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Abstract

Table-to-text generation aims at automatically
generating natural text to help people conve-
niently obtain salient information in tables. Al-
though neural models for table-to-text have
achieved remarkable progress, some problems
are still overlooked. Previous methods can-
not deduce the factual results from the entity’s
(player or team) performance and the relations
between entities. To solve this issue, we first
build an entity graph from the input tables and
introduce a reasoning module to perform rea-
soning on the graph. Moreover, there are dif-
ferent relations (e.g., the numeric size relation
and the importance relation) between records
in different dimensions. And these relations
may contribute to the data-to-text generation.
However, it is hard for a vanilla encoder to
capture these. Consequently, we propose to
utilize two auxiliary tasks, Number Ranking
(NR) and Importance Ranking (IR), to super-
vise the encoder to capture the different rela-
tions. Experimental results on ROTOWIRE
and RW-FG show that our method not only has
a good generalization but also outperforms pre-
vious methods on several metrics: BLEU, Con-
tent Selection, Content Ordering.

1 Introduction

Table-to-text generation is an essential task for text
generation from structured data. It aims at auto-
matically producing descriptive natural language
text to help people obtain the salient information
from the tables. Over the past several years, neu-
ral text generation methods have made significant
progress on this task. Lebret et al. (2016); Wiseman
et al. (2017); Bao et al. (2018) view the input table
as a record sequence and model it as a machine
translation task. To generate text containing more
salient and well-organized facts, Sha et al. (2018);
Moryossef et al. (2019); Trisedya et al. (2020);
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The Boston Celtics dominated the visiting New York Knicks, 115 - 87, 
on Friday night at TD Garden … Isaiah Thomas was huge for Boston 
( 4 - 4 ) as he led the way offensively with 29 points on 9-of-17 shooting, 
in only 28 minutes... Avery Bradley and Marcus Smart both filled the 
stat sheet. Smart finished with 12 points, 10 assists, six rebounds and 
three steals, while Bradley notched 15 points, 10 rebounds, two assists 
and four steals… Kristaps Porzingis was the high-point man with 14 
points, along with six rebounds and two blocks , in 23 minutes. Derrick 
Rose added 11 points , six assists and four rebounds , while the only 
other player to tally double-digits for the Knicks was Justin Holiday…
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Name   MIN PTS AST REB …

Marcus Smart 34 12 10 6 …

Amir Johnson 21 2 1 3 …

Kelly Olynyk 30 19 3 7 …

… … … … … …

Isaiah Thomas 28 29 4 3 …

Name   PTS AST REB TOV …

Celtics 115 23 53 15 …

Knicks 87 19 57 25 …

(a)

(b)

(c)

Name   MIN PTS AST REB …

Carmelo Anthony 12 12 1 2 …

Kristaps Porzingis 23 14 1 6 …

Joakim Noah 22 9 2 10 …

… … … … … …

Kyle O'Quinn 3 2 0 3 …

Figure 1: (a) are tables in ROTOWIRE. (b) is a human-
written summary related to (a). Factual results that
need be reasoned are in red. (c) is the entity graph con-
structing from the input tables.

Bai et al. (2020) explicitly model content selection
and planning. To better represent tables, Liu et al.
(2018); Nema et al. (2018); Gong et al. (2019) ex-
plicitly model the structure of a table from multiple
levels or different dimensions.

Figure 1 (a) contains basketball game statistical
tables from ROTOWIRE (Wiseman et al., 2017), a
benchmark of NBA basketball games. As can be
seen, each entity (player or team) takes one row
in the corresponding table. Moreover, each row
comprises several records of different types, which
describe the entity’s performance in different as-
pects. In terms of generating a summary from these
tables, it is necessary to make reasoning to obtain
some factual results from the entities’ performance
and the relationships between entities. For instance,
when humans describe the tables in Figure 1 (a),
they usually give some factual results, such as “The
Boston Celtics dominated the visiting New York
Knicks” or “Isaiah Thomas was huge for Boston...”.
These results need to be reasoned from the entities’
performance and the relationships between entities.
Therefore, it is necessary to give the model the rea-
soning ability. However, previous methods do not
explicitly model this ability.
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Numerical tables mean most records in these
tables are numerical and are very common. For in-
stance, 86.82% of the records and almost 86.49%
of the column types are numeric in ROTOWIRE.
We observe that there are different relations be-
tween records in different dimensions. For exam-
ple, there are two kinds of relations in numerical
tables. The first one is numerical size relation in
the column dimension, i.e., in the same type col-
umn. The other is the relative importance relation
in the row dimension. It refers to the relative impor-
tance of different types of records, which are in the
same row, to the entity that they belong to. On the
one hand, these relations may contribute to table-
to-text generation. Let us take Figure 1 (a) as an
example. I.Thomas’s score is 29, which is higher
than other records in the column PTS. And he has
three rebounds, which is lower than most other
records in the column REB. Therefore, humans
are more likely to describe his scores rather than
his rebounds when summarizing his performance.
On the other hand, a vanilla encoder may not ef-
fectively capture the relations existing in different
dimensions without any auxiliary supervision.

