
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2617–2624
November 7–11, 2021. c©2021 Association for Computational Linguistics

2617

MuVER: Improving First-Stage Entity Retrieval with
Multi-View Entity Representations

Xinyin Ma�‡, Yong Jiang†∗, Nguyen Bach†, Tao Wang†,
Zhongqiang Huang†, Fei Huang†, Weiming Lu�∗

� College of Computer Science and Technology , Zhejiang University
† DAMO Academy, Alibaba Group

{maxinyin, luwm}@zju.edu.cn, yongjiang.jy@alibaba-inc.com

Abstract
Entity retrieval, which aims at disambiguating
mentions to canonical entities from massive
KBs, is essential for many tasks in natural lan-
guage processing. Recent progress in entity
retrieval shows that the dual-encoder structure
is a powerful and efficient framework to nomi-
nate candidates if entities are only identified by
descriptions. However, they ignore the prop-
erty that meanings of entity mentions diverge
in different contexts and are related to vari-
ous portions of descriptions, which are treated
equally in previous works. In this work, we
propose Multi-View Entity Representations
(MuVER), a novel approach for entity retrieval
that constructs multi-view representations for
entity descriptions and approximates the opti-
mal view for mentions via a heuristic search-
ing method. Our method achieves the state-of-
the-art performance on ZESHEL and improves
the quality of candidates on three standard En-
tity Linking datasets1.

1 Introduction

Entity linking (EL) refers to the task that disam-
biguates the mentions in textual input and retrieves
the corresponding unique entity in large Knowl-
edge Bases (KBs) (Han et al., 2011; Ceccarelli
et al., 2013). The majority of neural entity retrieval
approaches consist of two steps: Candidate Gen-
eration (Pershina et al., 2015; Zwicklbauer et al.,
2016), which nominates a small list of candidates
from millions of entities with low-latency algo-
rithms, and Entity Ranking (Yang et al., 2018; Le
and Titov, 2019; Cao et al., 2021), which ranks
those candidates to select the best match with more
sophisticated algorithms.

In this paper, we focus on the Candidate Genera-
tion problem (a.k.a. the first-stage retrieval). Prior

∗Corresponding authors.
‡ Work was done when Xinyin Ma was interning at Ali-

baba DAMO Academy.
1Our source code is available at https://github.

com/Alibaba-NLP/MuVER.

works filter entities by alias tables (Fang et al.,
2019) or precalculated mention-entity prior prob-
abilities, e.g., p(entity|mention) (Le and Titov,
2018). Ganea and Hofmann (2017) and Yamada
et al. (2016) build entity embedding from the local
context of hyperlinks in entity pages or entity-entity
co-occurrences. Those embedding-based methods
were extended by BLINK (Wu et al., 2020) and
DEER (Gillick et al., 2019) to two-tower dual-
encoders (Khattab and Zaharia, 2020), which en-
code mentions and descriptions of entities into high-
dimensional vectors respectively. Candidates are
retrieved by nearest neighbor search (Andoni and
Indyk, 2008; Johnson et al., 2019) for a given men-
tion. Solutions that require only entity descriptions
(Logeswaran et al., 2019) are scalable, as descrip-
tions are more readily obtainable than statistical or
manually annotated resources.

Although description-based dual-encoders can
compensate for the weakness of traditional meth-
ods and have better generalization ability to unseen
domains, they aim to map mentions with divergent
context to the same high-dimensional entity em-
bedding. As shown in Figure 1, the description of
“Kobe Bryant” mainly concentrates on his profes-
sional journey. As a result, the embedding of “Kobe
Bryant” is close to the context which describes the
career of Kobe but is semantically distant from his
helicopter accident. Dual-encoders are trained to
encode those semantically divergent contexts to
representations that are close to the embedding of
“Kobe Bryant”. The evidence relies on the Figure
2 (section 3.2) that the previous method (Wu et al.,
2020) is good at managing entities with short de-
scriptions but seems troubling to retrieve entities
with long descriptions, which contains too much
information to be encoded into a single fixed-size
vector.

To tackle those issues, we propose to construct
multi-view representations from descriptions. The
contributions of our paper are as follows:

https://github.com/Alibaba-NLP/MuVER
https://github.com/Alibaba-NLP/MuVER
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Figure 1: An illustration of our MuVER framework. (i) The contextual information of the given document for
the same mention may differ widely (Right), resulting in a large discrepancy between their representations (Blue
circles with dashed borders) and the embedding of “Kobe Bryant” has trouble in getting close to both of them. (ii)
We refer to each sentence as a view for descriptions to form a view set V (Gray circles with number) and merge
views to approximate the optimal views for mentions (points enclosed by ellipses).

