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Abstract

Open Relation Extraction (OpenRE), aiming to extract relational facts from open-domain cor-
pora, is a sub-task of Relation Extraction and a crucial upstream process for many other NLP
tasks. However, various previous clustering-based OpenRE strategies either confine themselves
to unsupervised paradigms or can not directly build a unified relational semantic space, hence
impacting down-stream clustering. In this paper, we propose a novel supervised learning frame-
work named MORE-RLL (Metric learning-based Open Relation Extraction with Ranked List
Loss) to construct a semantic metric space by utilizing Ranked List Loss to discover new rela-
tional facts. Experiments on real-world datasets show that MORE-RLL can achieve excellent
performance compared with previous state-of-the-art methods, demonstrating the capability of
MORE-RLL in unified semantic representation learning and novel relational fact detection.

1 Introduction

Relation Extraction (RE) aims to extract pre-defined relational facts from plain text (e.g., ”Mary gave
birth to Keller in 1989s.”, RE can extract ”gave birth to” between two named entities ”Mary” and
”Keller”). It is an important task that can structure a large amount of text data. Therefore, it can
benefit for unstructured text data storing and the procedure of many other down-stream NLP tasks or
applications, such as knowledge graph construction (Suchanek et al., 2007), information retrieval (Xiong
et al., 2017), and logic reasoning (Socher et al., 2013). Nevertheless, with the rapid development of
social media and human civilization, novel relationships and new knowledge in open-domain text data
are also increasing. Accordingly, the relation types in the open-domain corpora may not be pre-defined,
which is hard for RE to handle. To meet the rapid emergence of such novel knowledge, OpenRE emerged
as the times required (Banko et al., 2007). The goal of OpenRE is to detect novel relational facts from
open-domain datasets. It is a crucial task for updating the human knowledge base and the study of human
civilization.

Existing OpenRE methods are divided into two main categories: tagging-based and clustering-based.
The tagging-based strategies treat OpenRE as a sequence labeling problem (Banko et al., 2007; Banko
and Etzioni, 2008). Still, these methods often extract surface forms that can not be utilized for down-
stream tasks (i.e., some sequences have the same relational semantic type, but their phrases generated
from tagging-based methods are different because of overly-specific). Comparatively, clustering-based
methods aim to identify the rich semantic features in the text, then cluster them into certain relation
types. Recently, many efforts have been devoted to exploring clustering-based methods, such as (Yao
et al., 2012; Elsahar et al., 2017). Yet, those schemes are laborious and time-consuming because of the
high dependence on well-designed features created by hand.

Profited from the substantial improvement of computing power in recent years, neural networks begin
to be exploited in clustering-based OpenRE tasks to alleviate the above issues, such as (Simon et al.,
2019; Hu et al., 2020; Gao et al., 2020). Even so, these strategies confine themselves to unsupervised
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or self-supervised paradigms and can not fully benefit from current high-quality human-labeled corpora.
Although several unconventional works have gained phenomenal performance, such as (Zhang et al.,
2021), the reliance on the extra knowledge for these strategies make it hard for us to compare with.
Besides, another supervised scheme learned the similarity metrics from labeled instances and further
transferred the relational knowledge to the open-domain scene, namely Relational Siamese Networks
(RSNs) (Wu et al., 2019). However, RSNs target learning a similarity classifier rather than building
relational representations directly. Thereby, this may impact the efficiency and effect of down-stream
clustering.

In order to address these issues, we propose a novel supervised learning framework via a clustering-
based scheme driving neural encoder to build rich semantic representation directly. From our insight
view, the essential target of the clustering-based OpenRE algorithm is to construct a reasonable seman-
tic space on the open-domain corpora, where all different relational facts can be distinguished clearly.
Therefore, the learning of semantic representation is a fundamental part of the whole task. It can not only
extend the functionality of the neural encoder (i.e., the semantic space construction ability of the neural
model can be used in other scenes, such as classification, etc.) but also bring benefits to downstream
clustering.

