by
various contexts, which satisfy our requirement of
stability. With their assistance, the neural-based
ED models are easier to make correct predictions
in the changeable contexts during testing. Also, the
collection of these statistics does not rely on any
external tools or data.

Clear Directivity. The event set of an ED dataset

mACE2005 (33 Events) mKBP2015 (38 Events)
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Figure 2: Statistics about the numbers of events that
can be evoked by each trigger word in ACE2005 and
KBP2015 datasets. In our statistics, a word will be re-
garded as a trigger word if it evokes a specified event
in a text in the dataset. When counting the number of
events evoked by a trigger word, “Other” will also be
considered. k-E-T (k = 1, 2, 3) denotes the proportion
of the trigger words evoking k events over all trigger
words, and O-T corresponds to the rest trigger words.
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consists of many event types and a special “Other’
type for non-triggers. As plotted in Figure 2, an ED
dataset often contains dozens of events, but most
words can only evoke at most three of them?. This
phenomenon can be explained by the characteristic
of ED task, i.e., although the total event number of
a realistic ED dataset can be large, most triggers
are single words® with limited meaning and can
only evoke very few events. This characteristic can
be reflected by the word-event co-occurrence fre-
quencies in the ED dataset. We refer to the trait that
word-event co-occurrence frequencies concentrate
on only a few events as clear directivity. There-
fore, such statistics can provide clear indications
for neural-based ED models and have great po-
tential to help them eliminate lots of interference
options in testing.

3.2 Semantic and Statistical-Joint
Discriminative Network

To take advantage of both contextual semantic fea-
tures and the statistical features extracted from
word-event co-occurrence frequencies, we propose
a simple but novel Semantic and Statistic-Joint
Discriminative Network (S2-JDN) as shown in Fig-

Please see Section 4.1 for more details of ACE2005 and
KBP2015 datasets.

3According to the statistics, the numbers of multi-
word/single-word triggers are 234/4994 and 362/12350 on
ACE2005 and KBP2015 datasets.
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Figure 3: The architecture of proposed S2-JDN.

ure 3, which consists of a semantic feature extrac-
tor, a statistical feature extractor, and a joint event
discriminator.

3.2.1 Semantic Feature Extractor

The semantic feature extractor collects contextual
features from given texts and is acted by a Dynamic
Multi-pooling BERT (Wang et al., 2019) in this
work. It is also possible to explore other choices in
future work.

Consider an m-word input sequence s,, =
(wi,...,wy). After wordpiece tokenization
(Wu et al., 2016), s, is further decomposed
into ([CLS],tLl, cos b ke b1, e 7tm,km>a
where [CLS] is a specific token of BERT (Devlin
et al., 2018), t; ; is the jy;, token of w;. We use
e;,; to denote the BERT’s input corresponding to
t;,j, which is the sum of the token and position
embeddings*. The BERT’s output for €ij is h; ;.
Next, (hi,1,- ., hm i, ) are further processed by a
dynamic multi-pooling operation, and the output
of h; ; is denoted as ¢; ; and calculated as:

c; ;= max{hi, ...,

)
where ¢ ; and h7 ; is the 2t features of ¢; ; and
h; ;. Dynamic multi-pooling extracts important
features on both sides of ¢; ; to form its contextual
vector. Since the size of h; ; is large enough, we

*Since the input sequence contains only one segment, the
segment embedding and the special token [SEP] are removed.

hij}—i-max{hf,frp ceey hfn,km}

combine the pooling results by addition operation,
rather than concatenation.

3.2.2 Statistical Feature Extractor

Parallel to the semantic feature extractor, the statis-
tical feature extractor mines a set of features from
word-event co-occurrence frequencies as additional
decision-making basis. To take full advantage of
these statistics, we extract features in both direct
and indirect ways.

Extracting Direct Statistical Features: For
word w; in text s,, we denote its word-
event co-occurrence frequency vector as f; =
(n},...,nf) € RE, where n} is the number of
times w; evokes the 2" event type in the train-
ing set, and K is the total event number (including
“Other”). f; is normalized to a vector with direct sta-
tistical features f; = f; /n;, where n; = Zf: L n;
is the total number of w;’s occurrences in the train-
ing set. In testing, fi = 0 for words unseen in the
training set.