We employ a hierarchical encoder, which com-
prises a Record Encoder and a Reasoning Module,
to encode the input tables from record level and
row level. Specifically, inspired by Gong et al.
(2019), the Record Encoder utilizes two cascaded
self-attention modules to encode the table from
the column and the row dimension, respectively.
Moreover, to endow the model with the reason-
ing ability, we first build an entity graph on the row
level according to the relations between players and
teams. And then, we introduce a reasoning module
to perform reasoning on the graph. Furthermore,
we utilize different auxiliary tasks to help the en-
coder capture the different relations among records.
More specifically, two auxiliary tasks named Num-
ber Ranking (NR) and Importance Ranking (IR) are
proposed to supervise the learning of the different
parts of the Record Encoder, respectively.

We conducted experiments on ROTOWIRE and
RW-FG(Wang, 2019) to verify the effectiveness of
the proposed approach. The experimental results
demonstrate that it is necessary to enable the model
the reasoning ability. Moreover, the proposed two
auxiliary tasks can improve the data-to-text model’s
performance without introducing extra parameters.
Furthermore, the results also show our method not
only has a good generalization but also outperforms

previous methods on BLEU, Content Selection,
and Content Ordering metrics.

2 Related Work

Recently, neural models have been the mainstream
for table-to-text generation and obtained impres-
sive results. Early works on table-to-text gener-
ation regard it as a distinct machine translation
task and view a structured table as a record se-
quence (Lebret et al., 2016; Wiseman et al., 2017;
Bao et al., 2018). Most recent works are inspired
by the traditional methods for data-to-text gener-
ation and introduce explicit content selection and
planning to improve the results (Sha et al., 2018;
Puduppully et al., 2019b; Moryossef et al., 2019;
Trisedya et al., 2020; Bai et al., 2020), and they
obtain training labels by aligning the input tables
with related summaries. However, this alignment
may introduce additional errors. Some works at-
tempt to use additional knowledge to improve the
quality of the generated text. Nie et al. (2018) uti-
lize pre-executed symbolic operations on the input
table in a sequence-to-sequence model to improve
the fidelity of neural table-to-text generation. Chen
et al. (2019) introduce the background knowledge
of the entity in the table to improve results.

In addition to introducing external knowledge,
some works learn better representation for the table
by explicitly modeling the table’s structure. Liu
et al. (2018) propose a structure-aware seq2seq ar-
chitecture, which incorporates the filed information
as the additional inputs to the table encoder. Some
works (Bao et al., 2018; Nema et al., 2018; Jain
et al., 2018) model the table’s representation from
the row and column levels, and utilize the dual at-
tention decoder to generate text. Gong et al. (2019)
introduce the historical data for each table and uti-
lize a self-attention-based hierarchical encoder on
three dimensions (row, column, and time) to enrich
the table’s representation. Furthermore, Liu et al.
(2019) propose three auxiliary supervision tasks
(sequence labeling, text auto-encoding, and multi-
label classification) to help the encoder capture a
more accurate semantic representation of the tables.

Gong et al. (2020) also explicitly model the rela-
tions between the numeric records. They pretrain a
multi-layer transformer encoder to obtain records’
contextual numerical value representations. More-
over, when training the data-to-text model, they
replace the record’s token embedding with its con-
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Figure 2: An overview of our method. REL and RFG denote Record Embedding Layer and Record Fusion Gate,
respectively.

textual representation from the pre-trained model.
Differently, our Number Ranking task is trained
with the data-to-text model and can supervise the
model actively to capture the numeric size relation
without introducing extra parameters.