As a result, we pay attention to the unified semantic representation learning ability of neural encoders.
Specifically, we employ deep metric learning to drive the neural encoder to build a distinguishable se-
mantic space on open-domain datasets. However, most prevailing deep metric learning methods, such
as triplet loss (Hoffer and Ailon, 2015), N-pair-mc (Sohn, 2016), or Proxy-NCA (Movshovitz-Attias
et al., 2017), always bring low yield due to the poor supervision signals from the limited number of
training data points. Inspired by (Wang et al., 2019), we chose Ranked List Loss (RLL) instead, which
can capture set-based rich supervision signals. Meanwhile, RLL can preserve a better intraclass simi-
larity structure within a hypersphere than other set-based schemes, hence constructing a more desirable
semantic space.

Additionally, considering that the open scene corpora is usually full of noise, hence directly trans-
ferring knowledge may not be an ideal choice. To enhance the model’s robustness, we also design
virtual adversarial training for our semantic space construction algorithm. Experiments demonstrate that
MORE-RLL can build more distinguishable semantic representations and obtain excellent performances
on real-world datasets.

To sum up, the main contributions of this work are as follows:

• We propose a novel clustering-based OpenRE framework, namely MORE-RLL. The MORE-RLL
combines deep metric learning and neural encoder to build a unified relational semantic space to
discriminate samples rather than utilize an additional classification layer. Thus, it can handle the
enormous undefined relation types in the open-domain corpora and facilitate down-stream clus-
tering to discover valuable novel types. Meanwhile, we adopt a Ranked List Loss to gain more
prosperous supervision signals and construct a more desirable semantic space than other prevailing
metric learning losses.

• Considering the noise and bias present in the text of open scenarios, we also design virtual adversar-
ial training to enhance the robustness of MORE-RLL instead of directly transferring the knowledge
that comes from clean RE datasets to the open-domain corpora.

• Experiments illustrate that the proposed MORE-RLL achieves state-of-the-art performance on real-
world datasets, even if the imbalance distribution presents in the test set. Moreover, the visual anal-
ysis also demonstrates its excellent ability of relational representation learning and novel knowledge
detecting.

2 Methodology

In this section, we will introduce our framework in detail. As shown in Figure 1, we exploit a neural
encoder to extract relational representations from a batch of training samples. These sentence-level
representations can be taken as relational semantic vectors, indicating the relative locations of facts in
the semantic feature space. Then, we use them to calculate the Ranked List Loss (RLL) and gain rich
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Figure 1: Overall architecture of MORE-RLL.

supervision signals to train the encoder. Besides, we set virtual adversarial training to smooth the feature
space to overcome noise in the open scenes. We repeat these steps until the encoder is well-trained and
then transfer the prior knowledge from the training samples to the open-domain corpora.

2.1 Neural Encoders

As a vital component of MORE-RLL, the neural encoder aims at extracting semantic representations
of relation types from natural language sentences. In this paper, we mainly use CNN as the encoder.
Meanwhile, we also experiment with the pre-trained language model to demonstrate the expansibility of
our framework.

CNN+GloVe Following (Zeng et al., 2014; Wu et al., 2019), we take the CNN encoder as our pri-
mary choice and utilize the pre-trained GloVe embedding (Pennington et al., 2014). To be specific, we
firstly use the pre-trained word embedding layer and a randomly initialized position embedding layer
to transform the original text sequences. Both these embedding layers are trainable. Then, the outputs
of these two embedding layers will be concatenated and passed to a one-dimensional CNN followed by
a max-pooling layer. After that, we employ a linear layer to map these raw representations to a high-
dimensional semantic space. So far, the structure of our model is the same as that of RSNs (Wu et al.,
2019), so we don’t detail it. However, unlike RSNs, which utilize an additional linear classifier to predict
the similarity of the extracted representation pair, we simply construct such a feature space and prepare
for the next step.

