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Abstract

At the heart of text based neural models lay
word representations, which are powerful but
occupy a lot of memory making it challeng-
ing to deploy to devices with memory con-
straints such as mobile phones, watches and
IoT. To surmount these challenges, we intro-
duce ProFormer – a projection based trans-
former architecture that is faster and lighter
making it suitable to deploy to memory con-
straint devices and preserve user privacy. We
use LSH projection layer to dynamically gen-
erate word representations on-the-fly without
embedding lookup tables leading to significant
memory footprint reduction from O(V.d) to
O(T ), where V is the vocabulary size, d is the
embedding dimension size and T is the dimen-
sion of the LSH projection representation. We
also propose a local projection attention (LPA)
layer, which uses self-attention to transform
the input sequence ofN LSH word projections
into a sequence ofN/K representations reduc-
ing the computations quadratically by O(K2).

We evaluate ProFormer on multiple text classi-
fication tasks and observed improvements over
prior state-of-the-art on-device approaches for
short text classification and comparable perfor-
mance for long text classification tasks. Pro-
Former is also competitive with other popu-
lar but highly resource-intensive approaches
like BERT and even outperforms small-sized
BERT variants with significant resource sav-
ings – reduces the embedding memory foot-
print from 92.16 MB to 1.7 KB and requires
16× less computation overhead, which is very
impressive making it the fastest and smallest
on-device model.

1 Introduction

Transformers (Vaswani et al., 2017) based archi-
tectures like BERT (Devlin et al., 2018), XL-net
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(Yang et al., 2019), GPT-2 (Radford et al., 2019),
MT-DNN (Liu et al., 2019a), RoBERTA (Liu et al.,
2019b) reached state-of-the-art performance on
tasks like machine translation (Arivazhagan et al.,
2019), language modelling (Radford et al., 2019),
text classification benchmarks like GLUE (Wang
et al., 2018). However, these models require huge
amount of memory and need high computational
requirements making it hard to deploy to small
memory constraint devices such as mobile phones,
watches and IoT. Recently, there have been in-
terests in making BERT lighter and faster (Sanh
et al., 2019; McCarley, 2019). In parallel, recent
on-device works like SGNN (Ravi and Kozareva,
2018), SGNN++ (Ravi and Kozareva, 2019) and
(Sankar et al., 2019) produce lightweight models
with extremely low memory footprint. They em-
ploy a modified form of LSH projection to dynam-
ically generate a fixed binary projection represen-
tation, P(x) ∈ [0, 1]T for the input text x using
word or character n-grams and skip-grams features,
and a 2-layer MLP + softmax layer for classifi-
cation. As shown in (Ravi and Kozareva, 2018)
these models are suitable for short sentence lengths
as they compute T bit LSH projection vector to
represent the entire sentence. However, (Kozareva
and Ravi, 2019) showed that such models cannot
handle long text due to significant information loss
in the projection operation.

On another side, recurrent architectures repre-
sent long sentences well, but the sequential nature
of the computations increases latency requirements
and makes it difficult to launch on-device. Re-
cently, self-attention based architectures like BERT
(Devlin et al., 2018) have demonstrated remark-
able success in capturing long term dependencies
in the input text via purely attention mechanisms.
BERT’s model architecture is a multi-layer bidi-
rectional Transformer encoder based on the origi-
nal implementation in (Vaswani et al., 2017). The
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self-attention scores can be computed in parallel
as they do not have recurrent mechanisms. But
usually these architectures are very deep and the
amount of computation is quadratic in the order of
O(L ·N2), where L is the number of layers (Trans-
former blocks) and N is the input sentence length.
Straightforward solutions like reducing the num-
ber of layers is insufficient to launch transformers
on-device due to the large memory and quadratic
computation requirements.