3 Approach

3.1 Record Encoder
Each input instance consists of three different ta-
bles T 1, T 2, T 3, containing records about players’
performance in the home team, players’ perfor-
mance in the visiting team, and the team’s overall
performance. Each cell in the table is regarded as a
record. Inspired by Gong et al. (2019), we utilize
two self-attention modules to model each record’s
contexts from the column and the row dimension,
respectively. After that, we obtain the fusion repre-
sentation for records by the record fusion gate.

Record Embedding Following previous work
(Wiseman et al., 2017), we utilize four tuples to
represent each record r. The four tuples include:
entity r.e (the name of team or player, such as
Carmelo Anthony), type r.t (e.g., PTS) and value
r.v as well as feature r.f (e.g., home or visiting)
which indicates whether a player or a team com-
pete in home court or not. And we utilize 1-layer
MLP to encode the embeddings of each record’s
four types of information into a dense vector rembi,j ,
rembi,j = Relu(W e[ri,j .e; ri,j .t; ri,j .v; ri,j .f ] + be),

where i, j denote a record in the table of i-th row
and j-th column, [; ] denotes the vector concatena-
tion, W e and be are trainable parameters.

Column-wise Encoder To capture the numeric
size relation between records, we adopt a self-
attention module to model record in the context
of other records in the same column and obtain the
column dimension representation vector rcoli,j as:

αcoli,j,i′ ∝ exp(W col
2 tanh(W col

1 [rembi,j ; rembi′,j ]) (1)

r̃coli,j =

R∑
i′=1,i′ 6=i

αcoli,j,i′r
emb
i′,j (2)

rcoli,j =W col
3 [r̃coli,j ; r

emb
i,j ] (3)

where W col
1 , W col

2 and W col
3 are trainable parame-

ters, R represents the number of rows in the table.

Row-wise Encoder Considering the size relation
captured by the Column-wise Encoder (CE) may
help the learning of importance relation on row
level, we have the Column-wise Encoder and the
Row-wise Encoder (RE) in series (as shown in Fig-
ure 2). In other words, the input of RE is rcoli,j rather
than rembi,j . We use another self-attention module,
similar to the CE, to obtain the row dimension rep-
resentation rrowi,j for records.

Record Fusion Gate The record representations
from different dimensions contribute differently in
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reflecting the record’s information. Therefore, we
utilize a fusion gate to combine the two dimension
representations adaptively(Gong et al., 2019). First,
we concatenate the two dimension representations
of a record and utilize an MLP to obtain a general
representation for it as rgeni,j . Then, we compare
the column dimension representation with rgeni,j to
obtain its important score:

scoli,j ∝ exp(W f
2 tanh(W f

1 [r
gen
i ; rcoli,j ])) (4)

where W f
1 and W f

2 are trainable parameters.
Equally, we obtain the important score srowi,j for
the row dimension representation rrowi,j . Finally,

we obtain the fused record representation rfi,j by
weighted sum scoli,j r

col
i,j + srowi,j r

row
i,j . The fused

record representations {rfi,j}
R,C
i=1,j=1 will be used

as the input of the text decoder.

3.2 Reasoning Module

As mentioned in Section 1, we observe some fac-
tual results in text that require reasoning from the
entities’ performance and the relationships between
them. Therefore, it is necessary to enable model
the reasoning ability. To achieve this, we primar-
ily build an entity graph according to the entities’
relationships in input tables, as shown in Figure
1 (c). And then, we leverage Graph Neural Net-
works (GNN) to perform reasoning. Following, we
describe the details of the reasoning process.

Primarily, we obtain the initialized representa-
tion for each entity in tables by the Entity Node
Initialization module (ENI). Considering that dif-
ferent records in the same row may not contribute
the same, we combine them dynamically by atten-
tion mechanism. We first compute a general rep-
resentation vector egeni for the entity ei, which is
given by mean-pooling over the same row records
rfi,1, r

f
i,2, ..., r

f
i,C . Then we compare each record

in the i-th row with egeni and obtain the initialized
entity representation e0i by weighted sum:

αri,j ∝ exp(W r
2 tanh(W r

1 [e
gen
i ; rfi,j ])) (5)

e0i =

j=C∑
j=1

αri,jr
f
i,j (6)

After obtaining the initial representations of en-
tities, we adopt graph neural networks to propagate
entity node information to their neighbors. Inspired
by GAT(Velickovic et al., 2018), we use multi-head

attention to measure the relatedness between target
entity node ei and its neighbor nodes at layer l:

αli,j =MultiHeadAttention(el−1i , el−1j ) (7)

where j ∈ Ni and Ni means the neighbor nodes
set of target entity ei.

