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Abstract

Recent research in multilingual language mod-
els (LM) has demonstrated their ability to
effectively handle multiple languages in a
single model. This holds promise for low
web-resource languages (LRL) as multilingual
models can enable transfer of supervision from
high resource languages to LRLs. However, in-
corporating a new language in an LM still re-
mains a challenge, particularly for languages
with limited corpora and in unseen scripts. In
this paper we argue that relatedness among lan-
guages in a language family may be exploited
to overcome some of the corpora limitations of
LRLs, and propose RelateLM. We focus on In-
dian languages, and exploit relatedness along
two dimensions: (1) script (since many In-
dic scripts originated from the Brahmic script),
and (2) sentence structure. RelateLM uses
transliteration to convert the unseen script of
limited LRL text into the script of a Re-
lated Prominent Language (RPL) (Hindi in our
case). While exploiting similar sentence struc-
tures, RelateLM utilizes readily available bilin-
gual dictionaries to pseudo translate RPL text
into LRL corpora. Experiments on multiple
real-world benchmark datasets provide valida-
tion to our hypothesis that using a related lan-
guage as pivot, along with transliteration and
pseudo translation based data augmentation,
can be an effective way to adapt LMs for LRLs,
rather than direct training or pivoting through
English.

1 Introduction

BERT-based pre-trained language models (LMs)
have enabled significant advances in NLP (Devlin
et al., 2019; Liu et al., 2019; Lan et al., 2020). Pre-
trained LMs have also been developed for the mul-
tilingual setting, where a single multilingual model
is capable of handling inputs from many different
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Figure 1: Number of wikipedia articles for top-few In-
dian Languages and English. The height of the English
bar is not to scale as indicated by the break. Number of
English articles is roughly 400x more than articles in
Oriya and 800x more than articles in Assamese.

languages. For example, the Multilingual BERT
(mBERT) (Devlin et al., 2019) model was trained
on 104 different languages. When fine-tuned for
various downstream tasks, multilingual LMs have
demonstrated significant success in generalizing
across languages (Hu et al., 2020; Conneau et al.,
2019). Thus, such models make it possible to
transfer knowledge and resources from resource
rich languages to Low Web-Resource Languages
(LRL). This has opened up a new opportunity to-
wards rapid development of language technologies
for LRLs.

However, there is a challenge. The current
paradigm for training Mutlilingual LM requires
text corpora in the languages of interest, usually in
large volumes. However, such text corpora is often
available in limited quantities for LRLs. For exam-
ple, in Figure 1 we present the size of Wikipedia,
a common source of corpora for training LMs, for
top-few scheduled Indian languages' and English.
The top-2 languages are just one-fiftieth the size of

lAccording to Indian Census 2011, more than 19,500 lan-
guages or dialects are spoken across the country, with 121 of
them being spoken by more than 10 thousand people.
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Figure 2: Pre-training with MLM and Alignment loss

in RelateLM with LRL L as Punjabi (pa) in Gurumukhi

script and RPL R as Hindi (hi) in Devanagari script. RelateLM first transliterates LRL text in the monolingual
corpus (Dy) and bilingual dictionaries (B, r and Br_, 1) to the script of the RPL R. The transliterated bilingual
dictionaries are then used to pseudo translate the RPL corpus (Dg) and transliterated LRL corpus (Dr,,,). This
pseudo translated data is then used to adapt the given LM M for the target LRL L using a combination of Masked
Language Model (MLM) and alignment losses. For notations and further details, please see Section 3.

English, and yet Hindi is seven times larger than
the O(20,000) documents of languages like Oriya
and Assamese which are spoken by millions of peo-
ple. This calls for the development of additional
mechanisms for training multilingual LMs which
are not exclusively reliant on large monolingual
corpora.

Recent methods of adapting a pre-trained mul-
tilingual LM to a LRL include fine-tuning the full
model with an extended vocabulary (Wang et al.,
2020), training a light-weight adapter layer while
keeping the full model fixed (Pfeiffer et al., 2020b),
and exploiting overlapping tokens to learn embed-
dings of the LRL (Pfeiffer et al., 2020c). These are
general-purpose methods that do not sufficiently
exploit the specific relatedness of languages within
the same family.

