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Abstract

Pretrained language models have shown suc-
cess in many natural language processing
tasks. Many works explore incorporat-
ing knowledge into language models. In
the biomedical domain, experts have taken
decades of effort on building large-scale
knowledge bases. For example, the Unified
Medical Language System (UMLS) contains
millions of entities with their synonyms and
defines hundreds of relations among entities.
Leveraging this knowledge can benefit a va-
riety of downstream tasks such as named en-
tity recognition and relation extraction. To this
end, we propose KeBioLM, a biomedical pre-
trained language model that explicitly lever-
ages knowledge from the UMLS knowledge
bases. Specifically, we extract entities from
PubMed abstracts and link them to UMLS. We
then train a knowledge-aware language model
that firstly applies a text-only encoding layer
to learn entity representation and applies a
text-entity fusion encoding to aggregate entity
representation. Besides, we add two training
objectives as entity detection and entity link-
ing. Experiments on the named entity recogni-
tion and relation extraction from the BLURB
benchmark demonstrate the effectiveness of
our approach. Further analysis on a collected
probing dataset shows that our model has bet-
ter ability to model medical knowledge.

1 Introduction

Large-scale pretrained language models (PLMs)
are proved to be effective in many natural language
processing (NLP) tasks (Peters et al., 2018; Devlin
et al., 2019). However, there are still many works
that explore multiple strategies to improve the
PLMs. Firstly, in specialized domains (i.e biomedi-
cal domain), many works demonstrate that using in-
domain text (i.e. PubMed and MIMIC for biomedi-
cal domain) can further improve downstream tasks

∗ Work done at Alibaba DAMO Academy.
† Corresponding author.
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Figure 1: An example of the biomedical sentence.
Two entities “glycerin” and “inflammation” are linked
to C0017861 (1,2,3-Propanetriol) and C0011603 (der-
matitis) respectively with a relation triplet (C0017861,
may_prevent, C0011603) in UMLS.

over general-domain PLMs (Lee et al., 2020; Peng
et al., 2019; Gu et al., 2020; Shin et al., 2020; Lewis
et al., 2020; Beltagy et al., 2019; Alsentzer et al.,
2019). Secondly, unlike training language models
(LMs) with unlabeled text, many works explore
training the model with structural knowledge (i.e.
triplets and facts) for better language understand-
ing (Zhang et al., 2019; Peters et al., 2019; Févry
et al., 2020; Wang et al., 2019). In this work, we
propose to combine the above two strategies for a
better Knowledge enhanced Biomedical pretrained
Language Model (KeBioLM).

As an applied discipline that needs a lot of facts
and evidence, the biomedical and clinical fields
have accumulated data and knowledge from a very
early age (Ashburner et al., 2000; Stearns et al.,
2001). One of the most representative work is Uni-
fied Medical Language System (UMLS) (Boden-
reider, 2004) that contains more than 4M entities
with their synonyms and defines over 900 kinds of
relations. Figure 1 shows an example. There are
two entities “glycerin” and “inflammation” that
can be linked to C0017861 (1,2,3-Propanetriol)
and C0011603 (dermatitis) respectively with a
may_prevent relation in UMLS. As the most impor-
tant facts in biomedical text, entities and relations
can provide information for better text understand-
ing (Xu et al., 2018; Yuan et al., 2020).

To this end, we propose to improve biomedical
PLMs with explicit knowledge modeling. Firstly,
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we process the PubMed text to link entities to the
knowledge base. We apply an entity recognition
and linking tool ScispaCy (Neumann et al., 2019)
to annotate 660M entities in 3.5M documents. Sec-
ondly, we implement a knowledge enhanced lan-
guage model based on Févry et al. (2020), which
performs a text-only encoding and a text-entity fu-
sion encoding. Text-only encoding is responsible
for bridging text and entities. Text-entity fusion
encoding fuses information from tokens and knowl-
edge from entities. Finally, two objectives as entity
extraction and linking are added to learn better en-
tity representations. To be noticed, we initialize
the entity embeddings with TransE (Bordes et al.,
2013), which leverages not only entity but also
relation information of the knowledge graph.