• We propose an effective approach, MuVER,
for first-stage entity retrieval, which models
entity descriptions in a multi-view paradigm.

• We define a novel distance metric for retrieval,
which is established upon the optimal view
of each entity. Furthermore, we introduce a
heuristic search method to approximate the
optimal view.

• MuVER achieves state-of-the-art performance
on ZESHEL and generates higher-quality can-
didates on AIDA-B, MSNBC and WNED-
WIKI in full Wikipedia settings.

2 Methods

2.1 Problem Setup
Formally, given an unstructured text D with a
recognized mention m, the goal of entity link-
ing is to learn a mapping from the mention m
to the entity entry e in a knowledge base E =
{e1, e2, . . . , eN}, where N can be extremely large
(for Wikipedia, N = 5.9M ). In the literature, ex-
isting retrieval methods address this problem in a
two-stage paradigm: (i) selecting the top relevant
entities to form a candidate set C where |C| � |E|;
(ii) ranking candidates to find the best entity within
C. In this work, we mainly focus on the first-stage
retrieval, following Logeswaran et al. (2019)’s set-
ting to assume that for each e ∈ E , entity title t and
description d are provided in pairs.

2.2 Multi-View Entity Representations
Dual-encoders We tackle entity retrieval as a
matching problem, where two separated encoders,

entity encoder f and mention encoder g, are de-
ployed. We consider BERT (Devlin et al., 2019) as
the architecture to encode textual input, which can
be formulated as:

f(t, d) = T1([CLS] t [ENT ] d [SEP ])

g(m) = T2([CLS] ctxl [Ms] m [Me] ctxr [SEP ])

where t, d, m, ctxl, ctxr refer to word-pieces
tokens of the entity title, the entity description, the
mention and the context before and after the men-
tion correspondingly. Besides, we use [Ms] and
[Me] to denote the start of mention and end of
mention identifiers respectively. The special token
[ENT ] serves as the delimiter of titles and descrip-
tions. T1 and T2 are two independent BERT, with
which we estimate the similarity between mention
m and entity e as sim(m, e) = f(t, d) · g(m).

Multi-view Description Our method matches a
mention to the appropriate entity by comparing
it with entity descriptions. Motivated by the fact
that mentions with different contexts correspond
to different parts in descriptions, we propose to
construct multi-view representations for each de-
scription. Specifically, we segment a description
into several sentences. We refer to each sentence
as a view v, which contains partial information, to
form a view set V of the entity e. Figure 1 illus-
trates an example that constructs a view set V for
“Kobe Bryant”.

Multi-view Matching Given a view set V =
{v1, v2, . . . , vk} for entity e, determining whether
a mention m matches the entity e requires a metric
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space to estimate the relation between m and V ,
which can be defined as

d(m,V) = ‖g(m)− f(t, [v1, v2, ..., vk, vi ∈ V])‖
(1)

where [v1, v2, ..., vk] refers to an operation that con-
catenates tokens in views following the sentence
order in descriptions and t is the corresponding en-
tity title for V . Note that this metric can be applied
to the subset of V to focus on partial information
of the description. As mentioned before, for m
in different contexts, only a part of the views are
related. For each mention-entity pair (m, e) and
the view set V of e, we define its optimal Q∗ as:

Q∗(m, e) , argminQ⊆Vd(m,Q) (2)

where Q is a subset of V and Q∗ has the mini-
mal distance to current mention m. We define the
distance d(m,Q∗(m, e)) as the matching distance
between e and m. To find the optimal entity for
mention m, we select the entity that has minimal
matching distance:

e∗ = argmine∈{e1,e2,...,eN}d(m,Q∗(m, e)) (3)

Distance Metric & Training Objectives The
above retrieval process requires an appropriate met-
ric space to estimate the similarity between views
and mentions. The metric space should satisfy that
similar inputs are pulled together and dissimilar
ones are pushed apart. To achieve this, we intro-
duce an NCE loss (van den Oord et al., 2018) to
establish the metric space :

LNCE = E
E ′

[
log

exp(d(m,Q∗(m, e)))∑
ei∈E ′ exp(d(m,Q∗(m, ei)))