We propose RelateLM for this task. RelateLM
exploits relatedness between the LRL of interest
and a Related Prominent Language (RPL). We
focus on Indic languages, and consider Hindi as
the RPL. The languages we consider in this pa-
per are related along several dimensions of linguis-
tic typology (Dryer and Haspelmath, 2013; Lit-
tell et al., 2017): phonologically, phylogenetically

as they are all part of the Indo-Aryan family, ge-
ographically, and syntactically matching on key
features like the Subject-Object-Verb (SOV) order
as against the Subject-Verb-Object (SVO) order
in English. Even though the scripts of several In-
dic languages differ, they are all part of the same
Brahmic family, making it easier to design rule-
based transliteration libraries across any language
pair. In contrast, transliteration of Indic languages
to English is harder with considerable phonetic
variation in how words are transcribed. The geo-
graphical and phylogenetic proximity has lead to
significant overlap of words across languages. This
implies that just after transliteration we are able
to exploit overlap with a Related Prominent Lan-
guage (RPL) like Hindi. On three Indic languages
we discover between 11% and 26% overlapping
tokens with Hindi, whereas with English it is less
than 8%, mostly comprising numbers and entity
names. Furthermore, the syntax-level similarity
between languages allows us to generate high qual-
ity data augmentation by exploiting pre-existing
bilingual dictionaries. We generate pseudo parallel
data by converting RPL text to LRL and vice-versa.
These allow us to further align the learned embed-
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dings across the two languages using the recently
proposed loss functions for aligning contextual em-
beddings of word translations (Cao et al., 2020; Wu
and Dredze, 2020).

In this paper, we make the following contributions:

* We address the problem of adding a Low Web-
Resource Language (LRL) to an existing pre-
trained LM, especially when monolingual cor-
pora in the LRL is limited. This is an impor-
tant but underexplored problem. We focus
on Indian languages which have hundred of
millions of speakers, but traditionally under-
studied in the NLP community.

* We propose RelateLM which exploits relat-
edness among languages to effectively in-
corporate a LRL into a pre-trained LM. We
highlight the relevance of transliteration and
pseudo translation for related languages, and
use them effectively in RelateLM to adapt a
pre-trained LM to a new LRL.

* Through extensive experiments, we find that
RelateLLM is able to gain significant improve-
ments on benchmark datasets. We demon-
strate how RelateLM adapts mBERT to Oriya
and Assamese, two low web-resource Indian
languages by pivoting through Hindi. Via ab-
lation studies on bilingual models we show
that RelateLLM is able to achieve accuracy of
zero-shot transfer with limited data (20K doc-
uments) that is not surpassed even with four
times as much data in existing methods.

The source code for our experiments is available
at https://github.com/yashkhem1/RelateLM.

2 Related Work

Transformer (Vaswani et al., 2017) based language
models like mBERT (Devlin et al., 2019), MuRIL
(Khanuja et al., 2021), IndicBERT (Kakwani et al.,
2020), and XLM-R (Conneau et al., 2019), trained
on massive multilingual datasets have been shown
to scale across a variety of tasks and languages.
The zero-shot cross-lingual transferability offered
by these models makes them promising for low-
resource domains. Pires et al. (2019) find that
cross-lingual transfer is even possible across lan-
guages of different scripts, but is more effective for
typologically related languages. However, recent
works (Lauscher et al., 2020; Pfeiffer et al., 2020b;
Hu et al., 2020) have identified poor cross-lingual
transfer to languages with limited data when jointly
pre-trained. A primary reason behind poor transfer

is the lack of model’s capacity to accommodate
all languages simultaneously. This has led to in-
creased interest in adapting multilingual LMs to
LRLs and we discuss these in the following two
settings.

LRL adaptation using monolingual data For
eleven languages outside mBERT, Wang et al.
(2020) demonstrate that adding a new target lan-
guage to mBERT by simply extending the embed-
ding layer with new weights results in better per-
forming models when compared to bilingual-BERT
pre-training with English as the second language.
Pfeiffer et al. (2020c¢) adapt multilingual LMs to
the LRLs and languages with scripts unseen during
pre-training by learning new tokenizers for the un-
seen script and initializing their embedding matrix
by leveraging the lexical overlap w.r.t. the lan-
guages seen during pre-training. Adapter (Pfeiffer
et al., 2020a) based frameworks like (Pfeiffer et al.,
2020b; Artetxe et al., 2020; Ustiin et al., 2020) ad-
dress the lack of model’s capacity to accommodate
multiple languages and establish the advantages of
adding language-specific adapter modules in the
BERT model for accommodating LRLs. These
methods generally assume access to a fair amount
of monolingual LRL data and do not exploit relat-
edness across languages explicitly. These methods
provide complimentary gains to our method of di-
rectly exploiting language relatedness.

