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Abstract

Transformers-based pretrained language mod-
els achieve outstanding results in many well-
known NLU benchmarks. However, while pre-
training methods are very convenient, they are
expensive in terms of time and resources. This
calls for a study of the impact of pretraining
data size on the knowledge of the models. We
explore this impact on the syntactic capabili-
ties of RoBERTa, using models trained on in-
cremental sizes of raw text data. First, we
use syntactic structural probes to determine
whether models pretrained on more data en-
code a higher amount of syntactic informa-
tion. Second, we perform a targeted syntactic
evaluation to analyze the impact of pretraining
data size on the syntactic generalization perfor-
mance of the models. Third, we compare the
performance of the different models on three
downstream applications: part-of-speech tag-
ging, dependency parsing and paraphrase iden-
tification. We complement our study with an
analysis of the cost-benefit trade-off of train-
ing such models. Our experiments show that
while models pretrained on more data encode
more syntactic knowledge and perform bet-
ter on downstream applications, they do not
always offer a better performance across the
different syntactic phenomena and come at a
higher financial and environmental cost.

1 Introduction

The use of unsupervised pretrained language
models in the context of supervised tasks has
become a widely spread practice in NLP, with
Transformer-based models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019b)
achieving outstanding results in many well-known
Natural Language Understanding benchmarks such
as GLUE (Wang et al., 2018) and SQuAD (Ra-
jpurkar et al., 2018). Consequently, several stud-
ies investigate the types of knowledge learned by

* Work partially done during internship at Amazon Al

BERT, how and where this knowledge is repre-
sented and what the best methods to improve it are;
see, e.g., (Rogers et al., 2020). There is evidence
that, among other information (e.g., part-of-speech,
syntactic chunks and roles (Tenney et al., 2019; Lin
et al., 2019; Belinkov et al., 2017), morphology in
general (Peters et al., 2018), or sentence length
(Adi et al., 2016)), BERT representations implicitly
embed entire syntax trees (Hewitt and Manning,
2019b).

Language models are traditionally assessed by
information-theoretical metrics such as perplexity,
i.e., the probability of predicting a word in its con-
text. The general wisdom is that the more pretrain-
ing data a model is fed, the lower its perplexity gets.
However, large volumes of pretraining data are not
always available and pretraining is costly, such that
the following questions need to be answered: (i)
Do we always need models pretrained on internet-
scale corpora? (ii) As the models are pretrained
on more data, and their perplexity improves, do
they encode more syntactic information and offer a
better syntactic generalization? (iii) Do the models
with more pretraining perform better when applied
in downstream tasks? To address these questions,
we explore the relation between the size of the
pretraining data and the syntactic capabilities of
RoBERTa by means of the MiniBERTas models, a
set of 12 RoBERTa models pretrained from scratch
by Warstadt et al. (2020b) on quantities of data
ranging from 1M to 1B words. In particular:

* We use the syntactic structural probes from
Hewitt and Manning (2019b) to determine
whether those models pretrained on more data
encode a higher amount of syntactic informa-
tion than those trained on less data;

* We perform a targeted syntactic evaluation to
analyze the generalization performance of the
different models using SyntaxGym (Gauthier
et al., 2020) and the syntactic tests presented
in (Hu et al., 2020);
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* We compare the performance of the different
models on two morpho-syntactic tasks (PoS
tagging and dependency parsing), and a non-
syntactic task (paraphrase identification);

* We conduct a cost-benefit trade-off analysis
(Strubell et al., 2019; Bhattacharjee et al.,
2020) of the models training.

We observe that models pretrained on more data
encode a higher amount of syntax according to He-
witt and Manning (2019b)’s metrics, but do not
always lead to a better syntactic generalization. In-
deed, we find that models pretrained on less data
perform equally good or even better than those pre-
trained on more data on 3 out of 6 syntactic test
suites. When applied to downstream tasks, the mod-
els pretrained on more data perform generally bet-
ter. However, the analysis of the trade-off between
the cost of training a model and its performance
shows that small performance gains come at a high
economical and environmental cost that should be
considered when developing new models.