Although most f; have clear directivity and can
reflect global event information of w; (Section 3.1),
its feature dimensions are much smaller than the
contextual vectors ¢; ;. Therefore, the information
provided by ﬁ might be insufficient to guide the
final decision. In light of this, we propose a tem-
porary training task named Frequency Supervised
Multi-Label Classification (FSMLC), which fine-
tunes the generic word embedding of each word w;
to acquire more statistical features indirectly.

Extracting Indirect Statistical Features: As
mentioned above, FSMLC needs to encode sta-
tistical information into the generic word embed-
ding e;’ of w; by finetuning. In our work, e;’
is 300-dimension Glove embedding (Pennington
et al., 2014). Concretely, FSMLC first maps e;’
into a new vector ¢;” by a linear transformation,
then feeds ¢€;” into a temporary event classifier and
adopts the normalized frequencies in f; as the tar-
gets for training. The loss function of FSMLC for
word sequence s, is:

m 1. i
Liire =— Z ;fz’ -log (i) (2)
i=1 "

. exp (¥ - u

7= o) (3)
lel €xXp (ei <)
&Y = M; - e? (4)

where p7, and 1, are the predicted probability and
trainable projection vector of the z*" event type,
M7 is the trainable linear transformation matrix.
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Now, we explain the settings of FSMLC. Ac-
cording to previous studies (Bespalov et al., 2012;
Tang et al., 2014), word embeddings can gain the
ability to represent some specific information via
targeted training. Therefore, the temporary train-
ing task FSMLC finetunes the generic semantic
features within e}’ into a set of new ones in €}’
that can better represent the events evoked by w;
in the training set, thereby indirectly using ﬁ to
obtain more features. Note that the trained €’ pos-
sesses both semantic information and word-event
co-occurrence information, but we refer to it as an
indirect statistical feature vector. Finally, the loss
of FSMLC on the entire training set is:

Lure =Y Lipe == fu-logdw) )

weV

where V is the vocabulary of the training set. There-
fore, all words can get the same level of training. In
testing, the temporary classifier will be discarded.
Feature Fusing and Rescaling: The statistical
event vector of wj; is the fusion of ﬁ and e;’:

v; = My - 0; + ¥ (6)

where v; = [ fi; éﬂ , M5 is a trainable fusion ma-
trix. Although Eq.(6) is formally equivalent to a lin-
ear transformation of v;, we find that the approach
of separating v; alone and adding it to M5 - ¥; some-
times performs better in practice.

As is well-known, the credibility of statistics is
closely related to the number of each word’s oc-
currences. The fewer times a word appears in the
training set, the less reliable its word-event occur-
rence frequencies are. To weaken the influence
of low-frequency words’ statistical features, we

rescale v; as:

/

/U .

P=a; v, o =min{l, 2} (7
C

where c is an integer hyperparameter denoting the
threshold of occurrence number that a word’s statis-
tics can be trusted. For n; < ¢, v; is scaled down,
and v;- = 0 for words unseen in the training set.

3.2.3 Joint Event Discriminator

The joint event discriminator combines the token-
level semantic vectors ¢; ; and the word-level sta-
tistical vector v; for decision-making.

Firstly, each ¢; j (j € 1, ..., k;) will be concate-
nated with v; to form the token-level event vector
i = [cij; v;] Since features in ¢; ; and v; come

from two different sources, we apply a simple layer
normalization to unify them:

i — Mij
iy = ®)
1 .
Hig = g 2T ©
r z

1 N
i = \/dr > O — pig)? (10)

where 7} j and 77 ; are the zt" features of r;j and
9, 9

7, and d,. is the dimension of vector 7 ;.

In testing, if n; = 0, we have v; = 0, but Eq.(8-
10) will change the statistical part in r; ; to non-zero
values. So we multiply r; ; by a vector to change
the statistical part to zeros again after normalizing,
ie., r;j =r;; ® [1; I"], where I$™ corresponds
to the statistical part in r; ;, and I3 = 0 if n; = 0
else 1'% = 1; ® is element-wise multiplication.