LRL adaptation by utilizing parallel data
When a parallel corpus of a high resource language
and its translation into a LRL is available, Con-
neau and Lample (2019) show that pre-training
on concatenated parallel sentences results in
improved cross-lingual transfer. Methods like
Cao et al. (2020); Wu and Dredze (2020) discuss
advantages of explicitly bringing together the
contextual embeddings of aligned words in a
translated pair. Language relatedness has been
exploited in multilingual-NMT systems in various
ways (Neubig and Hu, 2018; Goyal and Durrett,
2019; Song et al., 2020). These methods typically
involve data augmentation for a LRL with help
of a related high resource language (RPL) or to
first learn the NMT model for a RPL followed by
finetuning on the LRL. Wang et al. (2019) propose
a soft-decoupled encoding approach for exploiting
subword overlap between LRLs and HRLs to
improve encoder representations for LRLs. Gao
et al. (2020) address the issue of generating fluent
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Percentage Overlap of Words BLEU Scores
LRL Related Prominent | Distant Prominent LRL Related Prominent | Distant Prominent
(Hindi) (English) (Target) (Hindi) (Source) | (English) (Source)
Punjabi 25.5 7.5 Punjabi 24.6 16.5
Gujarati 23.3 4.5 Gujarati 20.3 12.9
Bengali 10.9 5.5 Bengali 19.3 124
Table 1: Motivation for transliteration: % over- Table 2: Motivation for pseudo translation: BLEU

lapping words between transliterated LRL (in Promi-
nent Language’s script) and prominent language text.
% overlap is defined as the number of common dis-
tinct words divided by number of distinct words in
the transliterated LRL. Overlap is much higher with
Hindi, the Related Prominent Language (RPL), com-
pared to English, the distant language. Overlapping
words act as anchors during multilingual pre-training
in RelateLM(Section 3.1)

LRL sentences in NMT by extending the soft-
decoupled encoding approach to improve decoder
representations for LRLs. Xia et al. (2019) utilize
data augmentation techniques for LRL-English
translation using RPL-English and RPL-LRL
parallel corpora induced via bilingual lexicons
and unsupervised NMT. Goyal et al. (2020)
utilize transliteration and parallel data from related
Indo-Aryan languages to improve NMT systems.
Similar to our approach they transliterate all the
Indian languages to the Devanagri script. Similarly,
Song et al. (2020) utilize Chinese-English parallel
corpus and transliteration of Chinese to Japanese
for improving Japanese-English NMT systems via
data augmentation.

To the best of our knowledge no earlier work has
explored the surprising effectiveness of translitera-
tion to a related existing prominent language, for
learning multilingual LMs, although some work
exists in NMT as mentioned above.

3 Low Web-Resource Adaptation in
RelateLM

Problem Statement and Notations Our goal
is to augment an existing multilingual language
model M, for example mBERT, to learn repre-
sentations for a new LRL L for which available
monolingual corpus Dy, is limited. We are also told
that the language to be added is related to another
language R on which the model M is already pre-
trained, and is of comparatively higher resource.
However, the script of Dy, may be distinct from the
scripts of existing languages in M. In this section
we present strategies for using this knowledge to

scores between pseudo translated prominent language
sentences and LRL sentences. BLEU with Hindi, the
RPL, is much higher than with English, the distant
prominent language highlighting the effectiveness of
pseudo translation from a RPL (Section 3.2). English
and Hindi dictionary sizes same. For these experiments,
we used a parallel corpus across these 5 languages ob-
tained from TDIL (Section 4.1)

better adapt M to L than the existing baseline of
fine-tuning M using the standard masked language
model (MLM) loss on the limited monolingual data
Dy, (Wang et al., 2020). In addition to the monolin-
gual data Dg in the RPL and Dy, in the LRL, we
have access to a limited bilingual lexicon By _,r
that map a word in language L to a list of synonyms
in language R and vice-versa Br_,|..

We focus on the case where the RPL, LRL pairs
are part of the Indo-Aryan language families where
several levels of relatedness exist. Our proposed ap-
proach, consists of three steps, viz., Transliteration
to RPL’s script, Pseudo translation, and Adaptation
through Pre-training. We describe each of these
steps below. Figure 2 presents an overview of our
approach.