The neighbor entities include information that is
not relevant to the target entity. Therefore, we mod-
ify the way the information flow in GAT. Explicitly,
we incorporate gate mechanisms into information
aggregation to filter out noises from neighbor nodes
and extract useful information, which we name
GatedGAT. The representation eli of ei at layer l is
calculated as follows:

eli = gateli ∗ el−1i + (1− gateli) ∗ ẽli (8)

ẽli = ELU(
∑
j∈Ni

αli,je
l−1
j ) (9)

gateli = sigmoid(W l[el−1i ; ẽli]) (10)

where W l is a learnable parameter. The entities’
representations {eLi }Ri=1 at the last layer L are em-
ployed in text decoder.

3.3 Decoder with Dual Attention

To make use of record-level and row-level seman-
tics information, we adopt the dual attention mech-
anism. Specifically, at decoding step t, the input
of the LSTM unit is the embedding of the pre-
viously predicted word yt−1. And given the de-
coder state dt, we first calculate the row-level atten-
tion βt,i, which is based on the similarity between
the decoder state dt and the entities’ representa-
tions {eLi }Ri=1. Then we compute the record-level
attention αt,i over all the record representations
{rfi,j}

R,C
i,j which are normalized among records in

the same row. Finally, we fuse these two-level
attention and obtain the context representation as:

α
′
t,i,j = αt,iβt,i,j (11)

cdt =

R∑
i=1

C∑
j=1

α
′
t,i,jri,j (12)

Given a reference output {yi}Ti=1, we use the
cross-entropy loss as the objective function of table-
to-text generation:

Llm = −
T∑
i=1

pθ(yt|y1:t−1; cdt ) (13)
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3.4 Auxiliary Supervision Task
Liu et al. (2019) have shown that a single encoder
without any auxiliary assistant may not be effec-
tive to capture the accurate semantic representation.
Inspired by this, we propose two auxiliary tasks,
Number Ranking (NR) and Importance Ranking
(IR), to help the Column-wise Encoder and the
Row-wise Encoder capture the size relation and the
relative importance relation among records respec-
tively.

Number Ranking In practice, many tables
mainly comprise numeric records. Different from
text-type content, the numerical content contains
less semantic information but the size relation. The
size relation means the value of a record is larger
or smaller than others, and it plays an essential role
in records selection. For example, humans tend to
focus on the highest scores or the fewest faults in
a basketball game table. Therefore, it is necessary
to incorporate size relation into record represen-
tation. To achieve this, we propose an auxiliary
supervision task named Number Ranking (NR) to
supervise the learning of the Column-wise Encoder.
As shown in Figure 2 top, we take a list of records
in column PTS to illustrate how it works. Specifi-
cally, we regard the PTS column of the table as an
out-of-order set of records C = r1, r2, ..., rR, and
the goal is to generate a sequence of record pointers
in descending order according to their value. We
adopt the Pointer Networks (Vinyals et al., 2015)
to solve this problem and the output of Column-
wise Encoder rcoli (we omitted the indices on the
column dimension) as its input. Let z = z1, ..., zR
denote the sequence of the ranked records’ indices.
Each zk points to an input record and is between 1
and R. As shown in Figure 2, we use an LSTM as
the decoder. The MeanPooling({ri}Ri=1) is used
as the initialization of the first hidden state of the
decoder. At each decoding step t, we calculate a
distribution over the input records:

ht = LSTM(ht−1, r
col
zt−1

) (14)

pnt,i ∝ exp(Wnr[ht; r
col
i ]) (15)

where Wnr is a trainable parameter, and pnt,i de-
notes the probability that the output points to the
record ri at step t. We take the cross-entropy loss
for this task:

Lnr = −
C∑
j=1

R∑
i=1

log pni,zi (16)

Importance Ranking When people describe a
player’s performance in a basketball game, they
tend to focus on his relatively important record and
describe these firstly. Consequently, we introduce
the Importance Ranking task (IR) to supervise the
Row-wise Encoder to capture the relative impor-
tance relations between records in the same row.
This task’s input is a sequence record in the same
row, and the output is a sequence of records in
descending order of the records’ importance. We
employ a pointer network similar to the one used
in the Number Ranking task to model this task.
However, different from the records in the same
column, these in the same row cannot be directly
compared as they represent different meanings. To
address this issue, we take the rank of each record
in the column as an importance indicator. Figure
2 left bottom shows an example of calculating the
importance scores for records in the last row of the
table.