We conduct experiments on the named entity
recognition (NER) and relation extraction (RE)
tasks in the BLURB benchmark dataset. Results
show that our KeBioLM outperforms the previous
work with average scores of 87.1 and 81.2 on 5
NER datasets and 3 RE datasets respectively. Fur-
thermore, our KeBioLM also achieves better per-
formance in a probing task that requires models to
fill the masked entity in UMLS triplets.

We summary our contributions as follows1:

• We propose KeBioLM, a biomedical pre-
trained language model that explicitly incor-
porates knowledge from UMLS.

• We conduct experiments on 5 NER datasets
and 3 RE datasets. Results demonstrate that
our KeBioLM achieves the best performance
on both NER and RE tasks.

• We collect a cloze-style probing dataset from
UMLS relation triplets. The probing results
show that our KeBioLM absorbs more knowl-
edge than other biomedical PLMs.

2 Related Work

2.1 Biomedical PLMs

Models like ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) show the effectiveness of the
paradigm of first pre-training an LM on the unla-
beled text then fine-tuning the model on the down-
stream NLP tasks. However, direct application of
the LMs pre-trained on the encyclopedia and web

1Our codes and model can be found at https://
github.com/GanjinZero/KeBioLM.

text usually fails on the biomedical domain, be-
cause of the distinctive terminologies and idioms.

The gap between general and biomedical do-
mains inspires the researchers to propose LMs
specially tailored for the biomedical domain.
BioBERT (Lee et al., 2020) is the most widely
used biomedical PLM which is trained on PubMed
abstracts and PMC articles. It outperforms vanilla
BERT in named entity recognition, relation extrac-
tion, and question answering tasks. Jin et al. (2019)
train BioELMo with PubMed abstracts, and find
features extracted by BioELMo contain entity-type
and relational information. Different training cor-
pora have been used for enhancing performance of
sub-domain tasks. ClinicalBERT (Alsentzer et al.,
2019), BlueBERT (Peng et al., 2019) and bio-lm
(Lewis et al., 2020) utilize clinical notes MIMIC to
improve clinical-related downstream tasks. SciB-
ERT (Beltagy et al., 2019) uses papers from the
biomedical and computer science domain as train-
ing corpora with a new vocabulary. KeBioLM is
trained on PubMed abstracts to adapt to PubMed-
related downstream tasks.

To understand the factors in pretraining biomed-
ical LMs, Gu et al. (2020) study pretraining tech-
niques systematically and propose PubMedBERT
pretrained from scratch with an in-domain vocab-
ulary. Lewis et al. (2020) also find using an in-
domain vocabulary enhances the downstream per-
formances. This inspires us to utilize the in-domain
vocabulary for KeBioLM.

2.2 Knowledge-enhanced LMs

LMs like ELMo and BERT are trained to predict
correlation between tokens, ignoring the meanings
behind them. To capture both the textual and con-
ceptual information, several knowledge-enhanced
PLMs are proposed.

Entities are used for bridging tokens and knowl-
edge graphs. Zhang et al. (2019) align tokens
and entities within sentences, and aggregate to-
ken and entity representations via two multi-head
self-attentions. KnowBert (Peters et al., 2019) and
Entity as Experts (EAE) (Févry et al., 2020) use
the entity linker to perform entity disambiguation
for candidate entity spans and enhance token rep-
resentations using entity embeddings. Inspired by
entity-enhanced PLMs, we follow the model of
EAE to inject biomedical knowledge into KeBi-
oLM by performing entity detection and linking.

Relation triplets provide intrinsic knowledge be-

https://github.com/GanjinZero/KeBioLM
https://github.com/GanjinZero/KeBioLM
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tween entity pairs. KEPLER (Wang et al., 2019)
learns the knowledge embeddings through rela-
tion triplets while pretraining. K-BERT (Liu et al.,
2020) converts input sentences into sentence trees
by relation triplets to infuse knowledge.

In the biomedical domain, He et al. (2020) in-
ject disease knowledge to existing PLMs by pre-
dicting diseases names and aspects on Wikipedia
passages. Michalopoulos et al. (2020) use UMLS
synonyms to supervise masked language modeling.
We propose KeBioLM to infuse various kinds of
biomedical knowledge from UMLS including but
not limited to diseases.