BERT Inspired by SelfORE (Hu et al., 2020), which exploited the pre-trained language model, we also
choose BERT (Devlin et al., 2018) as our contextual neural encoder. Following the operation proposed
by (Soares et al., 2019), we take the relational hidden states of BERT as representations rather than the
output of [CLS] token. More specifically, for a sentence S = {s1, ..., sT } (where s indicates the token
and T is the length of S), we insert four special tokens before and after each entity mentioned in a
sentence and get a new sequence:

S = [s1, .., [E1start], sp, .., sq, [E1end],

.., [E2start], sk, .., sl, [E2end], .., sT ] (1)

We use this sequence as the input of BERT, and then we concatenate the last hidden states of BERT’s
outputs corresponding to [E1start], [E2start], take these relational hidden states as our raw representa-
tions. Same as what we have mentioned in the CNN encoder, we then use a linear mapping layer to
process these representations.

After obtaining the representations extracted by the above neural encoders, we perform L2 normaliza-
tion on these high dimensional representations, thus construct a Euclidean semantic space where we can
predict the similarity metrics of relations conveniently.
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2.2 Ranked List Loss

N

Anchor

Informative Positive

Uninformative Positive

Informative Negative

Uninformative Negative

P

Figure 2: Illustration of the ranked list loss.

So far, we have introduced how to built a Euclidean semantic space. Therefore, the next problem is
the optimization of this space, which we will detail in this section.

As we have introduced in the subsection 1, our essential objective is to make the neural encoder
gain a unified representation learning ability on high-quality RE corpora. Thus, we adopt deep metric
learning as the optimization algorithm on relational semantic space. What’s more, considering the limited
information from point-based or pair-based metric learning methods (e.g., triplet loss (Hoffer and Ailon,
2015), N-pair-mc (Sohn, 2016)), we try to use a set-based or group-based scheme instead. Inspired by
(Wang et al., 2019), we finally choose Ranked List Loss (RLL) to explore set-based similarity structure
from a training batch and gain richer supervision signals.

For an anchor selected from the training batch, RLL rank the similarity of all the same type (positive)
points before the different categories (negative) points and preserve a preset margin between them. To be
specific, given a batch of normalized relation representations B = {r1, ..., rm} generated from the neural
encoder, and an instance (anchor) ri in B (where m indicates the batch size), we expect that the positive
points for the anchor in B can be gathered together while those negative points are the opposite. So we
calculate the following formula:

L(ri,B; f) =
∑

rj∈B,j 6=i

[(1− yij)[αN − dij ]+

+yij [dij − αP ]+] (2)

where f is model parameters; y indicates the relation type, yij = 1 if rj is a positive point, yij = 0
otherwise; dij denotes the Euclidean distance between two points; αP , αN represent the positive and
negative boundary respectively; [.]+ denote the hinge function.

Intuitively, as shown in Figure 2, those positive instances outside the αP will be pulled closer, while
those negative points within the αN will be pushed further. The remaining uninformative points which
have already met our objective will not be taken into count because of the hinge function.

More concisely, for an anchor ri in B, let’s define LP (ri,B; f) as the total loss of all informative pos-
itive points, and LN (ri,B; f) is the sum of all informative negative samples loss, thus the optimization
objective function can be summarized as below:

LRLL (B; f) =
∑
ri∈B

[(1− λ)LP (ri,B; f) + λLN (ri,B; f)] (3)

Here, the λ is the balance factor between LP (ri,B; f) and LN (ri,B; f). Usually, we set it as 0.5.
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Additionally, given ri as an anchor, there are always numerous informative negative points that can be
found in B. To deal with the magnitude difference laying in the negative loss, we follow (Wang et al.,
2019), weight the negative examples according to the values of their loss:

wij = exp[Tn ∗ (αN − dij)], rj ∈ RNi (4)

Where RNi represents the set of informative negative samples of ri, and Tn indicates the temperature
factor which controls the degree of weighting these negative samples (because the temperature factor of
positive samples, namely Tp, is always set to 0, we don’t formalize it). When Tn is 0, every instance will
be treated equally. But if set Tn to +∞, the loss function will devote almost all attention to the hardest
sample.