The input of the decoder is the output of the
Row-wise Encoder {rrowj }Rj=1. And the output is
the ascending order of the input, according to the
records’ importance scores. Let pst,j denote the
probability of pointing to record rj at decoding
step t, the loss function for this task is:

Lir = −
R∑
i=1

C∑
j=1

log psj,zj (17)

3.5 Loss Function and Training
These two tasks are trained together with the table-
to-text task, and the overall objective function con-
sists of three parts:

L = Llm + λ1Lnr + λ2Lir (18)

where λ1 and λ2 are tunable hyper-parameters.

4 Experiment

4.1 Dataset and Evaluation Metrics
We conduct experiments on both ROTOWIRE and
RW-FG datasets. They all comprise pairs of NBA
basketball game statistics and summaries. There
are two main differences between ROTOWIRE and
RW-FG. The first is the team statistic table in later
containing more numeric records. The other is
RW-FG removes the unsupported sentences by the
input tables. We use the official training, develop-
ment, and test splits for both datasets, which are
3,398/727/728 and 5,232/1,125/1,119, respectively.
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ROTOWIRE

Model RG CS CO BLEU
# P% P% R% F1% DLD%

Gold 23.31 94.79 100 100 100 100 100
TEMP 54.23 99.94 26.99 58.16 - 14.92 8.46
CC (Wiseman et al., 2017) 23.72 74.80 29.49 36.18 31.52 15.42 14.19
NCP (Puduppully et al., 2019a) 34.28 87.47 34.18 51.22 40.99 18.58 16.50
NCP (Our implementation) 31.95 86.96 33.13 47.59 39.06 17.47 15.26
ENT (Puduppully et al., 2019b) 30.11 92.96 38.67 48.51 43.09 20.17 16.12
HETD (Gong et al., 2019) 31.47 91.46 36.09 48.01 41.21 20.86 16.85
DU (Gong et al., 2020) 29.42 88.05 38.19 49.66 43.18 22.14 16.12
DUV (Gong et al., 2020) 26.94 87.45 40.73 48.78 44.39 23.32 15.92
Ours 32.73 93.14 40.80 55.88 47.16 25.30 17.96

RW-FG
Template 51.80 98.89 23.98 43.96 31.03 10.25 12.09
ENT 35.69 93.72 39.04 49.29 43.57 17.5 21.23
NCP 35.99 94.21 43.31 55.15 48.52 23.46 23.86
NCP + TR (Wang, 2019) 37.49 95.7 42.90 56.91 48.92 24.47 24.41
Ours 38.08 94.75 42.72 57.56 49.04 25.23 24.52

Table 1: Automatic evaluation results on the test set. On ROTOWIRE, our results are obtained with Puduppully
et al. (2019a)’s updated models. The others are from corresponding papers. On RW-FG, the baselines’ results are
taken from Wang (2019), and we evaluate directly using the code released by Wang (2019).

Following previous works, we use BLEU and three
extractive evaluation metrics, Relation Generation
(RG), Content Selection (CS), and Content Order-
ing (CO) (Wiseman et al., 2017) to evaluate the
table-to-text results. More specifically, RG mea-
sures the content fidelity of generated text, CS mea-
sures how well the generated text matches the ref-
erence in selecting which records to generate, and
CO measures the ability on context planning. We
refer the readers to Wiseman et al. (2017)’s paper
for more detailed information on these extractive
metrics.

We apply Accuracy (Acc) and normalized Dam-
erau Levenshtein Distance (DLD) (Brill and Moore,
2000) to evaluate the two auxiliary supervision
tasks. Accuracy measures the percentage of record
sequences for which their absolute positions are
correctly predicted (Logeswaran et al., 2018).

4.2 Implementation Details

To make a fair comparison, we follow the config-
urations in (Puduppully et al., 2019a; Gong et al.,
2019). For the table-to-text model, we set word
embedding and LSTM decoder hidden size as 600.
We set GatedGat’s layer as 2 and the numbers of
heads as 2. We employ a two-layer LSTM de-
coder with Input feeding during text generation.