3.1 Transliteration

First, the scripts of Indo-Aryan languages are part
of the same Brahmic script. This makes it easier to
design simple rule-based transliterators to convert a
corpus in one script to another. For most languages
transliterations are easily available. Example, the
Indic-Trans Library > (Bhat et al., 2015). We use
Dy, to denote the LRL corpus after transliterating
to the script of the RPL. We then propose to further
pre-train the model M with MLM on the translit-
erated corpus Dp,, instead of Dy,. Such a strategy
could provide little additional gains over the base-
line, or could even hurt accuracy, if the two lan-
guages were not sufficiently related. For languages
in the Indo-Aryan family because of strong phy-
logenetic and geographical overlap, many words
across the two languages overlap and preserve the

https://github.com/libindic/
indic-trans
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same meaning. In Table 1 we provide statistics of
the overlap of words across several transliterated
Indic languages with Hindi and English. Note that
for Hindi the fraction of overlapping words is much
higher than with English which are mostly num-
bers, and entity names. These overlapping words
serve as anchors to align the representations for
the non-overlapping words of the LRL that share
semantic space with words in the RPL.

3.2 Pseudo Translation with Lexicons

Parallel data between a RPL and LRL language
pair has been shown to be greatly useful for ef-
ficient adaptation to LRL (Conneau and Lample,
2019; Cao et al., 2020). However, creation of par-
allel data requires expensive supervision, and is
not easily available for many low web-resource
languages. Back-translation is a standard method
of creating pseudo parallel data but for low web-
resource languages we cannot assume the presence
of a well-trained translation system. We exploit
the relatedness of the Indic languages to design a
pseudo translation system that is motivated by two
factors:

* First, for most geographically proximal RPL-
LRL language pairs, word-level bilingual
dictionaries have traditionally been avail-
able to enable communication. When they
are not, crowd-sourcing creation of word-
level dictionaries® requires lower skill and
resources than sentence level parallel data.
Also, word-level lexicons can be created semi-
automatically (Zhang et al., 2017) (Artetxe
et al., 2019) (Xu et al., 2018).

* Second, Indic languages exhibit common syn-
tactic properties that control how words are
composed to form a sentence. For exam-
ple, they usually follow the Subject-Object-
Verb (SOV) order as against the Subject-Verb-
Object (SVO) order in English.

We therefore create pseudo parallel data between
R and L via a simple word-by-word translation
using the bilingual lexicon. In a lexicon a word can
be mapped to multiple words in another language.
We choose a word with probability proportional to
its frequency in the monolingual corpus Dy,. We
experimented with a few other methods of selecting
words that we discuss in Section 4.4. In Table 2
we present BLEU scores obtained by our pseudo
translation model of three Indic languages from

3Wiktionary is one such effort

Hindi and from English. We observe much high
BLEU for translation from Hindi highlighting the
syntactic relatedness of the languages.

Let (DR, Br—1.,(Dr)) denote the parallel cor-
pus formed by pseudo translating the RPL corpus
via the transliterated RPL to LRL lexicon. Likewise
let (D, Br,—r(DrLy)) be formed by pseudo
translating the transliterated low web-resource cor-
pus via the transliterated LRL to RPL lexicon.

3.3 Alignment Loss

The union of the two pseudo parallel corpora above,
collectively called P, is used for fine-tuning M
using an alignment loss similar to the one pro-
posed in (Cao et al., 2020). This loss attempts
to bring the multilingual embeddings of different
languages closer by aligning the corresponding
word embeddings of the source language sentence
and the pseudo translated target language sentence.
Let C be a random batch of source and (pseudo
translated) target sentence pairs from P, i.e. C =
((sh,t1), (s%,t2), ..., (sV,tV)), where s and t are
the source and target sentences respectively. Since
our parallel sentences are obtained via word-level
translations, the alignment among words is known
and monotonic. Alignment loss has two terms:

L = Lalign + Lreg Where L4y, is used to bring
the contextual embeddings closer and L, is the
regularization loss which prevents the new embed-
dings from deviating far away from the pre-trained
embeddings. Each of these are defined below:

#word(s)
alzgn = Z Z Hf S, l (t lt( ))||2
(s,t)eC =1
#tok(s)
Ereg: Z Z H(f(s>])_f0(sa])||%
(s,;p)ec \ j=1
#tok(t
+ Z 1£(t.5) — folt. 5)I13

where [5(7) is the position of the last token of i-
th word in sentence s and f(s, j) is the learned
contextual embedding of token at j-th position in
sentence s, i.e, for L,;4, we consider only the last
tokens of words in a sentence, while for £,.., we
consider all the tokens in the sentence. fy(s, )
denotes the fixed pre-trained contextual embedding
of the token at j-th position in sentence s. #word(s)
and #tok(s) are the number of (whole) words and
tokens in sentence s respectively.
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4 Experiments

We carry out the following experiments to evaluate
RelateLM’s effectiveness in LRL adaptation:

* First, in the full multilingual setting, we eval-
uate whether RelateLLM is capable of extend-
ing mBERT with two unseen low-resource
Indic languages: Oriya (unseen script) and
Assamese (seen script). (Section 4.2)

* We then move to the bilingual setting where
we use RelateLM to adapt a model trained on
a single RPL to a LRL. This setting allowed us
to cleanly study the impact of different adap-
tation strategies and experiment with many
RPL-LRL language pairs. (Section 4.3)

* Finally, Section 4.4, presents an ablation
study on dictionary lookup methods, align-
ment losses, and corpus size.

