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Abstract

Natural reading orders of words are crucial
for information extraction from form-like doc-
uments. Despite recent advances in Graph
Convolutional Networks (GCNs) on model-
ing spatial layout patterns of documents, they
have limited ability to capture reading orders
of given word-level node representations in a
graph. We propose Reading Order Equivari-
ant Positional Encoding (ROPE), a new po-
sitional encoding technique designed to ap-
prehend the sequential presentation of words
in documents. ROPE generates unique read-
ing order codes for neighboring words rel-
ative to the target word given a word-level
graph connectivity. We study two fundamen-
tal document entity extraction tasks including
word labeling and word grouping on the pub-
lic FUNSD dataset and a large-scale payment
dataset. We show that ROPE consistently im-
proves existing GCNs with a margin up to
8.4% F1-score.

1 Introduction

Key information extraction from form-like docu-
ments is one of the fundamental tasks of document
understanding that has many real-world applica-
tions. However, the major challenge of solving the
task lies in modeling various template layouts and
formats of documents. For example, a single doc-
ument may contain multiple columns, tables, and
non-aligned blocks of texts (e.g. Figure 1).

The task has been studied from rule-based mod-
els (Lebourgeois et al., 1992) to learning-based
approaches (Palm et al., 2017; Tata et al., 2021).
Inspired by the success of sequence tagging in
NLP (Sutskever et al., 2014; Vaswani et al., 2017;
Devlin et al., 2019), a natural extension is apply-
ing these methods on linearly serialized 2D docu-
ments (Palm et al., 2017; Aggarwal et al., 2020).

∗ Work done while an intern at Google Research.

Figure 1: Illustration of the proposed Reading Order
Equivariant Positional Encoding (ROPE). Top: a por-
tion of a form document with the original word reading
order. Bottom: given a graph connectivity, ROPE gen-
erates equivariant reading order codes with respect to
the target word (in this case the date “3/18/97”).

Nevertheless, scattered columns, tables, and text
blocks in documents make the serialization ex-
tremely difficult, largely limiting the performance
of sequence models. Katti et al. (2018); Zhao et al.
(2019) explore to directly work on 2D document
space using grid-like convolutional models to better
preserve spatial context during learning, but the per-
formance is restrictive to the resolution of the grids.
Recently, Qian et al. (2019); Davis et al. (2019);
Liu et al. (2019) propose to represent documents
using graphs, where nodes define word tokens and
edges describe the spatial patterns of words. Yu
et al. (2020) show state-of-the-art performance of
Graph Convolutional Networks (GCNs) (Duvenaud
et al., 2015) on document understanding.

Although GCNs capture the relative spatial re-
lationships between words through edges, the spe-
cific word ordering information is lost during the
graph aggregation operation, in the similar way to
the average pooling in Convolutional Neural Net-
works (CNNs). However, we believe reading orders
are strong prior to comprehending languages. In
this work, we propose a simple yet effective Read-
ing Order Equivariant Positional Encoding (ROPE)
that embeds the relative reading order context into
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graphs, bridging the gap between sequence and
graph models for robust document understanding.
Specifically, for every word in a constructed graph,
ROPE generates unique reading order codes for
its neighboring words based on the graph connec-
tivity. The codes are then fed into GCNs with
self-attention aggregation functions for effective
relative reading order encoding. We study two fun-
damental entity extraction tasks including word
labeling and word grouping on the public FUNSD
dataset and a large-scale payment dataset. We ob-
serve that by explicitly encoding relative reading or-
ders, ROPE brings the same or higher performance
improvement compared to spatial relationship fea-
tures in existing GCNs in parallel.

2 Other Related Work

Attention models show state-of-the-art results in
graph learning (Veličković et al., 2018) and NLP
benchmarks (Vaswani et al., 2017). As attention
models with positional encodings are proven to be
universal approximators of sequence-to-sequence
functions (Yun et al., 2020), encoding positions
or ordering is an important research topic. For se-
quence, learned positional embeddings (Gehring
et al., 2017; Devlin et al., 2019; Shaw et al., 2018),
sinusoidal functions and its extensions (Liu et al.,
2020) have been studied. Beyond that, positional
encodings are explored in graphs (You et al., 2019),
2D images (Parmar et al., 2018) and 3D struc-
tures (Fuchs et al., 2020). Lastly, graph modeling
is also applied to other document understanding
tasks, including document classification (Yao et al.,
2019) and summerization (Yasunaga et al., 2017).