3 Approach

In this paper, we assume to access an entity set
E = {e1, ..., et}. For a sentence x = {x1, ..., xn},
we assume some spans m = (xi, ..., xj) can be
grounded to one or more entities in E . We further
assume the disjuncture of these spans. In this paper,
we use UMLS to set the entity set.

3.1 Model Architecture
To explicitly model both the textual and conceptual
information, we follow Févry et al. (2020) and use
a multi-layer self-attention network to encode both
the text and entities. The model can be viewed as
building the links between text and entities in the
lower layers and fusing the text and entity represen-
tation in the upper layers. The overall architecture
is shown in Figure 2. To be more specific, we set
the PubMedBERT (Gu et al., 2020) as our back-
bone. We split the layers of the backbone into
two groups, performing a text-only encoding and
text-entity fusion encoding respectively.

Text-only encoding. For the first group, which
is closer to the input, we extract the final hidden
states and perform a token-wise classification to
identify if the token is at the beginning, inside, or
outside of a mention (i.e., the BIO scheme). The
probabilities of the B/I/O label {li} are written as:

h1, ...,hn = Transformers0(x1, ..., xn) (1)

p(li | x) = softmax(Wlhi + bl) (2)

After identifying the mention boundary, we main-
tain a functionM(i)→ E ∪ {NIL}, which returns
the entity of the i-th token belongs.2 We collect
the mentions with a sentence x. For a mention
m = (s, t), where s and t represents the starting

2NIL is returned when there is no entity being matched.

and ending indexes of m, we encode it as the con-
catenation of hidden states of the boundary tokens
hm = [hs;ht].

For an entity ej ∈ E in the KG, we denote its en-
tity embedding as ej . For a mention m, we search
the k nearest entities of its projected representa-
tion h′m = Wmhm + bm in the entity embedding
space, obtaining a set of entities E ′. The normal-
ized similarity between h′m and ej is calculated as

aj =
exp(h′m · ej)∑

ek∈E ′ exp(h
′
m · ek)

(3)

The additional entity representation e′m of m is
calculated as a weighted sum of the embeddings
e′m =

∑
ej∈E ′ aj · ej .

Text-entity fusion encoding. After getting the
mentions and entities, we fuse the entity embed-
dings with the text embedding by summation. For
the i-th token, the entity-enhanced embedding is
calculated as:

h∗i =

{
hi + (Wee

′
m + be) , ∃m,M(i) = m,

hi, otherwise.
(4)

M(i) = m represents the i-th token belong to en-
tity em. The sequence of h∗1, ...,h

∗
n is then fed into

the second group of transformer layers to generate
text-entity representations. The final hidden states
hf
i are calculated as:

hf
1 , ...,h

f
n = Transformers1(h∗1, ...,h

∗
n) (5)

3.2 Pretraining Tasks
We have three pretraining tasks for KeBioLM.
Masked language modeling is a cloze-style task
for predicting masked tokens. Since the entities are
the main focus of our model, we add two tasks as
entity detection and linking respectively following
Févry et al. (2020). Finally, we jointly minimize
the following loss:

L = LMLM + LED + LEL (6)

Masked Language Modeling Like BERT and
other LMs, we predict the masked tokens {xi} in
inputs using the final hidden representations {hf

i }.
The loss LMLM is calculated based on the cross-
entropy of masked and predicted tokens:

pM (xi | x) = softmax(Wmhf
i + bm) (7)

LMLM =
∑
− log pM (xi | x) (8)
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Figure 2: The overall architecture of KeBioLM.

Whole word masking is successful in training
masked language models (Devlin et al., 2019; Cui
et al., 2019). In the biomedical domain, entities are
the semantic units of texts. Therefore, we extend
this technique to whole entity masking. We mask
all tokens within a word or entity span. KeBioLM
replaces 12% of tokens to [MASK] and 1.5% to-
kens to random tokens. This is more difficult for
models to recover tokens, which leads to learning
better entity representations.