]

where E ′ = {e} ∪ {e1, . . . , en−1}. Mention-entity
pairs (m, e) are pulled together and randomly sam-
pled n − 1 negatives {e1, . . . , en−1} are pushed
apart from m, based on their matching distance in
the current metric space. Unfortunately, Q∗(m, e)
is intractable due to the non-differentiable sub-
set operation in Equation 2. Besides, it is time-
consuming to obtain the optimal view by check-
ing all subsets exhaustively. In this work, we
consider a subset that contains only one view to
approximate it. Specifically, we select the best
v∗(m, e) , argminv∈V d(m, {v}) from V as an
alternative to the optimal view Q∗:

d(m,Q∗(m, e)) ≈ d(m, v∗(m, e))) (4)

Note that this approximation can be done in time
complexity of O(N), which simply selects a
view with minimal distance to the given mention.
Using Equation 4, we can rewrite the NCE loss as:

LNCE = E
E ′

[
log

exp(d(m, {v∗(m, e)}))∑
ei∈E ′ exp(d(m, {v∗(m, ei)}))

]

2.3 Heuristic Searching for Inference

The approximation in Equation 4 obviously can
not reveal the matching distance because v∗(m, e)
contains insufficient information for retrieval. We
want to search for a better view Q

′ ⊂ V that
d(m,Q

′
) < d(m, v∗(m, e)).

Combining views (Q1, Q2) that contain com-
plementary information is more likely to incor-
porate richer information into the newly assem-
bled view. Considering two sets Q1 ⊂ V and
Q2 ⊂ V and a distance metric d(Q1, Q2) =
‖f(t, Q1) − f(t, Q2)‖, where t is the title of the
entity and f represents the entity encoder, the most
distant pair of views (Q1, Q2) achieve the largest
magnitude on d(Q1, Q2) among all pairs and is
interpreted as the pair of views with less shared
information. For each iteration, We search the
top-k distant pairs (Q1, Q2) to form a new view
Q
′
= Q1 ∪Q2 and expand Q

′
into V to encode the

merged Q′ by f(t, Q
′
) to produce a new representa-

tion for the involved entity. Searching and merging
are performed iteratively until |V| reaches the max-
imal allowable value or the number of iterations
reaches the preset value. During the inference, we
precompute and cache the representations of views
and select the view with minimal distance to m.

3 Experiments

3.1 Datasets

We evaluate MuVER under two different knowl-
edge bases: Wikia, which the Zero-shot EL dataset
is built upon, and Wikipedia, which contains 5.9M
entities. We select one in-domain dataset, AIDA-
CoNLL (Hoffart et al., 2011), and two out-of-
domain datasets, WNED-WIKI (Guo and Barbosa,
2018) and MSNBC (Cucerzan, 2007), from stan-
dard EL datasets to validate MuVER in the full
Wikipedia setting. Statistics of datasets are listed
in Appendix A.1.

3.2 KB: Wikia

Logeswaran et al. (2019) constructs a zero-shot en-
tity linking dataset (ZESHEL), which places more
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Method R@1 R@2 R@4 R@8 R@16 R@32 R@50 R@64

BM25 - - - - - - - 69.13
BLINK(Wu et al., 2020) - - - - - - - 82.06
Partalidou et al. (2021) - - - - - - 84.28 -

BLINK (Wu et al., 2020)† 46.51 58.22 67.00 72.77 77.29 81.03 83.38 84.78
BLINK (Wu et al., 2020)∗ 45.59 57.55 66.10 72.47 77.65 81.69 84.31 85.56

SOM (Zhang and Stratos, 2021) - - - - - - - 87.62

MuVER (w/o Heuristic Search) 43.49 58.56 68.78 75.87 81.33 85.86 88.35 89.52
MuVER 45.40 60.84 71.26 78.27 83.19 87.58 89.75 90.84

Table 1: Recall@k (R@k) on the test set of ZESHEL to retrieve entities from Wikia. †We reproduce BLINK and
achieve a higher result compared with the result reported in the paper. * expands context length to 512. For SOM,
we report the performance using in-batch negatives to have a fair comparison.

AIDA-b MSNBC WNED-WIKI
R@10 R@30 R@100 R@10 R@30 R@100 R@10 R@30 R@100

BLINK 92.38 94.87 96.63 93.03 95.46 96.76 93.47 95.46 97.76
MuVER 94.53 95.25 98.11 95.02 96.62 97.75 94.05 95.78 97.34

Table 2: Results on three standard Entity Linking datasets. We test our model under the setting that only descrip-
tions of entities are available. The number of basic views for each entity is 5.

emphasis on understanding the unstructured de-
scriptions of entities to resolve the ambiguity of
mentions on four unseen domains.