Consequently, the LN (ri,B; f) in (3) can be updated as:

LN (ri,B; f) =
∑

rj∈RNi

[
wij∑

rj∈RNi
wij

(αN − dij)] (5)

After the neural encoder retrieves the supervision signals of B, we sample next m instances sequentially
from the training corpus and performed the above operation iteratively.

2.3 Virtual Adversarial Training
Different from many other tasks, there is always bias (e.g., the extreme imbalance of labels) and noise
(e.g., spelling mistakes) present in the text of open scenarios. As a result, directly transfer the knowledge
from the standardized corpus to an open-domain setting is not an ideal scheme. To address this issue,
we design virtual adversarial training (VAT) (Miyato et al., 2018) to smooth the semantic space, hence
enhance the model’s robustness.

Specifically, for any given sentence S and its original representation r, we first generate a normalized
perturbation ξ on the word embedding within S randomly, add it to the original word embedding, and
then take this disturbed embedding as the input of encoder to build a new representation r̃. Next, we
calculate the gradient g of the Euclidean distance between r and r̃ with respect to the ξ. Then, we regard
ε times normalized g as the worst-case perturbation ξ̃, where ε is a small decimal number we set as 0.02
in all our experiments. Finally, we use ξ̃ to disturb the original embedding of S. In a word, given a batch
of samples B, we penalize neural encoder with the following VAT loss:

Ladv(B; f) =
1

m

m∑
i=1

D(F (Si; f), F (Si + ξ̃i; f)) (6)

Where Si indicates the i sequence, F (Si + ξ̃; f) denotes the distributed representation encoded by the
neural model, while F (Si; f) is the original one (namely ri) and D calculates the Euclidean distance
between two representations. Intuitively, we expect that any representation ri encoded by model in B is
stable as possible under such worst-case perturbations.

Thence, the final objective loss function can be written as:

L(B; f) = LRLL(B; f) + βLadv(B; f) (7)

Where β is a factor that indicates the weight of virtual adversarial training. Same as (Miyato et al., 2018),
we set it as 1 practically.

3 Experiment

3.1 Datasets
FewRel is derived from Wikipedia and annotated by crowd workers (Han et al., 2018). Different from
most other datasets, the entity pair of each instance in FewRel is unique, which makes the model unable
to obtain shortcuts by memorizing the entities. Following the paper (Wu et al., 2019), we choose 64
relations as the train set and randomly select 16 relations with 1600 instances as the test set; the remaining
sentences are validation set (as can be seen in Table 1).
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NYT+FB-sup is generated from NYT+FB. The original NYT+FB is built by distant supervision, and
its text sequences come from New York Times corpus (Sandhaus, 2008) while the relational types are
extracted from Freebase (Bollacker et al., 2008). Following (Simon et al., 2019; Hu et al., 2020), we
process the raw data and get the original NYT+FB. Since the whole dataset is built via distant supervi-
sion, its labels are full of noise and bias. In order to fit the supervision setting and to better simulate open
scenes, we then divide the original dataset again, hence obtaining NYT+FB-sup. Usually, the relations
which occur frequently are common categories, and those relations with rare instances are insufficient
to be regarded as novel types. Therefore, we select relations with the number of instances between 20
and 2000 as novel relations and append them to the test set. As shown in Table 1, we finally obtained 72
novel relations equally divided between the test and validation set, leaving 190 relations as the train set,
which contains both common and scarce types to simulate a real unbalanced environment.