Entity Detection Entity detection is an impor-
tant task in biomedical NLP to link the tokens to
entities. Thus, We add an entity detection loss by
calculating the cross-entropy for BIO labels:

LED =
n∑

i=1

− log p(li | x) (9)

Entity Linking One medical entity in different
names linking to the same index permits the model
to learn better text-entity representations. To link
mention {m} in texts with entities {e} in entity
set E , we calculate the cross-entropy loss using
similarities between {h′m} and entities in E :

LEL =
∑
− log

exp(h′m · e)∑
ej∈E exp(h

′
m · ej)

(10)

3.3 Data Creation
Given a sentence S from PubMed content, we need
to recognize entities and link them to the UMLS

knowledge base. We use ScispaCy (Neumann et al.,
2019), a robust biomedical NER and entity linking
model, to annotate the sentence. Unlike previous
work (Vashishth et al., 2020) that only retains rec-
ognized entities in a subset of Medical Subject
Headings (MeSH) (Lipscomb, 2000), we relax the
restriction to annotate all entities to UMLS 2020
AA release 3 whose linking scores are higher than
a threshold of 0.85.

4 Experiments

In this section, we first introduce the pretraining de-
tails of KeBioLM. Then we introduce the BLURB
datasets for evaluating our approach. Finally, we
introduce a probing dataset based on UMLS triplets
for evaluating knowledge modeling.

4.1 Pretraining Details

We use ScispaCy to acquire 477K CUIs and 660M
entities among 3.5M PubMed documents4 from
PubMedDS dataset (Vashishth et al., 2020) as train-
ing corpora.

We initialize entity embeddings by TransE (Bor-
des et al., 2013) which learns embeddings from re-
lation triplets. Relation triplets come from UMLS

3https://www.nlm.nih.gov/research/
umls/licensedcontent/umlsarchives04.
html#2020AA

4The count of documents in PubMedDS is based on
https://arxiv.org/pdf/2005.00460v1.pdf.

https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html#2020AA
https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html#2020AA
https://www.nlm.nih.gov/research/umls/licensedcontent/umlsarchives04.html#2020AA
https://arxiv.org/pdf/2005.00460v1.pdf
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#Train #Dev #Test #Ments
#Ments
(UMLS)

#Ments
(KeBioLM)

BC5chem 5,203 5,347 5,385 15,935 10,373 8,993
BC5dis 4,182 4,244 4,424 12,850 8,846 3,878
NCBI 5,137 787 960 6,884 1,985 1,091
BC2GM 15,197 3,061 6,325 24,583 2,808 2,423
JNLPBA 46,750 4,551 8,662 59,963 6,099 5,233
ChemProt 18,035 11,268 15,745 39,022 13,106 10,772
DDI 25,296 2,496 5,716 15,738 10,429 9,212
GAD 4,261 535 534 - - -

Table 1: The training instances (mentions for NER tasks and sentences with two entities for RE tasks) and the
mention counts of NER and RE datasets preprocessed in BLURB benchmark respectively. The mention counts
overlapping with UMLS 2020 AA release and KeBioLM are also listed. For the GAD dataset, annotated mentions
do not appear in the BLURB preprocessed version.

2020 AA release. We train TransE with the L2-
norm distance function and set embedding dim to
100. Adam (Kingma and Ba, 2014) is used as the
optimizer with a learning rate of 1e-3, batch size
of 2048, and train epoch of 30. Entity embeddings
add 45.5M parameters to KeBioLM.

The parameters of transformers in KeBioLM are
initialized from the checkpoint of PubMedBERT.
We also use the vocabulary from PubMedBERT.
AdamW (Loshchilov and Hutter, 2017) is used
as the optimizer for KeBioLM with 10,000 steps
warmup and linear decay. We use an 8-layer trans-
former for text-only encoding and a 4-layer trans-
former for text-entity fusion encoding. We set the
learning rate to 5e-5, batch size to 512, max se-
quence length to 512, and training epochs to 2.
For each input sequence, we limit the max entities
count to 50 and the excessive entities will be trun-
cated. To generate entity representation e′m, the
most k = 100 similar entities are used. We train
our model with 8 NVIDIA 16GB V100 GPUs.