Then, r;j (j = 1,..., k;) are inputted into a Soft-
max layer to calculate the token-level prediction
distributions p; ;:

/
exp <'ri,j : uz>
K ’
D11 €XP Tig W

1D

—
Pij =

where p7 ; and u, are respectively the predicted
probability and trainable projection vector of the
2" event type. The prediction distribution of word

w; is the average of p; j,i.e., p; = k% Zf;l Dij-

3.3 Training of S>-JDN

In the training of S?-JDN, besides the BERT, the
trainable parameters also contain u, and M; in
Eq.(3-4), M> in Eq.(6), and u, in Eq.(11). We
jointly train the main task ED and the temporary
task FSMLC, and the total loss for sequence s, is:

Lo == qi-log(pi) + ALY e (12)

=1

where ¢; is the one-hot ground-truth event label
of w;, B is the coefficient of FSMLC’s loss. In
experiments, the loss of Eq.(12) is optimized by
Adam optimizer (Kingma and Ba, 2014).
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4 [Experiments

4.1 Experimental Setups

Datasets: We take two benchmark datasets
ACE2005° and KBP2015° for evaluation.
ACE2005/KBP2015 contains 599/360 documents
and 33/38 specified event types. For ACE2005,
we follow the previous studies (Peng et al., 2016;
Du and Cardie, 2020; Liu et al., 2020b; Lai et al.,
2020) and use 40 documents from newswire
domain for testing, 30 documents for validation,
and the rest for training. For KBP2015, we also
use the official test set, and split about 20% of
sentences from the training set for validation.
Their statistics are presented in Table 1.

Implementation Details of S?-JDN’: On
ACE2005/KBP2015, the learning rate is 1e-5/2.5e-
5 (from [le-6, le-4]), batch size is 48/16 (is se-
lected from {16, 32, 48, 64, 128}). For the se-
mantic feature extractor, the BERT has 24 16-head
attention layers and 1024 hidden embedding di-
mension. For the statistical feature extractor, the di-
mension of €;” in Eq.(4) is 300/200 (from {50, 100,
200, 300, 400, 500}), and we adopt dropout with
dropout rate 0.5/0.35 (from [0,0.5]) on e". The
threshold c in Eq.(7) is 4/4 (from {1,...,5}), and the
coefficient 3 in Eq.(12) is 15/10 (from {1, 2, 3, 5,
10, 15, 20}). The reason for large values of [ is
that the weights 1/n; in Eq.(2) have reduced the
loss of FSMIC. We experiment with Pytorch 0.4.1
on Nvidia Tesla P40 GPU. The best-performing
S2-JDN appears after 107/132 epochs, and each
epoch takes about 4 minutes, so the total training
time is in 7/8.8 hours.

4.2 Main Experiments

Baselines: We take SOTA models without external
ED-related knowledge on ACE2005 and KBP2015
as baselines for fair comparisons. The baselines in-
clude: MSEP (Peng et al., 2016) develops an event
detection and co-reference system with minimal
supervision; FBRNN (Ghaeini et al., 2016) em-
ploys forward-backward recurrent neural networks
for ED; GCN-ED (Nguyen and Grishman, 2018)
exploits a new pooling method to aggregate the out-
puts of GCN; PLMEE (Yang et al., 2019) directly
uses a basic BERT classification model to iden-

Shitps://catalog.ldc.upenn.edu/LDC2006T06
®https://tac.nist.gov/2015/KBP/data.htm]
"The code is available at https:/github.com/Buted/SSIDN.

Valid
#Sen #Tri

Test
#Sen #Tni

Train

Dataset #Sen  #Tri

ACE2005 | 14477 4088 | 831 386 | 952 764

KBP2015 | 5175 5450 | 1167 931 | 3809 6331

Table 1: Statistics of training/valid/test set of ACE2005
and KBP2015 datasets. #Sen and #Tri respectively de-
note the numbers of the sentences and triggers.