Partition
FewRel NYT+FB-sup

relation type instance relation type instance

train 64 44800 190 25521
dev 16 9600 72 8100
test 16 1600 72 8063

Table 1: The statistical information on FewRel and NYT+FB-sup

3.2 Settings

In all our experiments, we use the NVIDIA RTX2080 graphics card. We choose Adam (Kingma and Ba,
2014) for our optimization and fix the learning rate with 3e-4 and 1e-5 on CNN and BERT, respectively.
Since the batch size m is a significant factor in our metric learning-based framework, we use the conclu-
sion that comes from 3.5.3. Expressly, we set m to 100, fix both the relation types C and the number of
instances for each typeK to 10. To solve out-of-memory problems when utilizing BERT, we use parallel
training on 4 graphics cards. For the hyperparameter αP , αN , we follow the original paper (Wang et
al., 2019) and set them as 0.8 and 1.2 separately, hence preserving a margin of 0.4 between these two
boundaries. The temperature factor Tn in this work is 10, which is also the same as the original paper.
We train our framework with 4 epochs on the training set and adopt early stopping.

The clustering algorithm is a general factor in the OpenRE task, so there can be multiple choices. Since
the semantic space constructed by our framework is a normalized Euclidean space, the distance metric
described by our model is linear, which is different from (Wu et al., 2019). Therefore, we utilize two
commonly used algorithms: K-Means (Hartigan and Wong, 1979) and Mean-Shift (Cheng, 1995). On
FewRel, we choose K-means as our downstream clustering algorithm and set the number of clusters as
24. And on NYT+FB-sup, we choose Mean-Shift instead of K-means to deal with the imbalance, which
can automatically find clusters based on spatial density. We don’t use Louvain (Blondel et al., 2008)
or HAC (Ward Jr, 1963) in our framework. The reason is that the Louvain is a graph-based algorithm
that is not very compatible with our normalized Euclidean semantic space, while the HAC is highly
time-consuming.

What’s more, we adopt B3 F1 score (Bagga and Baldwin, 1998) as our metrics, which is widely used
in previous works (Marcheggiani and Titov, 2016; Elsahar et al., 2017; Wu et al., 2019; Hu et al., 2020).
F1 calculates the harmonic mean of precision and recall, and its value is more affected by the lower one,
which can fairly demonstrate the performance of the model.

3.3 Main Results

We compare our MORE-RLL with four previous state-of-the-art baselines (Marcheggiani and Titov,
2016; Elsahar et al., 2017; Wu et al., 2019; Hu et al., 2020) on two datasets. All these models are
evaluated on the test set to show their performance. The main results can be seen in Table 2, the scores
of all algorithms are the highest among the statistical testings (some borrowed from the original paper).
From Table 2, we can draw the following conclusions:
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Method
FewRel NYT+FB-sup

Prec. Rec. F1 Prec. Rec. F1
VAE (Marcheggiani and Titov, 2016) 17.9 69.7 28.5 20.3 40.7 27.1
RW-HAC (Elsahar et al., 2017) 31.8 46.0 37.6 25.2 33.9 28.9
SelfORE (Hu et al., 2020) 50.8 51.6 51.2 30.9 46.4 37.1
RSNs (Wu et al., 2019) 48.9 77.5 59.9 31.1 52.0 38.8

MORE-RLL(GloVe+CNN) 57.1 68.0 62.0 39.1 49.1 43.5
MORE-RLL(BERT) 70.1 79.6 74.5 48.7 50.8 49.7

Table 2: The results on FewRel and NYT+FB-sup.

• Benefiting by the rich supervision signals come from the labeled RE corpora (even the
distant-supervised annotations), MORE-RLL(GloVe+CNN) outperforms all unsupervised or self-
supervised methods on both datasets. The results indicate the effectiveness of prior knowledge
transfer and our unified semantic representation learning strategy, which can be conducive to novel
type-detection in open scenarios.

• MORE-RLL(GloVe+CNN) outperforms RSNs on precision and F1. However, compared with
RSNs, the superiority of MORE-RLL is not obvious on recall. Because the clustering method
adopted by RSNs is Louvain (Blondel et al., 2008), which constantly produces coarse-grained clus-
tering results, as mentioned in (Wu et al., 2019). Since the essential objective of OpenRE is to detect
valuable novel relations, the quality of relation types detected by the model is more significant than
the quantity. Therefore, the impressive precision of MORE-RLL also indicates its capability of
high-quality knowledge discovery.