In what follows, Section 2 provides some back-
ground on the syntactic assessment of language
models, model costs, and the works related to ours.
Section 3 describes our experimental setup, intro-
ducing the MiniBERTas models and the syntactic
tests as well as the downstream applications we
explore. Section 4 presents the outcome of our ex-
periments. Section 5 offers a cost-benefit analysis
of the pretraining of the different models, and Sec-
tion 6 summarizes the implications that our work
has for the use of pretrained language models.

2 Background

2.1 Syntactic assessment of language models

The targeted syntactic evaluation incorporates
methods from psycholinguistic experiments, fo-
cusing on highly specific measures of language
modeling performance and allowing to distinguish
models with human-like representations of syn-
tactic structure (Linzen et al., 2016; Lau et al.,
2017; Gulordava et al., 2018; Marvin and Linzen,
2018; Futrell et al., 2019). Regarding the evalu-
ation of modern language models, Warstadt et al.
(2020a) present a challenge set that isolates specific
phenomena in syntax, morphology, and semantics,
finding that state-of-the-art models struggle with
some subtle semantic and syntactic phenomena,
such as negative polarity items and extraction is-
lands. Hu et al. (2020) test 20 model type combi-
nations and data sizes on 34 English syntactic test

suites, finding substantial differences in syntactic
generalization performance by model architecture.

Supervised probing models have also been used
to test for the presence of a wide range of linguistic
phenomena (Conneau et al., 2018; Liu et al., 2019a;
Tenney et al., 2019; Voita and Titov, 2020; Elazar
et al., 2020), and it has been shown that entire syn-
tax trees are embedded implicitly in BERT’s vector
geometry (Hewitt and Manning, 2019b; Chi et al.,
2020). However, other works have criticized some
probing methods, claiming that classifier probes
can learn the linguistic task from training data
(Hewitt and Liang, 2019), and can fail to deter-
mine whether the detected features are actually
used (Voita and Titov, 2020; Pimentel et al., 2020;
Elazar et al., 2020).

2.2 Costs of modern language models

While modern language models keep growing in
orders of magnitude, so do the resources necessary
for their development and, consequently, also the
inclusivity gap. The financial cost of the required
hardware and electricity favors industry-powered
research, and harms academics, students, and non-
industry researchers, particularly those from emerg-
ing economies. Moreover, the training of such mod-
els is not only financially expensive, but has also
a large carbon footprint. Schwartz et al. (2019)
propose to report the financial cost of developing,
training, and running models in order to provide
baselines for the investigation of increasingly ef-
ficient methods. Along the same lines, Strubell
et al. (2019) offer an analysis of the computation
required for the research, development and hyper-
parameter tuning of several recently successful neu-
ral network models for NLP, and propose action-
able recommendations to reduce costs and improve
equity, namely 1) reporting training time and sensi-
tivity to hyperparameters; 2) a government-funded
academic compute cloud to provide equitable ac-
cess to all researchers; and 3) prioritizing computa-
tionally efficient hardware and algorithms.

2.3 Related work

Several studies investigate the relation between pre-
training data size and linguistic knowledge in lan-
guage models. van Schijndel et al. (2019); Hu
et al. (2020); Micheli et al. (2020) find out that,
given a relatively large data size (e.g., 10M words),
models with less pretraining perform similarly to
models with much more pretraining, concluding
that model architecture plays a more important role
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than training data scale in yielding correct syntactic
generalizations (Hu et al., 2020). Complementary,
Raffel et al. (2020) shows that performance can de-
grade when an unlabeled data set is small enough
that it is repeated many times over the course of
pretraining. In contrast, Zhang et al. (2020) argue
that while relatively small datasets suffice to reli-
ably encode most syntactic and semantic features,
a much larger quantity of data is needed to master
conventional NLU tasks. This discrepancy may be
due to the difference in model architectures, pre-
training techniques and the scaling and nature of
the difference datasets.