We evaluate by measuring the efficacy of zero-
shot transfer from the RPL on three different tasks:
NER, POS and text classification.

4.1 Setup

LM Models We take m-BERT as the model M
for our multilingual experiments. For the bilingual
experiments, we start with two separate monolin-
gual language models on each of Hindi and English
language to serve as M. For Hindi we trained
our own Hi-BERT model over the 160K mono-
lingual Hindi Wikipedia articles using a vocab
size of 20000 generated using WordPiece tokenizer.
For English we use the pre-trained BERT model
which is trained on almost two orders of magnitude
Wikipedia articles and more. When the LRL is
added in its own script, we use the bert-base-cased
model and when the LRL is added after translit-
eration to English, we use the bert-base-uncased
model.

LRLs, Monolingual Corpus, Lexicon As
LRLs we consider five Indic languages spanning
four different scripts. Monolingual data was ob-
tained from Wikipedia as summarized in Table 4.
We extend m-BERT with two unseen low web-
resource languages: Assamese and Oriya. Since it
was challenging to find Indic languages with task-
specific labeled data but not already in m-BERT,
we could not evaluate on more than two languages.
For the bilingual model experiments, we adapt each
of Hi-BERT and English BERT with three differ-
ent languages: Punjabi, Gujarati and Bengali. For
these languages we simulated the LRL setting by

Dataset Solit Lan Number of Sentences
p € 'NER | POS | TextC.
. en 20.0 | 56.0 | 27.0
Train Data RPL |, 50 | 53.0 | 25.0
en 10.0 | 14.0 3.8
Val Data RPL 1. 10 | 130 | 40
pa 02 | 134 7.9
gu 0.3 | 14.0 8.0
Test Data LRL | bn 1.0 9.7 5.8
as - 14.0 8.0
or 0.2 4.0 7.6

Table 3: Statistics of Task-specific Datasets. All num-
bers are in thousands.

. hi-Lexicon | en-Lexicon
LRL | #Docs Scripts Fw | Bw | Fw Bw
pa 20 | Gurumukhi | 53 65 | 18 15
gu 20 Gujarati 29 43 | 18 10
bn 20 | As-Bangla | 23 40 | 12 10
or 20 Oriya 18 18 | 18 18
as 7 | As-Bangla | 19 17 | 19 17

Table 4: Statistics of resources used for LRLs in the ex-
periments. All the numbers are in thousands. #Docs
represents number of documents for each language.
For each language, hi-Lexicon and en-Lexicon report
sizes of bilingual Hindi and English dictionaries respec-
tively in either direction. Fw represents the direction
from a LRL to hi or en. Hindi uses the Devanagri
script with a vocab size of 20K. For all other languages
the vocab size is fixed at 10K. As-Bangla refers to the
Bengali-Assamese script.

downsampling their Wikipedia data to 20K doc-
uments. For experiments where we require En-
glish monolingual data for creating pseudo trans-
lations, we use a downsampled version of English
Wikipedia having the same number of documents
as the Hindi Wikipedia dump.

The addition of a new language to M was done
by adding 10000 tokens of the new language gen-
erated by WordPiece tokenization to the existing
vocabulary, with random initialization of the new
parameters. For all the experiments, we use li-
bindic’s indictrans library (Bhat et al., 2015) for
transliteration. For pseudo translation we use the
union of Bilingual Lexicons obtained from CFILT
* and Wiktionary > and their respective sizes for
each language are summarized in Table 4

Tasks for zero-shot transfer evaluation After
adding a LRL in M, we perform task-specific fine-

*nttps://www.cfilt.iitb.ac.in/
Shttps://hi.wiktionary.org/wiki/
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LRL Adaptation Prominent Punjabi Gujarati Bengali
Language | NER | POS | TextC. | NER | POS | TextC. | NER | POS | TextC.