In this paper, we introduce a projection-based
neural architecture ProFormer that is designed to
(a) be efficient and learn compact neural represen-
tations (b) handle out of vocabulary words and mis-
spellings (c) drastically reduce embedding mem-
ory footprint from hundreds of megabytes to few
kilobytes and (d) reduce the computation overhead
quadratically by introducing a local attention layer
which reduces the intermediate sequence length by
a constant factor, K. We achieve this by bring-
ing the best of both worlds by combining LSH
projection based representations (for low memory
footprint) and self-attention based architectures (to
model dependencies in long sentences). To tackle
computation overheard in the transformer based
models, we reduce the number of self-attention lay-
ers and additionally introduce an intermediate local
projection attention (LPA) to quadratically reduce
the number of self-attention operations. The main
contributions of our paper are:

• We propose novel on-device neural network
called ProFormer which combines LSH pro-
jection based text representations, with trans-
former architecture and locally projected self-
attention mechanism that captures long range
sentence dependencies while yielding low
memory footprint and low computation over-
head.

• ProFormer reduces the computation overhead
O(L ·N2) and latency in multiple ways: by
reducing the number of layers L from twelve
to two and introducing new local projection
attention layer that decreases number of self-
attention operations by a quadratic factor.

• ProFormer is light weigh compact on-device
model, while BERT on-device still needs huge
embedding table ( 92.16 MB for V = 30k,
d = 768) with number of computation flops
in the order of O(L · N2), where L is the
number of layers, N is the number of words
in the input sentence.

• We conduct empirical evaluations and com-
parisons against state-of-the-art on-device and
prior deep learning approaches for short and
long text classification. Our model ProFormer
reached state-of-art performance for short text
and comparable performance for long texts,
while maintaining small memory footprint
and computation requirements.

2 ProFormer: LSH Projection based
Transformers

In this section, we show the overall architecture
of ProFormer in Figure 1. ProFormer consists of
multiple parts: (1) word-level Locality Sensitive
Hashing (LSH) projection layer, (2) local projec-
tion attention (LPA) layer, (3) transformer layer
(Devlin et al., 2018) and (4) a max-pooling + clas-
sifier layer. Next, we describe each layer in detail.

Figure 1: ProFormer: Our Projection Transformer
Network Architecture

2.1 LSH Projection Layer
It is a common practice to represent each word in
the input sentence, x = [w1, w2, · · · , wN ] as an
embedding vector based on its one-hot representa-
tion. Instead, we adopt LSH projection layer from
(Ravi, 2017, 2019) which dynamically generates a
T bit representation, P(wi) ∈ [0, 1]T for the input
word, wi based on its morphological features like
n-grams, skip-grams from the current and context
words, parts-of-speech tags, etc.

Since the LSH projection based approach does
not rely on embedding lookup tables to compute
word representation, we obtain significant memory
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savings of the order, O(V · d), where V is the
vocabulary size and d is the embedding dimension.
For instance, the embedding look-up table occupies
92.16 MB (V = 30k, d = 768 (Devlin et al.,
2018)), while the LSH projection layer requires
only ≈ 1.7 KB (T = 420) as shown in Table 1.

Models Embedding memory Computations
BERT O(V.d) O(N2)
ProFormer (our model) O(T ) O(N2/K2)

Table 1: Memory and computations overhead compari-
son between BERT (Devlin et al., 2018) and ProFormer
(our model). N is the number of words in the input. For
V = 30k, d = 768, T = 420, BERT’s embedding ta-
ble occupies 92.16 MB while ProFormer requires only
1.7 KB. For K = 4, we reduce the BERT computation
overhead by 16 times.

2.2 Local Projection Attention (LPA) Layer

The LPA layer shown in Figure 2 consists of a
single layer multi-headed self-attention layer sim-
ilar to the Transformer architecture in (Vaswani
et al., 2017) followed by a max-pooling layer yield-
ing a compressed representation of K input words,
[w1, w2, · · ·wK ].

Figure 2: Local Projection Attention (LPA) layer.

The LPA layer transforms the N word-level projec-
tions, P(wi) to a sequence of N/K representations
as in Equation 1.

[P(w1), ···P(wN )]N −→

[LPA(P(w1:K)), ··· LPA(P(wN/K:N ))]N/K (1)

where LPA consists of the self-attention and max-
pooling operation, K is a Group factor1. We
equally divide the N word-level LSH projection
representations into N/K groups of size K. The
LPA layer compresses each group of K word rep-
resentations into LPA(P(w1:K)) ∈ Rd yielding

1We choose K such that N is divisible by K.