Our work differs significantly from recent works.
We make use of a single architecture and data
source, and focus exclusively on the syntactic capa-
bilities of the models, offering an in-depth analysis
that includes structural syntactic probing, detailed
syntactic generalization, and downstream applica-
tions performance. Moreover, we also provide a
cost-benefit analysis of the models.

3 Experimental setup

3.1 The MiniBERTas models

The MiniBERTas are a set of 12 RoBERTa models
pretrained from scratch by Warstadt et al. (2020b)
on 4 datasets containing 1B, 100M, 10M and 1M
tokens, available through HuggingFace Transform-
ers.! The datasets are sampled from Wikipedia
and Smashwords — the two datasets that make up
the original pretraining dataset of BERT and that
are included in the RoBERTa pretraining data. For
each dataset size, pretraining is run 25 times (10
times for 1B) with varying hyperparameter values;
the three models with the lowest development set
perplexity are released. For the smaller dataset, a
smaller model size is used to prevent over-fitting.
We refer to models trained on the same amount of
data as a family of models, and models inside a
family as intra-family members (e.g..the roberta-
base-100M-1 model is a member of the roberta-
base-100M family). Table 1 offers an overview of
the hyperparameters per model size.

3.2 Structural probing

Hewitt and Manning (2019b)’s structural probes as-
sess how well syntax trees are embedded in a linear
transformation of the network representation space
applying two different evaluations: Tree distance
evaluation, in which squared L2 distance encodes

'https://huggingface.co/nyu-mll

Model Size L AH HS FFN P
BASE 12 12 768 3072 125M
MED-SMALL 6 8 512 2048 45M

Table 1: Hyperparameters per model sizes. AH = num-
ber of attention heads; HS = hidden size; FFN = feed-
forward network dimension; P = number of parameters.

the distance between words in the parse tree, and
Tree depth evaluation, in which squared L2 norm
encodes the depth in the parse tree.

Tree distance evaluation. Evaluates how well
the predicted distances between all pairs of words
in a model reconstruct gold parse trees by comput-
ing the Undirected Unlabeled Attachment Score
(UUAS). It also computes the Spearman correla-
tion between true and predicted distances for each
word in each sentence, averaging across all sen-
tences with lengths between 5 and 50 (we refer to
as DSpr.).

Tree depth evaluation. Evaluates the ability of
models to recreate the order of words specified by
their depth in the parse tree, assessing their ability
to identify the root of the sentence as the least deep
word (Root %) and computing the Spearman corre-
lation between the predicted and the true depth or-
dering, averaging across all sentences with lengths
between 5 and 50 (we refer to as NSpr).

3.3 Targeted syntactic evaluation

We test the MiniBERTas on the syntactic tests as-
sembled by Hu et al. (2020), accessible through
the SyntaxGym toolkit (Gauthier et al., 2020). The
tests are divided into 6 syntactic circuits, intro-
duced below, based on the type of algorithm re-
quired to successfully process each construction.

1. Agreement: Tests a language model for how
well it predicts the number marking on English
finite present tense verbs. It is composed of 3
Subject-Verb Number Agreement tests from Mar-
vin and Linzen (2018),

2. Center Embedding: Tests the ability to em-
bed a phrase in the middle of another phrase of
the same type. Subject and verbs must match in
a first-in-last-out order, meaning models must ap-
proximate a stack-like data-structure in order to
successfully process them. The circuit is composed
of 2 tests from Wilcox et al. (2019a).

3. Garden-Path Effects: Measures the syntac-
tic phenomena that result from tree structural ambi-
guities that give rise to locally coherent but globally
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implausible syntactic parses. The circuit is com-
posed of 2 Main Verb / Reduced Relative Clause
(MVRR) tests and 4 NP/Z Garden-paths (NPZ)
tests, all from Futrell et al. (2018).

4. Gross Syntactic Expectation: Tests the abil-
ity of the models to distinguish between coordinate
and subordinate clauses: introducing a subordina-
tor at the beginning of the sentence should make an
ending without a second clause less probable, and
should make a second clause more probable. The
circuit is composed of 4 Subordination tests from
Futrell et al. (2018).