We apply dropout at a rate 0.3. For text decod-
ing, we use BPTT and set the truncate size to 100.
We set the beam size to 5 during inference. For
the two auxiliary tasks, we employ two one-layer
LSTM as the decoder and set the LSTM decoder
hidden size as 600, respectively. We adjust λ1 be-
tween 0.8 and 1.0, λ2 between 0.2-0.4. Finally, we
set them to 0.9 and 0.25 on ROTOWIRE, 1.0 and
0.4 on RW-FG. For inferring, we use the greedy
search algorithm. All experiments are conducted
on an NVIDIA Tesla V100. Code of our model
can be found at https://github.com/liang8qi/
Data2TextWithAuxiliarySupervision.

4.3 Baselines

We compare our method with several strong base-
lines, including:

• TEMP (Wiseman et al., 2017) is a template-
based method. We refer the readers to this
paper for more detailed information on tem-
plates.

• CC (Wiseman et al., 2017) is a standard
encoder-decoder system with conditional copy
mechanism.

• NCP (Puduppully et al., 2019a) and NCP +
TR (Wang, 2019) are two Conditional Copy
models with the explicit content planning.

https://github.com/liang8qi/Data2TextWithAuxiliarySupervision
https://github.com/liang8qi/Data2TextWithAuxiliarySupervision
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Development

Model NR Task IR Task
Acc% DLD% Acc% DLD%

Original 46.43 66.15 7.72 27.29
Separate 89.36 92.63 87.81 91.43
Ours 86.56 90.44 84.07 87.74

Test

Model NR Task IR Task
Acc% DLD% Acc% DLD%

Original 46.54 66.02 7.71 26.93
Separate 89.15 92.47 87.60 91.26
Ours 86.54 90.40 83.98 87.68

Table 2: Automatic evaluation of the Number Rank-
ing(NR) task and the Importance Ranking (IR) task on
ROTOWIRE development and test datasets.

The latter improves NCP by introducing a ta-
ble restructure loss.

• ENT (Puduppully et al., 2019b) is a method
that creates entity-specific representations and
generates text using hierarchical attention over
the input table and entity memory.

• HETD (Gong et al., 2019) is a method mod-
eling table from three different dimensions
(Row, Column and, Time).

• DU & DUV (Gong et al., 2020): the DU
brings the sense of value comparison into con-
tent planning. Furthermore, DUV introduces
content plan verification into DU.

4.4 Main Results

Automatic Evaluation Our results on the two
test datasets are summarized in Table 1. For RO-
TOWIRE, compared with previous neural models,
our method achieves state-of-the-art results on Con-
tent Selection (CS), Content Ordering (CO), and
BLEU. More specifically, compared with the pre-
vious best neural models, we obtain more than 4
improvement on CS-P and achieve the best results
on CS-R. This implies our method can generate
text that contains more salient records. Compared
with NCP, DU, and DUV, our method scores the
highest on CO, even without explicitly modeling
content selection and planning. This indicates that
our model can better organize the records when
generating a summary for the input tables. We
consider there are two main reasons. The first is
that our Reasoning Module can learn a better en-
tity representation on row level. The other is that
our proposed two auxiliary tasks can supervise the
Record Encoder to learn a number-aware and rela-
tive importance-aware record representation. As a
result, the data-to-text model can make good con-

Model RG CS CO BLEU# P% F1% DLD%
Our Model 34.37 90.03 44.34 23.64 17.31

- Series 32.74 91.56 41.42 21.52 17.19
- RM 33.91 89.58 43.71 23.04 16.98
+ NE 38.41 92.28 44.22 23.16 16.23
+ NE & IE 32.85 92.68 45.33 24.49 16.81
+ NR 32.47 93.76 45.93 24.29 18.56
+ IR 35.30 92.65 43.34 22.04 17.47
+ NR & IR 33.93 92.40 46.13 25.28 17.68

Table 3: Ablation results for evaluating each compo-
nent’s contribution on ROTOWIRE development set.

tent planning by considering the entity’s perfor-
mance and the relative importance of the record.

As shown in Table 1, the results on RW-FG fol-
low a pattern similar to ROTOWIRE. We notice
that all models perform better on RW-FG than on
ROTOWIRE. We consider that the improvement
comes from the purification of data in RW-FG.
Wang (2019) removes the sentences that are not
supported by the input tables, which reduces the
noise in the text and improves the dataset’s quality.
Due to this, we can obtain more accurate content
planning labels from the dataset to train the mod-
els (NCP, NCP+TR) that explicitly model content
planning and lead to better performance. Therefore,
NCP outperforms ENT on RW-FG. However, the
purification may make the task easier because some
sentences that do not be supported by the tables di-
rectly but can be obtained by reasoning may also be
removed. This may weaken the Reasoning Module
of our model. Nevertheless, we still outperform the
compared baselines.