ACE2005 (%) KBP2015 (%)
P R FI P R FI
TACTop | N/A N/A N/A | 752 477 584
ED-QA | 711 737 724| NJA N/A NA
RCEE 756 742 749 | NJA N/A N/A
M-full 752 744 748 | NJ/A N/A N/A
EEGCN | 767 786 77.6| NJA N/A N/A
G-GCN | 788 1763 77.6| NJ/A N/A N/A
MSEP 704 650 67.6| 692 478 56.6
FBRNN | 66.8 68.0 67.4| 71.6 482 576
GCNED | 779 688 73.1| 703 50.6 58.8
PLMEE* | 76.0 739 749 | 755 534 626
DMBERTY 77.5 1762 768 | 76.1 549 63.8
S2.JDN | 80.3 78.8 79.5| 784 56.5 65.7

Table 2: Precision (P), Recall (R), and micro-F1 (F1)
of trigger classification. The baselines with “*” are im-
plemented by ourselves.

tify and classify triggers®; DMBERT (Wang et al.,
2019) connects a dynamic multi-pooling behind a
BERT to extract contextual features’; ED-QA (Du
and Cardie, 2020) formulates ED as a question an-
swering task; RCEE (Liu et al., 2020a) casts ED
task as a machine reading comprehension problem;
M-FULL (Liu et al., 2020b) proposes a training
mechanism called context-selective mask general-
ization for ED; EEGCN (Cui et al., 2020) simul-
taneously exploits syntactic structure and typed
dependency label information to perform ED; G-
GCN (Lai et al., 2020) combines BERT, GCN, and
gating mechanism for ED. Besides, we also present
the top TAC KBP2015 Event Nugget Detection
result: TAC-TOP (Mitamura et al., 2015).

Results and Analysis By convention, we use
precision, recall, and micro-F1 as metrics, which
are presented in Table 2.

As shown in Table 2, on ACE2005, S2-JDN
exceeds the SOTA models EEGCN/G-GCN by
3.6%/1.5%, 0.2%/2.5%, and 1.9%/1.9% in terms of

8Since we cannot fully reproduce their results in our set-
tings, we report the results implemented by ourselves instead.

°Since DMBERT is the base model of our S2-JDN, we
implement it by ourselves to ensure a fair comparison.
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precision, recall, and F1. On KBP2015, DMBERT
and S?-JDN are significantly better than MSEP,
FBRNN, GCNED, and TACTop with the help of
the pre-trained BERT, and S2-JDN further outper-
forms DMBERT by 2.3%, 1.6%, and 1.9% in pre-
cision, recall, and F1. All the neural-based base-
lines employ the standard decision-making pattern,
and RCEE, ED-QA, M-FULL, G-GCN, PLMEE,
and DMBERT are engined by BERT. These results
show the effectiveness of S2-JDN introducing the
statistical features from word-event co-occurrence
frequencies. Therefore, we can infer that the new
decision-making pattern used by S2-JDN is more
suitable for ED task than the standard one.

4.3 Further Exploration
4.3.1 Ablation Study

We evaluate the importance of each part in S2-JDN
via ablation studies on five variants. V1 removes
the indirect statistical features (ISF) by substituting
v; With ﬁ V2 omits the direct statistical features
(DSF) by replacing v; with €;’. V3 removes the
temporary training task FSMLC by setting 8 = 0;
V4 omits layer normalization (LN) in joint event
discriminator by directly inputting 7; ; into the fi-
nal Softmax layer. V5 eliminates the introduction
of global statistics (GS) via replacing v; with the
Glove embedding e;’. The results are reported in
Table 3.

We analyze the results in Table 3 from five as-
pects. (i) VO outperforms V1-V5 on all datasets,
which shows that each part of S2-JDN has a pos-
itive effect on the overall performance. (ii) V1 is
worse than V2. This is because the information in
direct statistical features are relatively deficient and
sparse, and thus is harder to change the final de-
cisions. Therefore, the indirect statistical features
are more powerful than the direct ones. (iii) V3
is better than V1, which means simply using the
generic word embeddings as the indirect statistical
features can also bring some improvement. We
speculate that this is because the word embeddings
can indicate the “identities” of the words and make
it easier to recognize the words that fixedly evoke
some events. (iv) V4 is worse than V2, so layer
normalization is necessary, whose importance even
exceeds the direct statistical features. (v) Theoreti-
cally, V5 should be the worst one among variants
V1-V5, but it performs slightly better than V1. We
can combine the above analyses (ii) and (iii) to ex-
plain. On the one hand, the deficient and sparse