3 Method

We follow recent advances in using GCNs for doc-
ument information extraction that relax any serial-
ization assumptions by sequence modeling. GCNs
take inputs (word tokens in this case) of arbitrary
numbers, sizes, shapes and locations, and encode
the underlying spatial layout patterns of documents
through direct message passing and gradient up-
dates between input embedding in the 2D space.

Node definition. Given a document D with N
tokens denoted by T = {t1, t2, ..tN}, we refer ti
to the i-th token in a linearly serialized text se-
quence returned by the Optical Character Recogni-
tion (OCR) engine. The OCR engine generates the
bounding box sizes and locations for all tokens, as

Figure 2: Sample of a β-skeleton graph of a document
of FUNSD.

well as the text within each box. We define node
input representation for all tokens T as vertices
V = {v1, v2, ..vN}, where vi concatenates quan-
tifiable attributes available for ti. In our design, we
use two common input modalities: (a) word em-
beddings from an off-the-shelf pre-trained BERT
model (Devlin et al., 2019), and (b) spatial em-
beddings from normalized bounding box heights,
widths, and Cartesian coordinate values of four
corners.

Edge definition. While the vertices V represent
tokens in a document, the edges characterize the
relationship between the vertices. Precisely, we
define directional edges for a set of edges E, where
each edge eij connects two vertices vi and vj , con-
catenating quantifiable edge attributes. In our de-
sign, we use two input modalities given an edge
eij connecting two vertices: (a) spatial embeddings
from horizontal and vertical normalized relative
distances between centers, top left corners and bot-
tom right corners of the bounding boxes. It also
contains height and width aspect ratios of vi, vj ,
and relative height and width aspect ratios between
vi and vj . (b) Visual embeddings that utilizes Im-
ageNet pre-trained MobileNetV3 (Howard et al.,
2019) to extract visual representations of union
bounding boxes containing vi and vj . The visual
embedding in edge formation picks up visual cues
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Figure 3: Implementation of the proposed Reading Order Equivariant Positional Encoding (ROPE). Given a graph
connectivity, ROPE iterates through the neighboring word vertices in the original reading order and assigns new
ROPE codes (red numbers) to the neighbors, starting from zero. Note that the proposed ROPE codes remain
unchanged if the neighbors and the target shift equally in the document with the same relative reading order,
therefore being equivariant.

such as colors, fonts, separating symbols or lines
between two token bounding boxes (through their
union bounding box). We refer to the spatial em-
bedding in (a) as the edge geometric (EdgeGeo)
feature used in the experimental section.

Graph construction. Our implementation is
based on the β-skeleton graph (Kirkpatrick and
Radke, 1985) with β = 1 for graph construction.
By using the “ball-of-sight” strategy, β-skeleton
graph offers high connectivity between word ver-
tices for necessary message passing while being
much sparser than fully-connected graphs for effi-
cient forward and backward computations (Wang
et al., 2021). A β-skeleton graph example can be
found in Figure 2, and more can be found in Fig-
ure 5 in the Appendix.

Aggregation function. Inspired by the Graph At-
tention Networks (Veličković et al., 2018) and the
Transformers (Vaswani et al., 2017), we use multi-
head self-attention module as our GCN aggregation
(pooling) function. It calculates the importance of
individual message coming from its neighbors to
generate the new aggregated output.

3.1 Reading Order Equivariant Positional
Encoding (ROPE)

Positional encoding (Gehring et al., 2017) in se-
quence models is with an assumption that the input
is perfectly serialized. However, as illustrated in
Figure 1, form-like documents often contain multi-
ple columns or sections. A simple left-to-right and
top-to-bottom serialization commonly provided by
OCR engines does not provide accurate sequential
presentation of words – two consecutive words in
the same sentence might have drastically different
reading order indexes by naive serialization.