Table 2 shows our model’s performance, which
is trained together with the two auxiliary tasks on
the two auxiliary tasks. We compare it with two
baselines. The first is Original, which denotes a
method that takes the input record sequence as the
outputs. Moreover, we separately train our model
on the two auxiliary tasks, denoted as Separate.
As a result, our model achieves comparable perfor-
mance to Separate and is much better than Orig-
inal, even only using the greedy search at testing.
The results indicate that the two auxiliary tasks can
help the Record Encoder capture the size relation
and relative importance relation among records.

Ablation Study First, we examine the effect of
changes in the model structure on the results. From
Table 3, Our Model means our data-to-text model
without two auxiliary tasks. We change the con-
nection mode between the Column-wise Encoder
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Model RG CS CO BLEUP% # F1% DLD%
NCP 86.67 31.46 40.02 18.73 15.61
NCP+HEnc 87.22 27.36 43.55 22.42 15.83

+ NR 89.41 28.54 44.56 23.50 16.17
+ NR&IR 90.96 27.71 46.29 24.23 16.29

Table 4: Generalization study on ROTOWIRE develop-
ment set. HEnc denotes our hierarchical encoder with
Reasoning Module.

(CE) and the Row-wise Encoder (RE) to parallel
from series (- Series). Moreover, we replace the
Reasoning Module with a row-level encoder with
the content selection gate (- RM), which is pro-
posed by Puduppully et al. (2019a). According to
the results, the serial connection and the Reasoning
Module contribute to the overall performance be-
cause BLEU, CS, and CO drop significantly after
subtracting them from the full model.

Furthermore, we investigate the impact of the
two auxiliary tasks on table-to-text generation. Ta-
ble 3 shows that both Number Ranking (NR) and
Importance Ranking (IR) tasks can improve our
basic model. This indicates that it is necessary to
explicitly model the size relation and relative im-
portance relation between records. We notice that
the model’s performance is degraded on CS-F1 and
CO when only the IR task is introduced. On the one
hand, we believe this is because the modeling of
relative importance relation in the row dimension
between records depends heavily on its size rela-
tion in the column dimension. On the other hand,
the CE cannot accurately capture the size relation
between records without direct supervision.

Finally, we compare the method that introduces
additional feature vectors of the ranking of number
and relative importance to Record Embedding with
the two auxiliary tasks. Specifically, we first intro-
duce the embedding of ranking of the number (+
NE) and further add the embedding of the relative
importance of records (+ IE). As shown in the third
section in Table 3, the NE only improves the model
on RG. Moreover when the IE is incorporated, the
model achieves better performance on almost all
metrics. However, the improvement is not as sig-
nificant as the auxiliary tasks. We believe it may
be a better way to effectively capture the accurate
semantic representation by introducing auxiliary
supervision tasks than adding feature vectors di-
rectly.

Sup Contra Gram Cohere Concise
Gold -11.33 -14.00 14.89 12.88 15.33
NCP 11.33 9.78 -10.44 -8.00 -20.89
ENT -6.00 -1.11 -3.33 -7.11 8.67
HETD 0.22 3.56 -5.33 -1.33 -5.11
Ours 5.78 1.78 4.22 3.56 2.00

Table 5: Human evaluation results.

Generalization Study Our method can be ap-
plied to the existing works, especially those that
explicitly model content selection and planning
(NCP, DUV), to improve their performance. To
exam our method’s generalization, we combine our
method with NCP and conduct experiments on the
ROTOWIRE development set. The results are sum-
marized in Table 4. First, we use the released code
to retrain the NCP model. And then, we replace
the NCP’s content selection encoder with our hier-
archical encoder. As can be seen, our hierarchical
encoder with the Reasoning Module improves the
NCP model on almost all evaluation metrics. More-
over, we train the model with the proposed two
auxiliary supervision tasks. The performance of
the model is further improved. This indicates that
our method has a good generalization, as it can be
easily adapted to other methods and improve their
performance.