4.2 Datasets

In this section, we evaluate KeBioLM on NER
tasks and RE tasks of the BLURB benchmark5

(Gu et al., 2020). For all tasks, we use the pre-
processed version from BLURB. We measure the
NER and RE datasets in terms of F1-score. Table 1
shows the counts of training instances in BLURB
datasets (i.e., annotated mentions for NER datasets
and sentences with two mentions for RE datasets).
We also report the count of annotated mentions
overlapping with the UMLS 2020 release and Ke-
BioLM in each dataset. The percentage of men-

5https://microsoft.github.io/BLURB/

tions overlapping with KeBioLM ranges from 8.7%
(NCBI-disease) to 58.5% (DDI) which indicates
that KeBioLM learns entity knowledge related to
downstream tasks.

4.2.1 Named Entity Recognition
BC5-chem & BC5-disease (Li et al., 2016) con-
tain 1500 PubMed abstracts for extracting chemical
and disease entities respectively.

NCBI-disease (Doğan et al., 2014) includes 793
PubMed abstracts to detect disease entities.

BC2GM (Smith et al., 2008) contains 20K
PubMed sentences to extract gene entities.

JNLPBA (Collier and Kim, 2004) includes
2,000 PubMed abstracts to identify molecular
biology-related entities. We ignore entity types
in JNLPBA following Gu et al. (2020).

4.2.2 Relation Extraction
ChemProt (Krallinger et al., 2017) classifies the
relation between chemicals and proteins within sen-
tences from PubMed abstracts. Sentences are clas-
sified into 6 classes including a negative class.

DDI (Herrero-Zazo et al., 2013) is a RE dataset
with sentence-level drug-drug relation on PubMed
abstracts. There are four classes for relation: ad-
vice, effect, mechanism, and false.

GAD (Bravo et al., 2015) is a gene-disease re-
lation binary classification dataset collected from
PubMed sentences.

4.3 Fine-tuning Details
NER We follow Gu et al. (2020) to formulate
NER tasks as sequential labeling tasks with the

https://microsoft.github.io/BLURB/
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Bio-
BERT

Sci-
BERT

Clinical-
BERT

Blue-
BERT

disease-
BERT

bio-
lm†

PubMed-
BERT

KeBio-
LM

BC5chem 92.9 92.5 90.8 91.2 - 92.9 93.3 93.3±0.2
BC5dis 84.7 84.5 83.0 83.7 86.5 83.8 85.6 86.1±0.3∗
NCBI 89.1 88.1 88.3 88.0 87.1 87.7 87.8 89.1±0.3∗
BC2GM 83.8 83.4 81.7 81.9 - 87.0 84.5 85.1±1.6
JNLPBA 79.4 79.5 78.6 78.7 - 80.6 80.1 82.0±0.2∗
NER 86.0 85.6 84.5 84.7 - 86.4 86.3 87.1±0.3∗
ChemProt 76.1 75.2 72.0 71.5 - 75.4 77.2 77.5±0.3∗
DDI 80.9 81.1 78.2 77.8 - 81.0 82.4 81.9±0.8
GAD 80.9 80.9 78.4 77.2 - 82.2 82.3 84.3±1.0∗
RE 79.3 79.1 76.2 75.5 - 79.5 80.6 81.2±0.5∗

Table 2: F1-scores on NER and RE tasks in BLURB benchmark. Standard deviations of KeBioLM are reported
across five runs. Results of diseaseBERT-biobert and bio-lm come from their corresponded papers. Others are
copied from BLURB. * indicates that p ≤ 0.05 of one-sample t-test which compares whether the mean perfor-
mance of KeBioLM is better than PubMedBERT. † Bio-lm applies different metrics with BLURB (micro F1 v.s.
macro F1). Thus, we just list its results but do not directly compare with them.

BIO tagging scheme and ignore the entity types in
NER datasets. We classify labels of tokens by a
linear layer on top of the hidden representations.