mBERT - 41.7 | 86.3 | 64.2 39.8 | 87.8 | 65.8 70.8 | 83.4 | 759
EBERT (wang et al., 2020) 19.4 | 48.6 | 33.6 14.5 | 56.6 | 37.8 31.2 | 50.7 | 32.7
RelateLM—PseudoT en 38.6 | 58.1 | 54.7 153 | 58.5 | 57.2 68.8 | 59.8 | 58.6
EBERT (Wang et al., 2020) 28.2 | 78.6 | 514 14.8 | 69.0 | 48.1 340 | 73.2 | 45.6
RelateLM—PseudoT hi 65.1 | 77.3 | 76.1 39.6 | 80.2 | 79.1 56.3 | 699 | 77.5
RelateLM 66.9 | 81.3 | 78.6 39.7 | 82.3 | 79.8 57.3 | 71.7 | 78.7

Table 5: Different Adaptation Strategies evaluated for zero-shot transfer (F1-score) on NER, POS tagging and Text
Classification after fine-tuning with the Prominent Language (English or Hindi). mBERT, which is trained with
much larger datasets and more languages is not directly comparable, and is presented here just for reference.

tuning on the RPL separately for three tasks: NER,
POS and Text classification. Table 3 presents a sum-
mary of the training, validation data in RPL and test
data in LRL on which we perform zero-shot evalu-
ation. We obtained the NER data from WikiANN
(Pan et al., 2017) and XTREME (Hu et al., 2020)
and the POS and Text Classification data from the
Technology Development for Indian Languages
(TDIL)®. We downsampled the TDIL data for each
language to make them class-balanced. The POS
tagset used was the BIS Tagset (Sardesai et al.,
2012). For the English POS Dataset, we had to
map the PENN tagset in to the BIS tagset. We have
provided the mapping that we used in the Appendix

(B)

Methods compared We contrast RelateLM
with three other adaptation techniques: (1)
EBERT (Wang et al., 2020) that extends the vo-
cabulary and tunes with MLM on Dy, as-is, (2)
RelateLM without pseudo translation loss, and (3)
m-BERT when the language exists in m-BERT.

Training Details For pre-training on MLM we
chose batch size as 2048, learning rate as 3e-5 and
maximum sequence length as 128. We used whole
word masking for MLM and BertWordPieceTok-
enizer for tokenization. For pre-training Hi-BERT
the duplication was taken as 5 with training done
for 40K iterations. For all LRLs where monolin-
gual data used was 20K documents, the duplication
factor was kept at 20 and and training was done for
24K iterations. For Assamese, where monolingual
data was just 6.5K documents, a duplication factor
of 60 was used with the same 24K training itera-
tions. The MLM pre-training was done on Google
v3-8 Cloud TPUs.

For alignment loss on pseudo translation we
chose learning-rate as 5e-5, batch size as 64 and

*https://www.tdil-dc.in

LRL adaptation Prominent | NER | POS | TextC.
Language
Oriya
RelateLM—PseudoT 142 | 72.1 63.2
RelateLM en 164 | 74.1 | 627
EBERT (Wang et al., 2020) 108 | 71.7 53.1
RelateLM—PseudoT hi 22.7 | 74.7 76.5
RelateLM 247 | 75.2 | 76.7
Assamese
RelateLM—PseudoT - 78.2 74.8
RelateLM en - | 774 | 747
EBERT (Wang et al., 2020) - 71.9 78.6
RelateLM —PseudoT hi - 794 | 79.8
RelateLM - 793 | 80.2

Table 6: mBERT+LRL with different adaptation strate-
gies evaluated on NER, POS tagging and Text Classi-
fication with both English and Hindi as the fine-tuning
languages. Accuracy metric is F1.

maximum sequence length as 128. The train-
ing was done for 10 epochs also on Google v3-8
Cloud TPUs. For task-specific fine-tuning we used
learning-rate 2e-5 and batch size 32, with train-
ing duration as 10 epochs for NER, 5 epochs for
POS and 2400 iterations for Text Classification.
The models were evaluated on a separate RPL val-
idation dataset and the model with the minimum
F1-score, accuracy and validation loss was selected
for final evaluation for NER, POS and Text Classifi-
cation respectively. All the fine-tuning experiments
were done on Google Colaboratory. The results
reported for all the experiments are an average of 3
independent runs.