Concretely, MuVER uses BERT-base for f and
g to make a fair comparison with previous works.
We adopt an adam optimizer with a small learning
rate 1e−5 and 10% warmup steps. We use batched
random negatives and set the batch size to 128.
The max number of context tokens is 128 and the
max number of view tokens equals 40. Training 20
epochs takes one hour on 8 Tesla-v100 GPUs.

We compare MuVER with previous baselines
in Table 1. Since MuVER is not limited by the
length of descriptions, we add another baseline
to extend BLINK to have 512 tokens (which is
the max number of tokens for BERT-base). As
shown in the table, we exceed BLINK by 5.28%
and outperform SOM by 3.22% on Recall@64. We
observe that Recall@1 of MuVER is lower than
BLINK and the heuristic searching method can
alleviate this problem. Detailed results on unseen
domains are listed in Appendix A.3.

Effect of Heuristic Search We compare two
distance-based merging strategies: taking closer
or farther pairs of views to merge. We find out
that merging views whose sentences are adjacent to
each other in the original unstructured descriptions
is a computationally efficient way to select the com-
bined views. Table 3 shows that as the number of

views increases, MuVER yields higher-quality can-
didates while the opposite strategy is troubled to
provide more valuable views. Besides, our method
can be regarded as a generalized form of SOM
(Zhang and Stratos, 2021) and BLINK (Wu et al.,
2020), which contain 128 views and one view corre-
spondingly. SOM computes the similarity between
mentions and tokens in descriptions, which stores
128 embeddings for each entity. Compared with
SOM, MuVER reduces the number of views to a
smaller size with improved quality, which is more
efficient and effective.

Without View Merging

Methods # of Views Recall@64

BLINK 1 85.56
SOM 128 87.62

MuVER 15.33 89.52

With View Merging

Methods # of Views Distant Pairs Close Pairs

MuVER

21.07 90.15 89.95
26.18 90.51 89.99
28.39 90.66 89.98
30.48 90.79 89.89
32.48 90.84 89.92

Table 3: Recall@64 on ZESHEL with varying num-
ber of views. We shot different merging strategies and
“Distant Pairs” refers to our Heuristic Search method.
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Figure 2: Recall@64 differences between BLINK and
MuVER on entities with 1 to 100 sentences in their de-
scriptions. We partition the entities by the number of
sentences in entity descriptions and calculate metrics
within each bin. The size for each bin is 5.

Effect on entities with long descriptions As
shown in Figure 2, existing EL systems (like
BLINK) obtain passable performance on entities
with short descriptions but fail to manage those
well-populated entities as the length of descriptions
increases. For instance, the error rate of BLINK is
7.79% for entities with 5-10 sentences but 39.91%
for entities with 75-80 sentences, which is more
likely to contain various aspects for the entity. Mu-
VER demonstrates its superiority over entities with
long descriptions, which significantly reduces the
error rate to 17.65% (-22.06%) for entities with
75-80 sentences while maintains the performance
on entities with short descriptions, which achieves
the error rate of 6.78% (-1.01%) for entities with
5-10 sentences.

3.3 KB: Wikipedia
We test AIDA-B, MSNBC and WNED-WIKI on
the version of Wikipedia dump provided in KILT
(Petroni et al., 2021), which contains 5.9M entities.
Implementation details are listed in Appendix A.2.
BLINK performance on these datasets is reported
in its official Github repository2. We report the
In-KB accuracy in Table 2 and observe that Mu-
VER out-performs BLINK on all datasets except
the recall@100 on WNED-WIKI.

4 Related Work

Representing each entity with a fixed-sized vector
has been a common approach in Entity Linking.
Ganea and Hofmann (2017) defines a word-entity
conditional distribution and samples positive words

2https://github.com/facebookresearch/
BLINK

from it. The representations of those positive words
aim to approximate the entity embeddings com-
pared with random words. Yamada et al. (2016)
models the relatedness between entities into entity
representations. NTEE (Yamada et al., 2017) trains
entity representations by predicting the relevant
entities for a given context in DBPedia abstract cor-
pus. Ling et al. (2020) and Yamada et al. (2020)
pre-train variants of the transformer-based model
by maximizing the consistency between the con-
text of the mentions and the corresponding entities.
Those entity representations suffer from a cold-start
problem that they cannot link mentions to unseen
entities.