Human Evaluation To examine whether human
judgments corroborate improvements in automatic
evaluation metrics, we conducted a human eval-
uation. Three graduate students with basketball
background knowledge and good English reading
ability were invited to conduct the evaluation. We
compared our best performing model against Gold,
NCP, ENT, and HETD. Specifically, we randomly
selected 30 games from the test set, and each game
is rated by three workers. For each game, we ar-
ranged every 5-tuple of summaries into ten pairs.
Given each pair, the participants were asked to
choose which one is better according to five crite-
ria: Supporting (does the summary contain more
supported facts?), Contradicting (does the summary
contain more contradicting facts?), Grammatical-
ity (is the summary fluent and grammatical?), Co-
herence (do the sentences, in summary, follow a
coherent discourse?), and Conciseness (does the
summary contain less redundant information and
repetitions?). Following previous work (Pudup-
pully et al., 2019a), we calculated a model’s score
for each criterion as the difference between the per-
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centage of times when the model is chosen as the
best and the percentage of times when the model is
chosen as the worst.

The results are summarized in Table 5. As can
be seen, the gold texts have significant advantages
in contradicting, grammaticality, coherence, and
conciseness. Compared with other neural methods,
our method receives the highest scores in coherence
and grammaticality. This implies that our method
can generate texts that contain well-organized facts.
Though the ENT model outperforms our model in
contradicting and conciseness, our method can be
easily applied to it, which we leave for future work.

5 Conclusion

In this work, we mainly make two contributions.
The first one is we introduce a reasoning module
into a hierarchical table encoder, which enables the
model reasoning ability. Moreover, we present to
utilize the different auxiliary supervision tasks to
help the encoder capture the different relations be-
tween records. In detail, the Number Ranking (NR)
task is proposed to supervise the Column-wise En-
coder to model the numeric size relation between
records in the same column. And the Importance
Ranking (IR) task helps the Row-wise Encoder
capture the relative importance between records
in the same row. Experimental results conducted
on ROTOWIRE and RW-FG datasets demonstrate
the effectiveness of our method. Furthermore, we
migrate our method to the NCP model and signifi-
cantly improve its performance on ROWTOWIRE.
This indicates that our proposed method has a good
generalization.
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ROTOWIRE

Model RG CS CO BLEU
# P% P% R% F1% DLD%

Gold 23.34 94.79 100 100 100 100 100
TEMP 54.29 99.92 26.61 59.16 36.69 14.42 8.51
CC 23.95 75.10 28.11 35.86 31.52 15.33 14.57
NCP 33.88 87.51 33.52 51.21 40.52 18.57 16.19
ENT 30.39 91.98 36.62 48.18 41.62 19.66 15.97
HETD 32.11 91.84 35.39 48.98 41.09 20.70 16.24
DU 28.81 87.23 39.03 51.64 44.46 22.97 16.64
DUV 26.11 87.35 42.00 50.63 45.91 24.86 16.29
Ours 33.93 92.40 38.65 57.2 46.13 25.28 17.68

RW-FG
Template 51.81 99.09 23.78 43.75 30.81 10.06 11.96
ENT 35.56 93.3 39.04 40.19 50.17 17.81 21.67
NCP 36.28 94.27 43.31 55.96 48.91 24.08 24.49
NCP + TR 37.04 95.65 43.09 57.24 49.17 24.75 24.80
Ours 38.50 94.35 42.88 58.16 49.52 25.30 24.62

Table 6: Automatic evaluation results on development sets.

Model RG CS CO BLEU
# P% P% R% F1% DLD%

HEnc 34.37 90.03 36.75 55.87 44.34 23.64 17.31
+ A-NR 35.20 92.03 37.51 57.3 45.34 24.17 17.64
+ A-NR & D-IR 36.73 90.96 37.46 58.67 45.72 24.77 17.27
+ A-NR & A-IR 35.00 92.38 38.15 57.17 45.76 24.82 17.38
+ D-NR 33.38 93.76 39.05 55.74 45.93 24.29 18.56
+ D-NR & A-IR 33.93 92.40 38.65 57.2 46.13 25.28 17.68
+ D-NR & D-IR 32.47 91.05 39.22 55.83 46.08 24.97 18.01

Table 7: Impact of different settings of Number Ranking (NO) and Importance Ranking (SO). HEnc denotes
our data-to-text model, which incorporates a Reasoning Module. The prefixes A and D denote ascending and
descending operations, respectively.

B Impact of different Ranking Directions

We also explore the impact of different settings for
Number Ranking and Importance Ranking on the
data-to-text model. The results are summarized
in Table 7. We observe that compared with the
basic model, almost all the settings can improve
the data-to-text model on Content Selection(CS),
Content Ordering(CO), and BLEU. This indicates
the proposed two tasks are effective and robust.