4.2 Multilingual Language Models

We evaluate RelateLM’s adaptation strategy on
mBERT, a state of the art multilingual model with
two unseen languages: Oriya and Assamese. The
script of Oriya is unseen whereas the script of As-
samese is the same as Bengali (already in m-BERT).
Table 6 compares different adaptation strategies in-
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Figure 3: Comparison of F1-score between RelateLM-20K, EBERT-20K and EBERT-80K, where the number after
method name indicates pre-training corpus size. We find that RelateLM-20K outperforms EBERT-20K in 8 out of
9 settings, and even outperforms EBERT-80K, which is trained over 4X more data, in 7 out of 9 settings.

cluding the option of treating each of Hindi and En-
glish as RPL for transliteration into. For both LRLs,
transliterating to Hindi as RPL provides gains over
EBERT that keeps the script as-is and English
transliteration. We find that these gains are much
more significant for Oriya than Assamese, which
could be because Oriya is a new script. Further
augmentation with pseudo translations with Hindi
as RPL, provides significant added gains. We have
not included the NER results for Assamese due to
the absence of good quality evaluation dataset.

4.3 Bilingual Language Models

For more extensive experiments and ablation stud-
ies we move to bilingual models. Table 5 shows
the results of different methods of adapting M to
a LRL with Hi-BERT and BERT as two choices
of M. We obtain much higher gains when the
LRL is transliterated to Hindi than to English or
keeping the script as-is. This suggests that translit-
eration to a related language succeeds in parameter
sharing between a RPL and a LRL. Note that the
English BERT model is trained on a much larger
English corpus than the Hi-BERT model is trained
on the Hindi corpus. Yet, because of the related-
ness of the languages we get much higher accuracy
when adding transliterated data to Hindi rather than
to English. Next observe that pre-training with
alignment loss on pseudo translated sentence pairs
improves upon the results obtained with translitera-
tion. This shows that pseudo translations is a decent
alternative when a parallel translation corpora is
not available.

Overall, we find that RelateLM provides sub-
stantial gains over the baseline. In many cases Re-
lateLM is even better than mBERT which was pre-
trained on a lot more monolingual data in that lan-
guage. Among the three languages, we obtain low-
est gains for Bengali since the phonetics of Bengali

Loss ‘ Dict Lookup ‘ NER ‘ POS ‘ Text C.
Punjabi

MSE | first 62.4 | 80.0 | 77.6
MSE | max 68.2 | 81.3 | 77.6
MSE | root-weighted | 64.9 | 789 | 76.9
MSE | weighted 669 | 81.3 | 78.6
cstv | weighted 68.2 | 80.8 | 794
Gujarati

MSE | first 39.2 | 833 | 78.6
MSE | max 39.1 | 825 | 804
MSE | root-weighted | 39.7 | 82.6 | 79.9
MSE | weighted 39.7 | 823 | 79.8
cstv | weighted 40.2 | 84.0 | 81.6
Bengali

MSE | first 55.5 | 68.0 | 74.0
MSE | max 56.2 | 70.3 | 79.7
MSE | root-weighted | 56.4 | 69.3 | 76.5
MSE | weighted 573 | 71.7 | 78.7
cstv | weighted 56.6 | 67.6 | 76.5

Table 7: Usefulness of Bilingual Dictionaries with
MSE(Mean Squared Error Loss) and cstv(Contrastive
Loss) evaluated on NER, POS tagging and Text Classi-
fication in RelateLM.

varies to some extent from other Indo-Aryan lan-
guages, and Bengali shows influence from Tibeto-
Burman languages too (Kunchukuttan and Bhat-
tacharyya, 2020). This is also evident in the lower
word overlap and lower BLEU in Table 1 and Ta-
ble 2 compared to other Indic languages. We fur-
ther find that in case of Bengali, the NER results are
best when Bengali is transliterated to English rather
than Hindi, which we attribute to the presence of
English words in the NER evaluation dataset.

4.4 Ablation Study

Methods of Dictionary Lookups We experi-
mented with various methods of choosing the trans-
lated word from the lexicon which may have mul-
tiple entries for a given word. In Table 7 we com-
pare four methods of picking entries: first - en-
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try at first position, max-entry with maximum fre-
quency in the monolingual data, weighted - entry
with probability proportional to that frequency and
root-weighted - entry with probability proportional
to the square root of that frequency. We find that
these four methods are very close to each other,
with the weighted method having a slight edge.

Alignment Loss We compare the MSE-based
loss we used with the recently proposed contrastive
loss (Wu and Dredze, 2020) for L4, but did not
get any significant improvements. We have pro-
vided the results for additional experiments in the
Appendix (A)

Increasing Monolingual size In Figure 3 we in-
crease the monolingual LRL data used for adapting
EBERT four-fold and compare the results. We ob-
serve that even on increasing monolingual data, in
most cases, by being able to exploit language relat-
edness, RelateLM outperforms the EBERT model
with four times more data. These experiments show
that for zero-shot generalization on NLP tasks, it
is more important to improve the alignment among
languages by exploiting their relatedness, than to
add more monolingual data.