RE We replace the entity mentions in RE
datasets with entity indicators like @DISEASE$ or
@GENE$ to avoid models classifying relations by
memorizing entity names. We add these entity indi-
cators into the vocabulary of LMs. We concatenate
the representation of two concerned entities and
feed it into a linear layer for relation classification.

Parameters We adopt AdamW as the optimizer
with a 10% steps linear warmup and a linear de-
cay. We search the hyperparameters of learning
rate among 1e-5, 3e-5, and 5e-5. We fine-tune the
model for 60 epochs. We evaluate the model at the
end of each epoch and choose the best model ac-
cording to the evaluation score on the development
set. We set batch size as 16 when fine-tuning. The
maximal input lengths are 512 for all NER datasets.
We truncate ChemProt and DDI to 256 tokens, and
GAD to 128 tokens. To perform a fair comparison,
we fine-tune our model with 5 different seeds and
report the average score.

4.4 Results

We compare KeBioLM with following base-size
biomedical PLMs on the above-mentioned datasets:
BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019), ClinicalBERT (Alsentzer et al., 2019),
BlueBERT (Peng et al., 2019), bio-lm (Lewis et al.,
2020), diseaseBERT (He et al., 2020), and Pub-

MedBERT (Gu et al., 2020) 6.
Table 2 shows the main results on NER and

RE datasets of the BLURB benchmark. In addi-
tion, we report the average scores for NER and
RE tasks respectively. KeBioLM achieves state-of-
the-art performance for NER and RE tasks. Com-
pared with the strong baseline BioBERT, KeBi-
oLM shows stable improvements in NER and RE
datasets (+1.1 in NER, +1.9 in RE). Compared
with our baseline model PubMedBERT, KeBioLM
performs significantly better in BC5dis, NCBI,
JNLPBA, ChemProt, and GAD (p ≤ 0.05 based
on one-sample t-test) and achieves better average
scores (+0.8 in NER, +0.6 in RE). DiseaseBERT is
a model carefully designed for predicting disease
names and aspects, which leads to better perfor-
mance in the BC5dis dataset (+0.4). They only re-
port the promising results in disease-related tasks,
however, our model obtains consistent promising
performances across all kinds of biomedical tasks.
In the BC2GM dataset, KeBioLM outperforms our
baseline model PubMedBERT and other PLMs
except for bio-lm, and the standard deviation of
the BC2GM task is evidently larger than other
tasks. Another exception is the DDI dataset, we ob-
serve a slight performance degradation compared
to PubMedBERT (-0.5). The average performances
demonstrate that fusing entity knowledge into the
LM boosts the performances across the board.

6We use BioBERT v1.1, SciBERT-scivocab-uncased, Bio-
ClinicalBERT, BlueBERT-pubmed-mimic, bio-lm(RoBERTa-
base-PM-M3-Voc), diseaseBERT-biobert and PubMedBERT-
abstract versions for comparison.



186

KeBio-
LM -wem +rand +frz

BC5chem 93.3 92.8 92.8 92.3
BC5dis 86.1 85.9 85.5 85.5
NCBI 89.1 88.4 88.8 88.3
BC2GM 85.1 84.5 84.5 85.7
JNLPBA 82.0 81.5 81.9 81.8
NER 87.1 86.6 86.7 86.7
ChemProt 77.5 77.3 76.3 76.8
DDI 81.9 80.6 81.4 80.7
GAD 84.3 83.1 82.3 82.8
RE 81.2 80.3 80.0 80.1

Table 3: Ablation studies for KeBioLM architecture on
the BLURB benchmark. We use -wem, +rand and +frz
to represent pretraining setting (a), (b) and (c), respec-
tively.

4.5 Ablation Test

We conduct ablation tests to validate the effective-
ness of each part in KeBioLM. We pretrain the
model with the following settings and reuse the
same parameters described above: (a) Remove
whole entity masking and retain whole word mask-
ing while pretraining (-wem); (b) Initialize entity
embeddings randomly (+rand); (c) Initialize en-
tity embeddings by TransE and freeze the entity
embeddings while pretraining (+frz).