N/K representations in total. The LPA layer re-
duces the self-attention computation overhead in
the subsequent transformer layer (Vaswani et al.,
2017) by O(K2).

2.3 Transformer Layer
This layer consists of 2-layer bidirectional Trans-
former encoder based on the original implementa-
tion described in (Vaswani et al., 2017). This layer
transforms the N/K input representations from
the LPA layer described in the previous sub-section
into N/K output representations. In this layer, we
reduce both the computation overhead and memory
footprint by reducing the number of layers from L
to 2 reducing the computation overhead byO(L/2)
(6 times in the case of 12-layer BERT-base model).

2.4 Max-Pooling and Classification Layer
We summarize the N/K representations from the
transformer layer to get a single d dimensional
vector by max-pooling across the N/K time-steps,
followed by a softmax layer to predict the output
class Y .

3 Datasets & Experimental Setup

In this section, we describe our datasets and exper-
imental setup. We use text classification datasets
from state-of-the-art on-device evaluations such as:
MRDA (Shriberg et al., 2004) and ATIS (Tür et al.,
2010), AG News (Zhang et al., 2015a) and Yahoo!
Answers (Zhang et al., 2015a). Table 2 shows the
characteristics of each dataset.

Tasks # Classes Avg-len Train Test
MRDA (Dialog act) 6 8 78k 15k
ATIS (Intent prediction) 21 11 4.4k 0.89k
AG (News Categorization) 4 38 120k 7.6k
Y!A (Yahoo! Answers Categorization) 10 108 1400k 60k

Table 2: Classification Dataset Characteristics

We train ProFormer on multiple classification tasks
individually and report Accuracy on correspond-
ing test sets. We fix the projection size, T = 420,
n-gram size=5, skip-gram size=1 for the LSH pro-
jection operation, P. For the LPA layer, We ex-
periment with two values for K = 1, 4, where
K = 1 corresponds to the null operation in the
LPA layer which just passes the word LSH projec-
tion representation to the Transformer layer. For
the transformer layer, we fix the number of layers,
L = 2 and set all layer sizes, d = 768 (including
the intermediate size for the dense layer).2

2The rest of the parameters are same as the one used in
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We compare our model with previous state of
the art neural architectures, including on-device
approaches. We also fine-tune the pretrained 12-
layer BERT-base model (Devlin et al., 2018) on
all classification tasks and compare to our model.
BERT-base consists 12-layers of transformer blocks
(Vaswani et al., 2017) and is pretrained in an unsu-
pervised manner on a large corpus (BooksCorpus
(Zhu et al., 2015) and English WikiPedia) using
masked-language model objective. We fine-tune
the pretrained BERT-base (Devlin et al., 2018) to
each of the classification tasks. For training, we use
Adam with learning rate of 1e-4, β1=0.9, β2=0.999,
L2 weight decay of 0.01, learning rate warmup
over the first 10, 000 steps, and linear decay of the
learning rate. We use dropout probability of 0.1 on
all layers and training batch size of 256. For further
comparison, we also trained much smaller BERT
baselines with 2-layers of transformer blocks and
smaller input embedding sizes.

4 Results

Tables 3 and 4 show the results on the ATIS &
MRDA short text classification and AG & Y!A
long text classification tasks. We compare our
approach, ProFormer against prior state-of-the-art
on-device works, fine-tuned BERT-base, smaller
2-layer BERT variants and other non-on-device
neural approaches.

Overall, our model ProFormer improved upon
non-on-device neural models while keeping very
small memory footprint and high accuracy. This
is very impressive since ProFormer can be directly
deployed to memory constraint devices like phones,
watches and IoT while still maintaining high ac-
curacy. ProFormer also improved upon prior
on-device state-of-the-art neural approaches like
SGNN (Ravi and Kozareva, 2018) and SGNN++
(Ravi and Kozareva, 2019) reaching over 35% im-
provement on long text classification. Similarly it
improved over on-device ProSeqo (Kozareva and
Ravi, 2019) models for all datasets and reached
comparable performance on MRDA. In addition to
the quality improvements, ProFormer also keeps
smaller memory footprint than ProSeqo, SGNN
and SGNN++.