• The F1 scores of all methods on NYT+FB-sup are lower than the results on FewRel. Even Self-
ORE (Hu et al., 2020), which has achieved admirable performance on NYT+FB, also has a poor
performance. This phenomenon shows that NYT+FB-sup can simulate the real open scene and
presents a challenging problem for all models. However, even in a hard setting, MORE-RLL can
still maintain a better performance than others. This result proves that MORE-RLL is robust to
noise in the dataset and can distinguish those ambiguous novels and rare classes in open-domain
corpora.

• To demonstrate the expansibility of our framework, we also adopt BERT as our neural encoder.
Owing to the powerful extracting ability of the pre-trained language model, the performance of our
framework has been greatly improved. In fact, there are multiple encoders that can be adopted in
our framework. Due to the limitation of the space, we do not extend it here.

3.4 Visualization Analysis

In order to intuitively demonstrate the capability of MORE-RLL on semantic representation learning,
we visualize the semantic space of relational representations with t-SNE (Maaten and Hinton, 2008).
Specifically, We randomly sample 4 relation types from the test set of FewRel and NYT+FB-sup, re-
spectively, 100 instances per type, and construct representations from these instances on both MORE-
RLL(GloVe+CNN) and RSNs, then color these representations according to their ground-truth types.

The Figure 3 illustrates the visualization on FewRel. The semantic space of MORE-RLL is more
distinguishable that almost all four types can preserve the intraclass similarity within a hypersphere
while leaving a distinct margin between any two categories. In contrast, RSNs attempt to shrink the
representations of the same type into one point. Thus, the distribution of points for RSNs in each cluster
is denser than MORE-RLL. However, excessive attention to the similarity between point pairs may drop
the intraclass similarity structure, so it is easier for RSNs to divide samples of the same category into
multiple subcategories.

Visualization on NYT+FB-sup can be seen in Figure 4. The semantic space on NYT+FB-sup is
harder to construct compared with Figure 3. Because of the distant-supervision labels and the extreme
imbalance in the training set, it is easy for both MORE-RLL and RSNs to be confused with some relation
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types. For example, the olive points in Figure 4 cannot maintain the intraclass structures well. However,
MORE-RLL can still preserve a relatively distinguishable semantic space even in such a challenging
setting.

(a) MORE-RLL (b) RSNs

Figure 3: The t-SNE visualization on FewRel.

(a) MORE-RLL (b) RSNs

Figure 4: The t-SNE visualization on NYT+FB-sup.

3.5 Other Empirical Studies

In this subsection, we conduct several experiments: 1). Compare the VAT with other regularization
strategies; 2). Compare the RLL with the other metric losses; 3). Explore the vital factor for the batch
content. In all the following experiments, we use CNN as the neural encoder.

3.5.1 Comparing with Other Regularization Methods
In this paragraph, we compare VAT with other widely used regularization strategies to show the effec-
tiveness of it, that is:

* L2 regularization. We adopt L2 regularization on both the CNN and the linear mapping layer with
the 2e-4 and 1e-3 weight decay ratio, respectively.

* Dropout (Srivastava et al., 2014). We apply Dropout on the word embedding, the drop rate we use
here is 0.3.

* Random Perturbation Training (RPT) is a naive smoothing scheme that disturbs the original input
with an isotropic distribution. Since the RPT can be regarded as a downgraded version of our VAT,
we take the initial perturbation ξ (we have mentioned in 2.3) as a random perturbation and add it to
the original word embedding within each sequence.

The hyparameters of each strategy above are chosen via greedy trials. For each of them, we report the
best score among 10 experiments.

As can be seen in Table 3, with the help of VAT, MORE-RLL can achieve better performance. In
contrast, some other widely used regularization methods (e.g., L2, Dropout) can’t bring phenomenal
improvement due to the shallow structure of our framework. Meanwhile, suffering from the influence
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of isotropic distribution, the RPT also achieve barely satisfactory compared with VAT. Besides the theo-
retical and performance promise, the VAT calculates ”virtual adversarial direction” (as mentioned in the
original paper (Miyato et al., 2018)), so there is no dependency on the ground-truth information for VAT.
Consequently, it is more suitable to use VAT in the open domain than other label-dependency methods,
e.g., adversarial training (Goodfellow et al., 2014).