In Table 3, we observe the following results.
Firstly, comparing KeBioLM with setting (a) shows
that whole entity masking boosting the perfor-
mances consistently in all datasets (+0.5 in NER,
+0.9 in RE). Secondly, comparing KeBioLM with
setting (b) indicates initializing the entity embed-
dings randomly degrades performances in NER
tasks and RE tasks (-0.4 in NER, -1.2 in RE). En-
tity embeddings initialized by TransE utilize rela-
tion knowledge in UMLS and enhance the results.
Thirdly, freezing the entity embeddings in setting
(c) reduces the performances on all datasets com-
pared to KeBioLM except BC2GM (-0.4 in NER,
-1.1 in RE). This indicates that updating entity em-
bedding while pretraining helps KeBioLM to have
better text-entity representations, and this leads to
better downstream performances.

To evaluate how the count of transformer layers
affects our model, we pretrain KeBioLM with the
different number of layers. For the convenience of
notation, denote l0 is the layer count of text-only
encoding and l1 is the layer count of text-entity fu-
sion encoding. We have the following settings: (i)

l0 = 8
l1 = 4

l0 = 4
l1 = 8

l0 = 12
l1 = 0

BC5chem 93.3 93.1 93.2
BC5dis 86.1 85.7 86.0
NCBI 89.1 88.5 88.4
BC2GM 85.1 84.8 86.8
JNLPBA 82.0 81.7 78.8
NER 87.1 86.8 86.6
ChemProt 77.5 77.7 77.6
DDI 81.9 81.0 80.1
GAD 84.3 82.9 83.2
RE 81.2 80.5 80.3

Table 4: Ablation studies for transformer layers count
in KeBioLM on the BLURB benchmark.

l0 = 8, l1 = 4 (our base model), (ii)l0 = 4, l1 = 8,
(iii)l0 = 12, l1 = 0 (without the second group of
transformer layers, {hi} are used for token repre-
sentations). Results are shown in Table 4. Our base
model (i) has better performance than setting (ii)
(+0.3 in NER, +0.7 in RE). Training setting (iii) is
equal to a traditional BERT model with additional
entity extraction and entity linking tasks. The com-
parison with (i) and (iii) indicates that text-entity
representations have better performances than text-
only representations (+0.5 in NER, +0.9 in RE) in
the same amount of parameters.

4.6 UMLS Knowledge Probing
We establish a probing dataset based on UMLS
triplets to evaluate how LMs understand medical
knowledge via pretraining.

4.6.1 Probing Dataset
UMLS triplets are stored in the form of (s, r, o)
where s and o are CUIs in UMLS and r is a relation
type. We generate two queries for one triplet based
on names of CUIs and relation type:

• Q1: [CLS] s r [MASK] [SEP]

• Q2: [CLS] [MASK] r o [SEP]

For example, we sample a triplet and terms of
corresponded entities (C0048038:apraclonidine,
may_prevent, C0028840:ocular hypertension). We
remove the underscores of relation names and gen-
erate two queries (we omit [CLS] and [SEP]):

• Q1: apraclonidine may prevent [MASK].

• Q2: [MASK] may prevent ocular hyperten-
sion.
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#Queries #Relations #Avg. CUIs
143,771 922 2.39

Table 5: The number of generated UMLS relation prob-
ing dataset.

For relation names end with “of”, “as” , and “by”,
we add “is” in front of relation names. For in-
stance, translation_of is converted to is translation
of, classified_as is converted to is classified as, and
used_by is converted to is used by. Commonly,
different relation triplets can generate same query
since triplets may overlap (s, r,−) or (−, r, o) with
each other. We deduplicate all repeat queries and
randomly choose at most 200 queries from all rela-
tion types in UMLS. After deduplication, one query
can have multiple CUIs as answers. For example:

• Q: [MASK] may treat essential tremor.

• A1: C0282321: propranolol hydrochloride

• A2: C0033497: propranolol

We summarize our generated UMLS relation prob-
ing dataset in Table 5. Unlike LAMA (Petroni et al.,
2019) and X-FACTR (Jiang et al., 2020) that con-
tain less than 50 kinds of relation, our probing task
is a more difficult task requiring a model to decode
entities over 900 kinds of relations.