In addition to the non-on-device and on-device
neural comparisons, we also compare against
BERT-base and other smaller variants. Our ex-
periments show that ProFormer outperforms the

bert config.json in BERT-base model (Devlin et al., 2018)

small BERT baselines on all tasks. Moreover, al-
though the 12-layer fine-tuned BERT-base (Devlin
et al., 2018) model converged to the state-of-the-art
in almost all of the tasks, ProFormer converges to
≈ 97.2% BERT-base’s performance on an average
while occupying only 13% of BERT-base’s mem-
ory. ProFormer has 14.4 million parameters, while
BERT-base has 110 million. For fair comparison,
we also test ProFormer with K = 4, which only
occupies 38.4% the memory footprint of 2-layer
BERT-base model and reduces the computation
overhead by 16 times. The embedding look up ta-
ble occupies nearly 23 million parameters out of
38 million parameters in the 2-layer BERT model.
We notice that K=4 model performs slightly worse
than K=1 indicating information loss in the LPA
layer. Overall, our experiments demonstrate that
ProFormer reaches better performances that prior
non-on-device and on-device neural approaches,
and comparable performance to BERT-base mod-
els while preserving smaller memory footprint.

Models MRDA ATIS
ProFormer (K=1) (our model) 89.3 98.2
ProFormer (K=4) (our model) 86.7 97.0
BERT-base + fine-tuned (Devlin et al., 2018) 90.1 98.3

(12-layers, embedding size = 768)
BERT (2-layer, embedding size = 560) 77.0 94.0
BERT (2-layer, embedding size = 840) 76.8 95.0
ProSeqo (Kozareva and Ravi, 2019)(on-device) 90.1 97.8
SGNN++ (Ravi and Kozareva, 2019)(on-device) 87.3 93.7
SGNN (Ravi and Kozareva, 2018)(on-device) 86.7 88.9
RNN(Khanpour et al., 2016) 86.8 -
RNN+Attention(Ortega and Vu, 2017) 84.3 -
CNN(Lee and Dernoncourt, 2016) 84.6 -
GatedIntentAtten.(Goo et al., 2018) - 94.1
GatedFullAtten.(Goo et al., 2018) - 93.6
JointBiLSTM(Hakkani-Tur et al., 2016) - 92.6
Atten.RNN(Liu and Lane, 2016) - 91.1

Table 3: Short text classification results.

Models AG Y!A
ProFormer (K=1) (our model) 92.0 72.8
ProFormer (K=4) (our model) 91.5 71.1
BERT-base + fine-tuned (Devlin et al., 2018) 94.5 73.8

(12-layers, embedding size = 768)
BERT (2-layer, embedding size = 560) 82.3 -
BERT (2-layer, embedding size = 840) 83.3 -
ProSeqo (Kozareva and Ravi, 2019)(on-device) 91.5 72.4
SGNN (Ravi and Kozareva, 2018)(on-device) 57.6 36.5
FastText-full (Joulin et al., 2016) 92.5 72.3
CharCNNLargeWithThesau.(Zhang et al., 2015b) 90.6 71.2
CNN+NGM (Bui et al., 2018) 86.9 -
LSTM-full (Zhang et al., 2015b) 86.1 70.8

Table 4: Long text classification results.

5 Conclusion

We proposed a novel on-device neural network Pro-
Former, which combines LSH projection based
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text representations, with trans-former architecture
and locally projected self-attention mechanism that
captures long range sentence dependencies. Over-
all, ProFormer yields low memory footprint and
reduces computations quadratically. In series of
experimental evaluations on short and long text
classifications we show that ProFormer improved
upon prior neural models and on-device work like
SGNN (Ravi and Kozareva, 2018), SGNN++ (Ravi
and Kozareva, 2019) and ProSeqo (Kozareva and
Ravi, 2019). ProFormer reached comparable per-
formance to our BERT-base implementation, how-
ever it produced magnitudes more compact models
than BERT-base. This is very impressive showing
both effectiveness and compactness of our neural
model.
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