Method
FewRel NYT+FB-sup

Prec. Rec. F1 Prec. Rec. F1
MORE-RLL w/o VAT 56.6 60.3 58.4 36.4 48.9 41.8
MORE-RLL w/o VAT + L2 52.9 66.4 58.9 39.0 45.5 42.0
MORE-RLL w/o VAT + Dropout 53.9 66.8 59.6 39.5 45.2 42.1
MORE-RLL w/o VAT + RPT 57.7 62.7 60.1 38.7 43.9 41.1

MORE-RLL 57.1 68.0 62.0 39.1 49.1 43.5

Table 3: The results of adopting different regularization methods.

3.5.2 Comparing with Other Metric learning Losses

In this paragraph, we try to demonstrate the effectiveness of the Ranked List Loss. We compare RLL
with other prevailing metric losses:

* Triplet Loss (TL) (Hoffer and Ailon, 2015) is a pair-based metric loss, which aims to pull an anchor
closer to a positive point while pushing further from a negative point.

* N-Pair-Mc Loss (NPML) (Sohn, 2016) is similar to triplet loss which increases the number of data
points used to calculate. Further, it utilizes an efficient batch composition method.

* Proxy-NCA Loss (PNL) (Movshovitz-Attias et al., 2017) is a proxy-based loss, which aims at
selecting proxies that represent the desirable cluster center of those positive or negative samples.

* Facility Location Loss (FLL) (Oh Song et al., 2017) is another outstanding set-based metric loss.
The author takes the global embedding structure into account and proposes a better optimization
strategy on FLL than the greedy algorithm.

In this experiment, We fix the batch size m of all schemes to 100. All the results reported here are
the highest one during 10 experiments. To avoid the influence of other factors, we don’t use VAT on
MORE-RLL here.

The result is presented in Table 4. It shows that these set-based metric losses do capture richer su-
pervision signals than those pair-based methods. Moreover, RLL performs better than FLL, this mainly
owing to the superiority of RLL on the intraclass similarity structure-preserving. At the same time, FLL
also suffers from the excessive pursuit of the similarity metric. We also note that the FLL is much more
time-consuming than RLL and is sensitive to its hyparameters, making it hard to optimize.

Method
FewRel NYT+FB-sup

Prec. Rec. F1 Prec. Rec. F1
MORE-TL 37.2 44.2 40.4 32.3 30.2 31.2
MORE-NPML 40.6 48.6 44.2 32.5 33.6 33.1
MORE-PNL 46.3 55.4 50.4 31.7 33.1 32.4
MORE-FLL 50.0 57.0 53.3 32.7 41.3 36.5

MORE-RLL w/o VAT 56.6 60.3 58.4 36.4 48.9 41.8

Table 4: The results of adopting different metric losses.
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Figure 5: The influence of training batch content on FewRel and NYT+FB-sup. The solid blue line
represents the impact of changing in K while the dashed red line indicates the influence of changing in
C

3.5.3 The Vital Factor for Batch Content
Unlike many other OpenRE methods, the training batch content is a significant part of our metric
learning-based strategy. As mentioned in (Fehervari et al., 2019), almost all metric losses can benefit
from a larger batch size due to the more prosperous signals. However, there are two critical factors for
the batch content in RLL, that is, the number of relation types C and the number of instances K in each
relation type (i.e., m = C ×K, m is the batch size). Though Wang et al. (Wang et al., 2019) has exper-
imented with the impact of batch content on RLL, it is still ambiguous which factor for batch content is
more contributing.

Accordingly, we change the training batch size in a larger range on both datasets to reveal the impact
of C and K more clearly. To be specific, we fix one of these two factors to 10 and range the other from
3 to 13, then plot the results to show each factor’s impact. All scores we report in this paragraph are
averaged from 10 experiments.