5. Licensing: Measures when a particular token
must exist within the scope of an upstream licen-
sor token. The circuit is composed of 4 Negative
Polarity Item Licensing (NPI) tests and 6 Reflex-
ive Pronoun Licensing tests, all from Marvin and
Linzen (2018).

6. Long-Distance Dependencies: Measures
covariations between two tokens that span long
distances in tree depth. The circuit is composed
of 6 Filler-Gap Dependencies (FGD) tests from
Wilcox et al. (2018) and Wilcox et al. (2019b), and
2 Cleft tests from (Hu et al., 2020).

3.4 Encoding unidirectional context with
bidirectional models

The tests in SyntaxGym evaluate whether models
are able to assign a higher probability to gram-
matical and natural continuations of sentences. As
RoBERTa is a bidirectional model, to be able to ask
it to predict the probability of a token given the con-
text of previous tokens we test it in a left-to-right
generative setup, as done in (Rongali et al., 2020;
Zhu et al., 2020). More precisely, we follow Wang
and Cho (2019)’s sequential sampling procedure,
which is not affected by the error that was reported
in equations 1-3, related to the Non-sequential sam-
pling procedure. To compute the probability dis-
tribution for a sentence with [N tokens, we start
with a sequence of begin_of _sentence token plus
N mask tokens plus an extra mask token to account
for the end_of sentence token. For each masked
position in [1, N|, we compute the probability dis-
tribution over the vocabulary given the left context
of the original sequence, and select the probability
assigned by the model to the original word. Note
that this setup allows the models to know how many
tokens there are in the sentences, and therefore the
results are not directly comparable with those of
unidirectional models, that do not have any infor-

mation regarding the length of the sequence.

For example, in a Subordination test with the
examples ‘Because the students did not like the ma-
terial.” and ‘The students did not like the material.’,
we expect the model to assign a higher surprisal
(Wilcox et al., 2019c¢) to the first example, because
the initial "Because" implies that the immediately
following clause is not the main clause of the sen-
tence, but instead is a subordinate that must be fol-
lowed by the main clause. However, instead of find-
ing the main clause, the model encounters a dot in-
dicating the end of the sentence. To test whether the
model has learned about subordination, we feed the
models the tokens sequences [begin_of _sentence,
Because, the, students, did, not, like, the, materials,
mask, mask] and [begin_of sentence, The, students,
did, not, like, the, materials, mask, mask], and com-
pare the surprisal of the model predicting a dot *.’
for the first masked position in each case.

3.5 Downstream applications

To compare the performance of the models on
downstream applications, we analyze their learn-
ing curves along the fine-tuning process on two
morpho-syntactic tasks (PoS tagging and depen-
dency parsing) and a non-syntactic task (paraphrase
identification). Each task is fine-tuned for 3 epochs,
with the default learning rate of 5e~°. To mitigate
the variance in performance induced by weight ini-
tialization and training data order (Dodge et al.,
2020; Reimers and Gurevych, 2017), we repeat
this process 5 times per task with different random
seeds and average results.” For PoS tagging, we
fine-tune ROBERTa with a linear layer on top of
the hidden-states output for token classification.’
Dataset: Universal Dependencies Corpus for En-
glish (UD 2.5 English EWT (Silveira et al., 2014)).
For Dependency parsing, we fine-tune a Deep Bi-
affine neural dependency parser (Dozat and Man-
ning, 2016). Dataset: UD 2.5 English EWT (Sil-
veira et al., 2014). For Paraphrase identification,
we fine-tune ROBERTa with a linear layer on top
of the pooled sentence representation.* Dataset:
Microsoft Research Paraphrase Corpus (MRPC)

’The implementation relies in the Transformers library
(Wolf et al., 2020) and AllenNLP (Gardner et al., 2018). For
implementation details, pretrained weights and hyperparame-
ter values, cf. the documentation of the libraries.

3Source: https://github.com/Tarpelite/
UniNLP/blob/master/examples/run_pos.py

*Source: https://github.com/huggingface/
transformers/blob/master/examples/
text-classification/run_glue.py.
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(Dolan and Brockett, 2005).