ACE2005 | KBP2015
VO S2.JDN 79.5 65.7
V1| -without ISF 77.3 64.5
V2 -without DSF 78.8 65.1
V3 | -without FDMLC 77.8 64.9
V4 | -without LN 78.6 65.0
V5 -without GS 77.7 64.6

Table 3: Trigger classification F1 scores (%) of ablation
studies on the three datasets.

direct statistical features of V1 are difficult to ef-
fectively change the overall model’s decisions. On
the other hand, the model of V5 can learn to recog-
nize the “identities” of words according to Glove
embedding during the training of ED task.

To further ensure the credibility of the results,
we train each variant for three times with different
random seeds, which shows that the standard devia-
tions of S2-JDN are about 0.3% on both ACE2005
and KBP2015. For the other five variants, the stan-
dard deviations are within 0.2%-0.5%. To con-
clude, our proposed model is stable, and the im-
provements over the five variants are significant.

4.3.2 Effects of Statistics with Different
Degrees of Directivity

In Section 3.1, we pointed out that an advantage
of word-event co-occurrence frequencies is clear
directivity, which is caused by the characteristic
of ED task. The fewer the events evoked by a
word, the more clear the directivity is. In this
experiment, we study the effect of statistics with
different degrees of directivity. Concretely, we
divide the words into four categories during test-
ing: C1/C2/C3/C4 respectively corresponds to the
words evoking 1/2/3/>4 events in the training set.
For comparisons, we construct a base model with
only semantic event features (Section 3.2.1) as the
decision-making basis and denote it as Base. The
results of the base model and S2-JDN on the 4
categories of words are reported in Table 4.

From Table 4, we can find that S?-JDN has a
certain improvement on each category, and its ad-
vantages decrease across C1, C2, C3, and C4, which
means the more clear the directivity of word-event
co-occurrence frequencies possess, the greater the
effect of the statistical features have. Thus, the
effectiveness of S2-JDN is closely related to the
characteristic of ED task.
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| c1 | c2 | c3 | c4 | ACE2005 |  KBP2015
ACE2005 | Base | 769 | 77.8 | 71.3 | 65.2 U [ H]U]L]H
SZJDN | 80.8 | 80.2 | 72.7 | 66.0 Base | 513 ] 69.4 | 827 |42.1] 595 | 702
KBPa0Ls | Base | 669652 [ 588 [57.0 SZIDN~ | 44.7 | 69.7 | 85.8 | 39.4 | 59.6 | 72.0
| s21DN | 701 | 673 | 60.1 | 576 SZIDN | 50.1 | 70.6 | 87.1 | 41.5 | 60.8 | 74.3

Table 4: Trigger classification F1 scores (%) of each
model on the word instances of the 4 categories.

| ACE2005 | KBP2015

. Base 7.5% 7.7%
Proportion of |Ag| STIDNT 55% 1%
. Base 15.0% 16.2%
Proportion of | Axg| ez y5t 150 T 15.5%

Table 5: Proportions of | Ag| and |Axg| in the test of
ACE2005 and KBP2015 for Base and S2-JDN.

4.3.3 Performance on Predicting Global and
Non-Global Events

In the training set, we refer to the most frequent
event (including “Other”) evoked by a word as its
global event, which corresponds to the maximum
word-event co-occurrence frequency of the word.
Are the statistical features introduced by S2-JDN
only helpful for predicting global events, but not
for words with non-global event as the ground-
truth labels in testing? To answer this question, we
conduct the following experiments.

In each test set, we gather all word instances
wrongly predicted by an ED model as collection
A. From A, we further select the word instances
with their global events as the ground-truth labels
to form collection Ag, and pick out the word in-
stances with non-global events as the ground-truth
labels to constitute collection A xrg. Obviously, we
have A = Ag U Ayg. The instance proportions
of Ag and A, in the entire test set respectively
indicate the proportions of model mistakes caused
by inconsistency with global events and non-global
events. The results of the base model and S2-JDN
are presented in Table 5.