As can be seen in Figure 5, we can draw the following conclusions:

• The batch size is a significant hyparameters in our framework. With a larger batch size, the neural
encoder does capture more prosperous supervision signals. However, this improvement will not be
noticeable when the batch size is sufficiently large. Hence, we recommend to take 100 (C = K =
10) as an ideal batch size on both FewRel and NYT+FB-sup.

• The result on FewRel illustrates that K seems to have a greater impact than C, i.e., the dashed red
line rises more rapidly with batch size growth. Meanwhile, the batch content with larger K (the
solid blue line) usually brings more performance improvement. As we have mentioned in 2.2, there
is a vast gap between positive and negative loss present in RLL. Since the FewRel is a human-
labeled corpus, the larger K is, the more high-quality positive supervision signals RLL can bring.
Thus K is a more vital factor when training for these gold-label corpora.

• On the contrary, C plays a vital role when the training dataset is NYT+FB-sup. Unlike FewRel, the
NYT+FB-sup corpus is full of noise, so it is difficult for RLL to generate beneficial positive signals.
Taking another route, increasing the diversity of relationship types can dramatically increase the
negative signals. Though there is still noise present, RLL is more likely to find those informative
and beneficial negative points in it. Hence the neural encoder can have more opportunities to obtain
instructive semantic signals. In this case, a larger C may be a desirable choice.

4 Conclusion

In this paper, we propose a novel supervised learning framework for open-domain relation extraction,
namely MORE-RLL. It aims to make the neural network gain a unified relational representation encoding
ability and handle the open-domain relational instances. We utilize deep metric learning to drive the
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neural model to learn relational representations directly, thereby conducive to downstream clustering
efficiency. Moreover, we set virtual adversarial training to enhance the robustness of the neural encoder.
Our experiments show that MORE-RLL achieves state-of-the-art performance on real-world RE corpora
comparing with previous methods and can build a more desirable semantic space. These all demonstrate
the capability of our scheme on relational representation learning and novel relation detection.
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Étienne Simon, Vincent Guigue, and Benjamin Piwowarski. 2019. Unsupervised Information Extraction: Regu-
larizing Discriminative Approaches with Relation Distribution Losses. In ACL 2019 - 57th Annual Meeting of
the Association for Computational Linguistics, pages 1378–1387, Florence, Italy, July. Association for Compu-
tational Linguistics.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. arXiv preprint arXiv:1906.03158.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013. Reasoning with neural tensor
networks for knowledge base completion. In Advances in neural information processing systems, pages 926–
934.

Kihyuk Sohn. 2016. Improved deep metric learning with multi-class n-pair loss objective. In Advances in neural
information processing systems, pages 1857–1865.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–
1958.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on World Wide Web, pages 697–706.

Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, Romain Garnier, and Neil M Robertson. 2019. Ranked
list loss for deep metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5207–5216.

Joe H Ward Jr. 1963. Hierarchical grouping to optimize an objective function. Journal of the American statistical
association, 58(301):236–244.

Ruidong Wu, Yuan Yao, Xu Han, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, and Maosong Sun. 2019. Open
relation extraction: Relational knowledge transfer from supervised data to unsupervised data. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 219–228.

Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking for academic search via
knowledge graph embedding. In Proceedings of the 26th international conference on world wide web, pages
1271–1279.

Limin Yao, Sebastian Riedel, and Andrew McCallum. 2012. Unsupervised relation discovery with sense disam-
biguation. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 712–720.

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1096-1108, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of COLING 2014, the 25th International Conference on Computa-
tional Linguistics: Technical Papers, pages 2335–2344.

Kai Zhang, Yuan Yao, Ruobing Xie, Xu Han, Zhiyuan Liu, Fen Lin, Leyu Lin, and Maosong Sun. 2021. Open
hierarchical relation extraction. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5682–5693.

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1096-1108, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China