4 Results

In this section, we explore the impact of the size
of pretraining data on the syntactic information
encoded by RoBERTa from three different angles.

4.1 Structural probing

We use Hewitt and Manning’s syntactic structural
probes to determine whether the MiniBERTa mod-
els pretrained on more data encode a higher amount
of syntactic information than those trained on less
data. Following the original work, we probe layer
7 of all models, as it was shown to encode most of
the syntax. Results are shown in Table 2.

Tree distance evaluation. The models trained
with more data encode better syntactic information
(as measured by the probe metrics). While DSpr.
shows a less pronounced variability between family
members, and smaller differences across families,
UUAS shows a higher intra-family variability and
bigger differences between families. Noticeably,
for the roberta-base-1B family, there is a 7 points
difference in UUAS between model 1 and model
3, which have a difference of only 0.09 points in
perplexity, highlighting the importance of training
hyperparameters for the performance of the mod-
els.

Tree depth evaluation. As for the distance met-
rics, the models trained on more data show a bet-
ter encoding of syntactic information. Again, the
correlation shows less variability between family
members and smaller differences between families,
while Root % shows a higher intra-family variabil-
ity (especially noticeable for roberta-base-10M).

4.2 Syntactic generalization evaluation

We assess the syntactic generalization performance
of the different MiniBERTas models using Hu et al.
(2020)’s test suites (cf. Subsection 3.3) to answer
the following questions: Do models pretrained on
more data generalize better? Do models with lower
perplexity perform better in the syntactic tests? Do
models with more pretraining or better perplexity
perform better in all circuits?

Average SG Score. Figure 1 shows the per-
formance of each model averaged across all 6
circuits. We observe a variability between fam-
ily members, especially for roberta-base-100M,
with a difference of 15 points between models 1
and 2. As intuitively expected, the smallest fam-

Tree distance eval.  Tree depth eval.

Model UUAS Dspr. Root %  Nspr.
1b-1 ~ 70.75 78.82 83.92  85.38
1b-2 72.93 79.86 83.53 85.92
1b-3  77.23 82.66 85.13 86.87
100m-1 68.46 76.95 81.21 84.06
100m-2  70.02 78.11 81.25 84.53
100m-3 69.35 78.73 79.88 84.59
10m-1  61.48 73.19 70.88 81.65
10m-2 62.01 73.78 70.07 81.89
10m-3  60.12 72.58 67.14  80.62
Im-1 56.96 71.70 57.12 74.16
Im-2  55.78 71.33 56.56  74.74
Im-3 55.84 71.33 57.41 74.46

Table 2: Structural probing with Hewitt and Man-
ning’s syntactic structural probes. ‘1b-*’ corresponds
to the family roberta-base-1B, ‘100M-*’ to roberta-
base-100M, ‘10M-* to roberta-10M, and ‘1M-*’ to
roberta-med-small-1M.
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Figure 1: Syntactic generalization evaluation. Average
SyntaxGym score.

ily of models, roberta-med-small-1M, performs
clearly worse than the other families. However,
it is interesting to observe that more training
data does not always imply better syntactic gen-
eralization: model roberta-base-100M-1 performs
worse than the whole roberta-base-10M family,
and model roberta-base-100M-2 performs better
than the whole roberta-base-1B family.

Stability with respect to modifiers. Five of
the test suites (Center Embedding, Cleft structure,
MVRR, NPZ-Verb, NPZ-Object) include tests with
and without modifiers, i.e,. intervening content in-
serted before the critical region. These additional
clauses or phrases increase the linear distance be-
tween two co-varying items, making the task more
difficult, and sometimes they also include a distrac-
tor word in the middle of a syntactic dependency,
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Figure 2: Syntactic generalization evaluation. Syn-
taxGym score on Center Embedding, Cleft structure,
MVRR, NPZ-Verb, and NPZ-Object, without (dark
bars) and with (light bars) modifiers.

which can lead the models to misinterpret the de-
pendency. Figure 2 shows the models’ average
scores on these test suites, without modifiers (dark
bars) and with modifiers (light bars), evaluating
how robust each model is with respect to the in-
tervening content. We observe that all models are
affected by the presence of modifiers, but the differ-
ence is narrower for roberta-base-1b, which offers
the best stability.