5 Conclusion and Future Work

We address the problem of adapting a pre-trained
language model (LM) to a Low Web-Resource Lan-
guage (LRL) with limited monolingual corpora.
We propose RelateLM, which explores relatedness
between the LRL and a Related Prominent Lan-
guage (RPL) already present in the LM. RelateLM
exploits relatedness along two dimensions — script
relatedness through transliteration, and sentence
structure relatedness through pseudo translation.
We focus on Indic languages, which have hundreds
of millions of speakers, but are understudied in
the NLP community. Our experiments provide evi-
dence that RelateL.M is effective in adapting mul-
tilingual LMs (such as mBERT) to various LRLs.
Also, Relate].M is able to achieve zero-shot trans-
fer with limited LRL data (20K documents) which
is not surpassed even with 4X more data by exist-
ing baselines. Together, our experiments establish
that using a related language as pivot, along with
data augmentation through transliteration and bilin-
gual dictionary-based pseudo translation, can be
an effective way of adapting an LM for LRLs, and
that this is more effective than direct training or
pivoting through English.

Integrating RelateLM with other complementary
methods for adapting LMs for LRLs (Pfeiffer et al.,
2020b,c) is something we plan to pursue next. We
are hopeful that the idea of utilizing relatedness to
adapt LMs for LRLs will be effective in adapting
LMs to LRLs in other languages families, such as
South-east Asian and Latin American languages.
We leave that and exploring other forms of related-
ness as fruitful avenues for future work.
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Appendix

A Additional Experiments with Contrastive
Loss

Apart from MSE loss, we also experimented with
the recently proposed Contrastive Loss. We present
the results of using contrastive loss with various
methods of dictionary lookups as described in Sec-
tion 4 of the paper, in Table 8

Loss | Dict Lookup | NER | POS | Text C.
Punjabi
cstv | first 73.1 | 80.7 | 75.5
cstv | max 62.1 | 79.8 | 734
cstv | root-weighted | 72.1 | 78.5 | 77.9
cstv | weighted 68.2 | 80.8 | 79.4
Gujarati
cstv | first 399 | 83.3 | 804
cstv | max 38.9 | 84.1 | 80.8
cstv | root-weighted | 39.9 | 83.1 | 76.0
cstv | weighted 40.2 | 84.0 | 81.6
Bengali
cstv | first 56.2 | 67.7 | 77.2
cstv | max 56.9 | 69.2 | 76.9
cstv | root-weighted | 58.5 | 71.1 | 70.9
cstv | weighted 56.6 | 67.6 | 76.5

Table 8: Evaluations on NER, POS tagging and Text
Classification in Relatel. M using Contrastive Loss with
different methods of dictionary lookup

B POS Tagset mapping between Penn
Treebank Tagset and BIS Tagset

For the POS experiments involving m-BERT as the
base model, we fine-tune our trained model with
both English and Hindi training data and calculate
zero-shot results on the target language. However,
the English dataset that we used was annotated
using Penn Treebank Tagset while the rest of the
languages were annotated using BIS Tagset. We
came up with a mapping between the Penn Tags
and the BIS Tags so that the English POS dataset
becomes consistent with the Hindi counterpart. Ta-
ble 9 contains the mapping that we used for the
said conversion. Note that since we are using top-
level tags (e.g Pronouns) instead of sub-level tags
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(e.g Personal Pronouns, Possessive Pronouns) for
the POS classification, the mapping is also done to
reflect the same.

Penn Tagset | BIS Tagset | Penn Tagset BIS Tagset
CcC CcC CD QT
EX RD FW RD
IN PSP 1 1
JIR 1 JIS 1
LS QT MD \%

NN N NNS N
NNP N NNPS N
POS PSP PRP PR
PRP$ PR RB RB
RBR RB RBS RB

RP RP SYM RD

TO RP UH RP

VB \% VBD \%
VBG \Y VBN \Y
VBP \% VBZ \%
WP PR WP$ PR
AFX RD -LRB- RD
-RRB- RD ? $ . ( RD

all, half: QT which, that : PR

PDT such: DM WDT whatever: RP

“default”: QT ”default”: PR

some, every,

];r(::)ltll’leﬂl’a how,wherever,

T when, where: PR

DT an.: QT WRB whenever: RB

this, these,

why: RB

the: DM “default” : PR

those, that: PR ’

“default”: QT

Table 9: Tagset mapping between Penn Treebank and
BIS. For some tags in Penn treebank (e.g. DT), we
decided that a one-to-many mapping was appropriate
based on a word-level division
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