4.6.2 Multi [MASK] Decoding
To probe PLMs using generated queries, we re-
quire models to recover the masked tokens. Since
biomedical entities are usually formed by multiple
words and each word can be tokenized into several
wordpieces (Wu et al., 2016), models have to re-
cover multiple [MASK] tokens. We limit the max
length of one entity is 10 for decoding.

We decode the multi [MASK] tokens using the
confidence-based method described in Jiang et al.
(2020). We also implement a beam search for de-
coding. Unlike beam search in machine translation
that decodes tokens from left to right, we decode
tokens in an arbitrary order. For each step, we cal-
culate the probabilities of all undecoded masked
tokens based on original input and decoded tokens.
We predict only one token within undecoded to-
kens with the top B = 5 accumulated log probabil-
ities. Decoding will be accomplished after count
of [MASK] times iterations and we keep the best
B = 5 decoding results. We skip the refinement
stage since it is time-consuming and does not sig-
nificantly improve the results.

Type 1 Type 2 Overall
SciBERT 13.92 1.01 2.75
ClinicalBERT 4.19 0.33 0.79
BlueBERT 4.67 0.39 1.02
KeBioLM 14.01 1.48 3.26

Table 6: Results of the probing test in terms of Re-
call@5.

4.6.3 Evaluation Metric
Since multiple correct CUIs exist for one query,
we consider a model answering the query correctly
if any decoded tokens in any [MASK] length hit
any of the correct CUIs. We evaluate the probing
results by the relation-level macro-recall@5.

4.6.4 Probing Results
We classify probing queries into two types based on
their difficulties. Type 1: answers within queries
(24,260 queries); Type 2: answers not in queries
(119,511 queries). Here are examples of Type 1
(Q1 and A1) and Type 2 (Q2 and A2) queries:

• Q1: [MASK] has form tacrolimus monohy-
drate.

• A1: C0085149: tacrolimus

• Q2: cosyntropin may diagnose [MASK].

• A2: C0001614: adrenal cortex disease

Table 6 summarizes the probing results of differ-
ent PLMs according to query types. Checkpoints of
BioBERT and PubMedBERT miss a cls/predictions
layer and cannot perform the probe directly. Com-
pared to other PLMs, KeBioLM achieves the best
scores in both two types and obviously outperforms
BlueBERT and ClincalBERT with a large margin,
which indicates that KeBioLM learns more medical
knowledge.

Table 7 lists some probing examples. SciBERT
can decode medical entities for [MASK] tokens
which may be unrelated. KeBioLM decodes re-
lation correctly and is aware of the synonyms of
hepatic. KeBioLM states that Vaccination may
prevent tetanus which is a correct but not precise
statement.

5 Conclusions

In this paper, we propose to improve biomedical
pretrained language models with knowledge. We
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Query & Answer CUI SciBERT KeBioLM
omalizumab may treat [MASK] migraine asthma

C0004096: asthma the disease severe allergic asthma
phentolamine may diagnose [MASK] depression pheochromocytoma

C0031511: phaeochromocytoma the serotonin syndrome renovascular hypertension
[MASK] is noun form of hepatic it liver

C0023884: liver the form of hepatic hepatic only
[MASK] may prevent tetanus it vaccination

C0305062: tetanus toxoid bcg vaccination prophylactic tetanus vaccination

Table 7: Probing examples of UMLS relation triplets. Queries and answer CUIs are listed. We only list one
correct CUI for each query. For each model, one [MASK] token decoding result and an example of multi [MASK]
decoding result are displayed. Bold text represents a term of the answer CUI.

propose KeBioLM which applies text-only encod-
ing and text-entity fusion encoding and has two
additional entity-related pretraining tasks: entity
detection and entity linking. Extensive experiments
have shown that KeBioLM outperforms other
PLMs on NER and RE datasets of the BLURB
benchmark. We further probe biomedical PLMs
by querying UMLS relation triplets, which indi-
cates KeBioLM absorbs more biomedical knowl-
edge than others. In this work, we only leverage
the relation information in TransE to initialize the
entity embeddings. We will further investigate how
to directly incorporate the relation information into
LMs in the future.
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