Perplexity vs. SG Score. Figure 3 shows the
relation between the average score across all cir-
cuits (SG score) and the perplexity of the models.
As previously observed in (Hu et al., 2020), even
though there is a (not perfect) negative correlation
between the two metrics when comparing different
families, when comparing points corresponding to
the same family of models (with equal architecture
and training data size, points of the same color in
Figure 3), there is no clear relation between them.
This suggests that both metrics capture different
aspects of the knowledge of the models.

Syntactic generalization of the models.
Figure 4 offers an overview of the syntactic
capabilities of all the models on the different
syntactic circuits. The family with more pre-
training data, roberta-base-1B, outperforms all
other families in 3 out of 6 circuits, but offers a
surprisingly low performance in Gross Syntactic
State, clearly outperformed by roberta-base-100M
and roberta-base-10M, and matched by the
roberta-med-small-1M. Again, the smallest family
offers the lowest performance across all circuits,
with individual models outperforming isolated
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Model perplexity
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Figure 3: Relationship between average SyntaxGym

score and model perplexity.
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Figure 4: SyntaxGym evaluation across circuits.

models of other families in Center Embedding,
Gross Syntactic State and Long Distance De-
pendencies. There is a high variability between
the scores achieved by the models of the same
family in the same circuit, with the exception of
roberta-base-1B in Licensing, where all models
offer a similar performance. Interestingly, there
is not a single model for any family that performs
best (nor worst) across all tests.

4.3 Targeted downstream tasks evaluation

We compare the performance of the different mod-
els on three different downstream tasks: PoS tag-
ging (Figure 5), dependency parsing (Figure 6) and
paraphrase identification (Figures 7) to determine
if models pretrained on more data perform better
on downstream applications. We observe the same
tendency for all tasks: models with more train-
ing data perform better, and the model with the
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Figure 5: Targeted downstream task evaluation. PoS
tagging accuracy evolution.

smaller architecture (roberta-med-small-1M) per-
forms remarkably worse. Although note that while
the increase of training data between families is ex-
ponential (1M, 10M, 100M, 1B), the performance
grows at a slower rate. This observation suggests
that there may be a limit to the amount of data
that we can feed into a RoBERTa model and the
knowledge that the model can acquire.

5 Cost-benefit analysis

For the sake of a more holistic view on the quality
of the models, we perform a cost—benefit analysis
of the performance gains in the different tasks, with
an estimate of the financial and environmental cost
of developing the models. As the resources used to
train the MiniBERTas are not publicly available, we
rely on the data provided in (Strubell et al., 2019)
to estimate the cost of developing each individual
model based on the costs of ROBERTa, trained on
30B words, in proportion to the amount of words
used to train each family of models.

Financial cost. As RoBERTa base was trained
on 1024 Nvidia V100 GPUs for 24 hours (i.e.,
24,576 GPU hours), and the price per hour of
Nvidia V100 (on-demand) is $2.48 (Strubell et al.,
2019), the cost of training ROBERTa base amounts
to $60,948, and the cost of training a MiniBERTas
model can be estimated to be $60,948 / 30B words
* #TrainingWords. E.g., for the roberta-base-1b
model: $60,948 / 30B words * 1B words = $2,032.