As shown in Table 5, after introducing statistical
features, the proportion of |Ag| is decreased by
2.0% and 1.6% on ACE2005 and KBP2015 test
sets, and the proportion of |Aprg| is correspond-
ingly reduced by 0.8% and 0.7%. Therefore, the
statistical features are not just helpful for predict-
ing the most frequent events evoked by each word.
For words with non-global events as ground-truth
labels, they also have certain benefits.

Table 6: Trigger classification F1 scores (%) of Base,
S2-JDN—, S2-JDN on U (Unseen words), £ (Low-
frequency words), and ‘H (High-frequency words).

4.3.4 Effects on Words with Different
Occurrence Frequencies

As discussed in Section 3.2.2, the credibility of
statistics will decrease with the number of a word’s
occurrences. To this end, we rescale v; as Eq.(7)
to weaken the impact of low-frequency words’ sta-
tistical features. Now, we compare the model per-
formance on words with different occurrence fre-
quencies in the training set. Here we define low-
frequency words according to hyperparameter c in
Eq.(7), which is 4 times on ACE2005 an KBP2015
(Section 4.1). Accordingly, we split the words
in each test set into three parts: U={words un-
seen in the training set}, £L={low-frequency words
with occurrence numbers in {1, 2, 3} in the train-
ing set}, H={high-frequency words appearing at
least 4 times in the training set}. Besides the base
model and S2-JDN, we also test a variant of S2-
JDN that removes the rescaling operations in Eq.(7)
and the element-wise multiplication with [1, I5%]
after layer normalization in joint event discrimi-
nator (Section 3.2.3), denoted as S>-JDN~. Their
results are shown in Table 6.

As expected, all models perform best on H in
Table 6, and perform worst on /. In predicting the
events of words in U/, the statistical features are use-
less and even become interference, so the results of
S2-JDN~ are significantly worse than the other two
models, and S?-JDN avoids the interference by the
two rescaling operations. On £ and H, S2-JDN—
and S2-JDN are better than Base, which is due to
the effect of the statistical features. However, the
training and testing of S2-JDN~ are disturbed by
some low-frequency words’ false statistical infor-
mation more seriously, so it can’t achieve the same
results as S?-JDN on £ and .

4.3.5 Case Study

In this subsection, we will analyze the case study re-
sults of DMBERT and our S2-JDN shown in Table
1. V1 is the simplest variant, which just cuts off the

2632



part after “’killed” in T1. Although the contextual
features of the two models are changed in V1, both
models can predict the correct event “Die”. V2 and
V3 exchange the surrounding words of “killed” and
“wounded” in T1 and T2, which successfully con-
fuses DMBERT, while S2-JDN still makes the cor-
rect decisions with the help of statistical features.
V4 is the most complex variant. Besides replacing
the trigger word in T1 with “wounded”, V4 also
adds a long piece of content (green part). At this
time, DMBERT can’t even identify “wounded” as
a trigger, and S2-JDN also wrongly predicts the
event as “Attack”.

This experiment shows that the statistical fea-
tures are indeed helpful in varied contexts. But if
the contexts change too significantly, S2-JDN may
still be misguided.

5 Conclusion & Future Work

In this paper, we find that existing neural-based ED
models are likely to get confused by changeable
contexts during testing. To alleviate this problem,
we propose S2-JDN model, which extracts a set
of statistical event features from word-event co-
occurrence frequencies as an additional decision
basis besides contextual information. Experimen-
tal results on two benchmark datasets ACE2005
and KBP2015 against ten recent SOTA ED models
demonstrate the effectiveness of S2-JDN and each
proposed module.

For future work, there are three intriguing direc-
tions: (i) extending the decision-making pattern of
S2-JDN to other neural-based ED models and thus
absorbing their advantages; (ii) incorporating the
word-event co-occurrence frequencies into neural-
based ED models via prior on their output distribu-
tions in a Bayesian framework; and (iii) combining
S2-JDN with data augmentation methods, so as to
collect more accurate global statistics and further
promote the performance.
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