Another line of work is to generate entity rep-
resentations using entity textual information, such
as entity descriptions. Logeswaran et al. (2019) in-
troduces an EL dataset in the zero-shot scenario to
place more emphasis on reading entity descriptions.
BLINK (Wu et al., 2020) proposes a bi-encoder to
encode the descriptions and enhance the bi-encoder
by distilling the knowledge from the cross-encoder.
Yao et al. (2020) repeats the position embedding to
solve the long-range modeling problem in entity de-
scriptions. Zhang and Stratos (2021) demonstrates
that hard negatives can enhance the contrast when
training an EL model.

5 Conclusion

In this work, we propose a novel approach to con-
struct multi-view representations from descriptions,
which shows promising results on four EL datasets.
Extensive results demonstrate the effectiveness of
multi-view representations and the heuristic search
strategy. In the future, we will explore more reli-
able and efficient approaches to construct views.
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A Appendix

A.1 Statistics of datasets
Table 5 shows statistics for four entity linking
datasets: AIDA, MSNBC, WNED-WIKI and
ZESHEL. MSNBC and WNED-WIKI are two out-
of-domain test sets, which are evaluated on the
model trained or finetuned on AIDA-train.

Dataset Mention Num KB Entity Num

AIDA
Train 18448

Wiki-
pedia 5903530

Valid(A) 4791
Test(B) 4485

MSNBC 656
WNED-WIKI 6821

ZESHEL
Train 49275

Wikia
332632

Valid 10000 89549
Test 10000 70140

Table 5: Statistics of four EL datasets.

A.2 Implementation Details
ZESHEL We have reported the best-performing
hyperparameter in Section 3.2. Here we show the
search bounds for the hyperparameters. We per-
form grid search on learning rate, weight decay,
warmup ratio and batch size:

• Learning rate: [5e−6, 1e−5, 2e−5, 5e−5]

• Weight decay: [0.1, 0.01, 0.001]

• Warmup ratio: [0, 0.1]

• Batch size: [32, 64, 128, 196]

AIDA We finetune MuVER based on the EL
model released by BLINK, which is pretrained
on 9M annotated mention-entity pairs. Unlike the
experiments on ZESHEL that adopting in-batch
random negatives to train our model, we add hard

negatives in batch. Due to the vast size of entities
in Wikipedia, randomly sampled negatives are al-
ways too simple for the model to extract semantic
features, thus degrading performance. We finetune
our model on AIDA-CoNLL train set for one epoch.
Batch size is set to 8. We add 3 hard negatives for
each mention into the random in-batch negatives,
which are precomputed using BLINK. The number
of views is 5 for each entity and we choose the
first 5 paragraphs with first 40 tokens, which are
more likely to be summarizations. Other hyper-
parameters are consistent with configurations on
ZESHEL.

Parameters for MuVER Since MuVER has
two BERT encoders, it has twice the number of
parameters as BERT, which are listed in Table 6.

Model Number of parameters

MuVER (base) 220M
MuVER (large) 680M

Table 6: Numbers of parameters for MuVER. MuVER
(base) is used in ZESHEL and MuVER (large) is used
in datasets under full Wikipedia setting.

A.3 Performance on Unseen Domains
In Table 4, we compare MuVER with BLINK
on four unseen domains on ZESHEL. We ob-
serve a significant improvement on all four unseen
domains, especially on Yugioh, which achieves
+11.35 points on Recall@64. Furthermore, Mu-
VER can reach comparative performance with
BLINK’s top-64 candidates by retrieving around
16-32 candidates, which reduces the computational
cost for entity ranking.

Domain Method R@1 R@2 R@4 R@8 R@16 R@32 R@50 R@64

Forgotten BLINK 63.75 74.83 82.17 85.50 89.08 91.17 92.83 93.75
Realms MuVER 62.5 78.5 86.67 90.92 93.58 96.00 96.75 97.00

Lego BLINK 50.04 65.39 75.81 81.65 84.82 88.41 90.58 91.83
MuVER 50.46 68.81 78.32 84.4 88.82 91.91 93.33 93.74

Star Trek BLINK 49.28 60.07 68.87 74.26 78.94 82.47 84.62 85.88
MuVER 47.95 62.17 71.28 77.45 82.40 86.87 89.19 90.32

Yugioh BLINK 35.66 47.45 56.14 63.22 68.35 73.00 75.90 77.71
MuVER 34.32 50.06 63.25 72.61 78.48 83.94 86.69 88.26

Table 4: Recall@k on four unseen domains: Forgotten Realms, Lego, Star Trek and Yugioh.