Instead of assigning absolute reading order in-
dexes for the entire document at the beginning, we

propose to encode the relative reading order con-
text of neighboring words w.r.t. the target word
based on the given graph connectivity. Figure 3
demonstrates the process of the proposed method:
ROPE iterates through the neighboring word ver-
tices in the original reading order and assigns new
ROPE codes p ∈ N (red numbers) to the neighbors,
starting from zero. The generated codes are then
appended to the corresponding incoming messages
during graph message passing. Hence, ROPE pro-
vides a relative reading order context of the neigh-
borhood for order-aware self-attention pooling.

Note that the generated ROPE codes remain
unchanged if the neighbors and the target shift
equally in the document with the same relative
order, therefore being equivariant. Additionally,
ROPE provides robust sequential output that is con-
sistent even when the neighborhood crosses multi-
ple columns or sections in a document.

Finally, we also explore sinusoidal encoding ma-
trix (Vaswani et al., 2017) besides the index-based
encoding. Our ablation study in Section 4 shows
that using both results in the best performance.

4 Experiments

We evaluate how reading order impacts overall per-
formance of graph-based information extraction
from form-like documents. We adopt two form un-
derstanding tasks as Jaume et al. (2019), including
word labeling and word grouping. Word labeling is
the task of assigning each word a label from a set of
predefined entity categories, realized by node clas-
sification. Word grouping is the task of aggregating
words that belong to the same entity, realized by
edge classification. These two fundamental entity
extraction tasks do not rely on perfect entity word
groupings provided by the dataset and therefore
help decouple the modeling capability provided by
the proposed ROPE in practice. These two tasks
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also effectively demonstrate the quality of the node
embedding and edge embedding of the proposed
graph architecture and decouple any performance
gain from sophisticated Conditional Random Field
(CRF) decoders often used on top of the model.

4.1 Datasets
Payment. We follow Majumder et al. (2020) to
prepare a large-scale payment document collection
that consists of around 18K single-page payments.
The data come from different vendors with differ-
ent layout templates. For both word labeling and
word grouping experiments, we use a 80-20 split
of the corpus as the training and test sets.

We use a public OCR service1 to extract words
from the payment documents. The service gener-
ates the text of each word with their corresponding
2D bounding box. The word boxes are roughly
arranged in an order from left to right and from
top to bottom. We then ask human annotators to
label the words with 13 semantic entities. Each
entity ground truth is described by an entity type
and a list of words generated by the OCR engine,
resulting in over 3M word-level annotations. La-
belers are instructed to label all instances of a field
in a document, therefore our GCNs are trained to
predict all instances of a field as well.

FUNSD. FUNSD (Jaume et al., 2019) is a public
dataset for form understanding in noisy scanned
documents, containing a collection of research,
marketing, and advertising documents that vary
widely in their structure and appearance. The
dataset consists of 199 annotated forms with 9,707
entities and 31,485 word-level annotations for 4 en-
tity types: header, question, answer, and other. For
both word labeling and word grouping experiments,
we use the official 75-25 split for the training and
test sets.

4.2 Experimental Setup
All GCN variants used in the experiment have the
same architecture: The node update function is a
2-layer Multi-Layer Perceptron (MLP) with 128
hidden nodes. The aggregation function uses a
3-layer multi-head self-attention pooling with 4
heads and 32 as the head size. The number of hops
in the GCN is set to 7 for payment dataset and
2 for FUNSD dataset due to the complexity and
scale of the former. We use cross-entropy loss for
both multi-class word labeling and binary word

1cloud.google.com/vision

Types of Word Word
Positional Encoding Labeling Grouping

(ours)
EdgeGeo ROPE F1 P R F1

Pa
ym

en
t 60.80 83.64 83.97 83.80

X 66.09 84.96 84.93 84.94
X 68.17 84.92 86.86 85.88

X X 74.55 86.75 86.53 86.64

FU
N

SD

50.86 82.09 92.21 86.86
X 53.16 87.56 87.17 87.37

X 51.78 88.90 89.67 89.28
X X 57.22 88.64 90.03 89.33

Table 1: Different positional encodings for GCNs on
information extraction tasks. We observe that the read-
ing order encoding (ROPE) is equally or more impor-
tant compared to edge geometric feature (EdgeGeo).