CO; Emissions. Using Strubell et al. (2019),
we extrapolate that Nvidia V100 GPUs emit
0.28441456 Ibs of CO, per GPU per hour, which
means that the training of ROBERTa base emitted
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Figure 6: Targeted downstream tasks evaluation. De-
pendency parsing UAS and LAS evolution.
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Figure 7: Targeted downstream tasks evaluation. Para-
phrase identification accuracy and F1 evolution.
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Model family Cost COze (Ibs) PoS Dep. parsing Paraphrase id.
roberta-base-1B $20320 2330 96.03 (+0.5%)  85.73 (+1.76%) 89.59 (+2.02%)
roberta-base-100M  $5075 582.5 9553 (+1.11%)  83.97 (+4.04%) 87.57 (+2.79%)
roberta-base-10M $500 58.25 9442 (+2.73%) 79.93 (+14.48%) 84.78 (+5.34%)
rob-med-small-1M $50 5.825 91.69 (base) 65.45 (base) 79.44 (base)

Table 3: Comparison of the estimated cost of developing the different MiniBERTas families in terms of cloud
compute cost (USD) and CO, emissions (lbs) and their averaged performances on PoS tagging (acc), Dep. Parsing
(LAS), and Paraphrase identification (F1). In parentheses, we show the increment with respect to the previous

smaller model.

6,990 Ibs of CO,. We estimate the emissions of
the training of each MiniBERTas model as 6,990
Ibs / 30B * #TrainingWords.

To develop each MiniBERTas models, Warstadt
et al. run the pretraining 10 times for the bigger
family (roberta-base-1B), and 25 times for the other
three families (roberta-base-100M, roberta-base-
10M and roberta-med-small-1M) with varying hy-
perparameters. Therefore, to compute the cost of
developing each family of models, we multiply
the cost of training a single model by the number
of pretraining runs needed to obtain it. Table 3
lists the estimated costs and CO; emissions of the
development of each MiniBERTas family, along
with their averaged performance on the three stud-
ied downstream applications. We see that small
performance gains come at high financial and envi-
ronmental costs. E.g., for roberta-base-1B, a per-
formance increase of 0.5%-2.02% on downstream
applications has a cost of $20K in computing re-
sources and significant carbon emissions, higher
than the estimated 1984 lbs generated by a single
passenger flying between New York and San Fran-
cisco (Strubell et al., 2019).

6 Discusion and conclusions

Our experiments shed light on the impact of pre-
training data size on the syntactic capabilities of
RoBERTa. Our results indicate that models pre-
trained with more data encode better syntactic in-
formation (as measured by Hewitt and Manning’s
structural probes) and offer a higher syntactic gen-
eralization over the different syntactic phenomena
covered by the tests assembled in (Hu et al., 2020).
Moreover, models pretrained with more data seem
to be more robust to the presence of modifiers
in the syntactic tests, i.e,. intervening content in-
serted before the critical region. As was already
observed in (Hu et al., 2020), there is no simple

relationship between the perplexity of the models
and the SyntaxGym score: the variance in intra-
family SG score is not explained by the perplexity
differences. When zooming in on the different test
circuits, probing different linguistic phenomena,
we observe that there is a high variability between
the scores achieved by the models of the same fam-
ily, with no single model for any family performing
best across all tests. While the family pretrained
with more data outperforms all the models of the
other families on 3 out of 6 circuits, it offers a sur-
prisingly low performance in Gross Syntactic State,
clearly outperformed by the smaller models.

We also compare the performance of the differ-
ent models fine-tuned on PoS tagging, dependency
parsing and paraphrase identification, observing
that models with more training data offer a bet-
ter performance, and the model with the smaller
architecture (roberta-med-small-1M) performs re-
markably worse. However, while the amount of
training data between families grows exponentially,
we observe that the performance grows at a much
slower rate, suggesting that there may be a limit to
the knowledge that a RoBERTa model can acquire
solely from raw pretraining data.

We complement our findings with a financial and
environmental cost—benefit analysis of pretraining
models on different amounts of data. We show
that while models pretrained on more data encode
more syntactic information and perform generally
better on downstream applications, small perfor-
mance gains come at a huge financial and environ-
mental cost. Thus, when developing and training
new models we should weigh between the benefit
of making models bigger and pretraining them on
huge datasets and the costs this implies, prioritizing
computationally efficient hardware and algorithms.

A question that still needs to be addressed by
future work is whether it is possible to complement
information-theoretical metrics such as perplexity
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with metrics measuring specific types of knowl-
edge, e.g., syntax, in order to develop and select
more robust and efficient models to solve Natural
Language Understanding tasks.
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