ROPE Word Word
Encoding Function Labeling Grouping
Index Sinusoidal F1 P R F1

Pa
ym

en
t 66.09 84.96 84.93 84.94

X 72.41 87.78 85.31 86.53
X 70.94 88.49 83.00 85.66

X X 74.55 86.75 86.53 86.64
FU

N
SD

53.16 87.56 87.17 87.37
X 55.48 85.95 92.15 88.94

X 54.14 88.72 89.51 89.12
X X 57.22 88.64 90.03 89.33

Table 2: Ablation of positional encoding function used
in the proposed ROPE. We observe that either index or
sine encoding works better than no positional encoding.
Combined works the best.

grouping tasks. We train the models from scratch
using Adam optimizer with the batch size of 1.
The learning rate is set to 0.0001 with warm-up
proportion of 0.01. The training is conducted on 8
Tesla P100 GPUs for approximately 1 day on the
largest corpus.

4.3 Results

We train the GCNs from scratch on all datasets. For
word labeling we use multi-class node classifica-
tion F1-scores as the metric and for word grouping
we use binary edge classification F1-scores as the
metric with the corresponding precision and recall
values.

Importance of reading order. Positional encod-
ing mechanisms are the key components to exploit-
ing layout patterns of words – Answer entities are
usually next to or below the Question entities.
Existing GCN approaches rely on edge geometric
(EdgeGeo) features to capture such spatial rela-
tionships between words in 2D space. Here we
evaluate the importance of the proposed reading
order encoding ROPE with various combinations
of EdgeGeo over the baseline GCN (Qian et al.,
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Figure 4: Sensitivity of ROPE to OCR reading order on
Payment. The proposed ROPE codes remain the same
if the connected neighboring words and target word
shift equally in the document.

2019) as summarized in Table 1. Without any posi-
tional encoding, word labeling F1 drops by 13.75
points and word grouping F1 drops by 2.84 points
on payment dataset. Then, we pass ROPE to incom-
ing messages and find that this reduces the drop to
6.38 points on word labeling and 0.76 points on
word grouping. Similar trend can be observed on
FUNSD as well. Surprisingly, ROPE reduces per-
formance drop more effectively than EdgeGeo on
the larger payment dataset. Given these ablations,
we conclude that reading order information is at
least the same or more important than geometric
features, and they bring orthogonal improvements
to the overall performance.

Reading order encoding function. In practice,
each target word usually has less than 8 neighbor-
ing words given a constructed β-skeleton graph.
Therefore, a natural approach to assigning relative
reading orders is to simply use the ROPE encoded
indexes. In Table 2 we observe that simple index en-
coding immediately improves GCN without ROPE
by 6.32 points on word labeling and 1.59 points
on word grouping using payment corpus. Next
we explore the popular sinusoidal function (with
3 base frequencies) for reading order encoding. It
improves GCN without ROPE by 4.85 points on
word labeling and 0.72 points on word grouping.
Interestingly, sine function provides on par perfor-
mance but does not outperform index encoding.
The reason might be because the β-skeleton graph
does not generate an extremely large number of
neighbors, so simple index encoding is sufficient.

Sensitivity to OCR reading order. We investi-
gate the robustness of ROPE to the quality of the
input reading order. We shuffle the reading order
provided by the OCR engine with a varying percent-
age of words before feeding into ROPE. Figure 4
exhibits the performance. For both word labeling
and word grouping tasks, ROPE provides perfor-
mance improvement up to less than 30% word or-

der shuffling on the large payment corpus. With
30% or more word order shuffled, we observe less
performance degradation on the word labeling, sug-
gesting that the word grouping task is more sensi-
tive to the original OCR reading order.

5 Conclusion

We present a simple and intuitive reading order
encoding method ROPE that is equivariant to rela-
tive reading order shifting. It embeds the effective
positional encoding from sequence models while
leveraging the existing spatial layout modeling ca-
pability of graphs. We foresee the proposed ROPE
can be immediately applicable to other document
understanding tasks.
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Figure 5: β-skeleton examples of documents of FUNSD. By using the “ball-of-sight” strategy, β-skeleton graph
offers high connectivity between word vertices for necessary message passing while being much sparser than
fully-connected graphs for efficient forward and backward computations
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Figure 6: Sample output of the word grouping task on FUNSD with a few failure cases.


