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Abstract

Textual adversarial attacking has received
wide and increasing attention in recent years.
Various attack models have been proposed,
which are enormously distinct and imple-
mented with different programming frame-
works and settings. These facts hinder quick
utilization and fair comparison of attack mod-
els. In this paper, we present an open-
source textual adversarial attack toolkit named
OpenAttack to solve these issues. Com-
pared with existing other textual adversarial
attack toolkits, OpenAttack has its unique
strengths in support for all attack types, multi-
linguality, and parallel processing. Currently,
OpenAttack includes 15 typical attack mod-
els that cover all attack types. Its highly
inclusive modular design not only supports
quick utilization of existing attack models, but
also enables great flexibility and extensibility.
OpenAttack has broad uses including com-
paring and evaluating attack models, measur-
ing robustness of a model, assisting in devel-
oping new attack models, and adversarial train-
ing. Source code and documentation can be
obtained at https://github.com/thunlp/
OpenAttack.

1 Introduction

Deep neural networks (DNNs) have been found
to be susceptible to adversarial attacks (Szegedy
et al., 2014; Goodfellow et al., 2015). The attacker
uses adversarial examples, which are maliciously
crafted by imposing small perturbations on original
input, to fool the victim model. With the wide appli-
cation of DNNs to practical systems accompanied
by growing concern about their security, research
on adversarial attacking has become increasingly
important. Moreover, adversarial attacks are also
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helpful to improve robustness and interpretability
of DNNs (Wallace et al., 2019a).

In the field of natural language processing (NLP),
diverse adversarial attack models have been pro-
posed (Zhang et al., 2020). These models vary in
accessibility to the victim model (ranging from hav-
ing full knowledge to total ignorance) and perturba-
tion level (character-, word- or sentence-level). In
addition, they are originally proposed to attack dif-
ferent victim models on different NLP tasks under
different evaluation protocols.

This immense diversity causes serious difficulty
for fair and apt comparison between different attack
models, which is unfavourable to the development
of textual adversarial attacking. Further, although
most attack models are open-source, they use differ-
ent programming frameworks and settings, which
lead to unnecessary time and effort when imple-
menting them.

To tackle these challenges, a textual adversarial
attacking toolkit named TextAttack (Morris et al.,
2020) has been developed. It implements several
textual adversarial attack models under a unified
framework and provides interfaces for utilizing ex-
isting attack models or designing new attack mod-
els. So far, TextAttack has attracted considerable
attention and facilitated the birth of new attack mod-
els such as BAE (Garg and Ramakrishnan, 2020).

In this paper, we present OpenAttack, which
is also an open-source toolkit for textual adversarial
attacking. Similar to TextAttack, OpenAttack
adopts modular design to assemble various attack
models, in order to enable quick implementation of
existing or new attack models. But OpenAttack
is different from and complementary to TextAttack
mainly in the following three aspects:

(1) Support for all attacks. TextAttack utilizes
a relatively rigorous framework to unify different at-
tack models. However, this framework is naturally
not suitable for sentence-level adversarial attacks,

https://github.com/thunlp/OpenAttack
https://github.com/thunlp/OpenAttack
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Model Accessibility Perturbation Main Idea

SEA (Ribeiro et al., 2018) Decision Sentence Rule-based paraphrasing
SCPN (Iyyer et al., 2018) Blind Sentence Paraphrasing
GAN (Zhao et al., 2018) Decision Sentence Text generation by encoder-decoder
TextFooler (Jin et al., 2020) Score Word Greedy word substitution
PWWS (Ren et al., 2019) Score Word Greedy word substitution
Genetic (Alzantot et al., 2018) Score Word Genetic algorithm-based word substitution
SememePSO (Zang et al., 2020) Score Word Particle swarm optimization-based word substitution
BERT-ATTACK (Li et al., 2020) Score Word Greedy contextualized word substitution
BAE (Garg and Ramakrishnan, 2020) Score Word Greedy contextualized word substitution and insertion
FD (Papernot et al., 2016b) Gradient Word Gradient-based word substitution
TextBugger (Li et al., 2019) Gradient, Score Word+Char Greedy word substitution and character manipulation
UAT (Wallace et al., 2019a) Gradient Word, Char Gradient-based word or character manipulation
HotFlip (Ebrahimi et al., 2018) Gradient Word, Char Gradient-based word or character substitution
VIPER (Eger et al., 2019) Blind Char Visually similar character substitution
DeepWordBug (Gao et al., 2018) Score Char Greedy character manipulation

Table 1: Textual adversarial attack models involved in OpenAttack, among which the three sentence-level
models SEA, SCPN and GAN together with FD, UAT and VIPER are not included in TextAttack for now. “Ac-
cessibility” is the accessibility to the victim model, and “Perturbation” refers to perturbation level. “Sentence”,
“Word” and “Char” denote sentence-, word- and character-level perturbations. In the columns of Accessibility and
Perturbation, “A, B” means that the attack model supports both A and B , while “A+B” means that the attack model
conducts A and B simultaneously.

an important and typical kind of textual adversarial
attacks. Thus, no sentence-level attack models are
included in TextAttack. In contrast, OpenAttack
adopts a more flexible framework that supports all
types of attacks including sentence-level attacks.

(2) Multilinguality. TextAttack only covers En-
glish textual attacks while OpenAttack supports
English and Chinese now. And its extensible design
enables quick support for more languages.

(3) Parallel processing. Running some attack
models maybe very time-consuming, e.g., it takes
over 100 seconds to attack an instance with the
SememePSO attack model (Zang et al., 2020). To
address this issue, OpenAttack additionally pro-
vides support for multi-process running of attack
models to improve attack efficiency.

Moreover, OpenAttack is fully integrated
with HuggingFace’s transformers1 and datasets2

libraries, which allows convenient adversarial at-
tacks against thousands of NLP models (espe-
cially pre-trained models) on diverse datasets.
OpenAttack also has great extensibility. It can
be easily used to attack any customized victim
model, regardless of the used programming frame-
work (PyTorch, TensorFlow, Keras, etc.), on any
customized dataset.
OpenAttack can be used to (1) provide vari-

1https://github.com/huggingface/
transformers

2https://github.com/huggingface/
datasets

ous handy baselines for attack models; (2) compre-
hensively evaluate attack models using its thorough
evaluation metrics; (3) assist in quick development
of new attack models; (4) evaluate the robustness of
an NLP model against various adversarial attacks;
and (5) conduct adversarial training (Goodfellow
et al., 2015) to improve model robustness by en-
riching the training data with generated adversarial
examples.

Recent years have witnesses the rapid devel-
opment of adversarial attacks in computer vision
(Akhtar and Mian, 2018), which is promoted by
many visual attack toolkits such as CleverHans (Pa-
pernot et al., 2018), Foolbox (Rauber et al., 2017),
AdvBox (Goodman et al., 2020), etc. We hope
OpenAttack, together with TextAttack and other
similar toolkits, can play a constructive role in the
development of textual adversarial attacks.

2 Formalization and Categorization of
Textual Adversarial Attacking

We first formalize the task of textual adversarial
attacking for text classification, and the following
formalization can be trivially adapted to other NLP
tasks. For a given text sequence x that is correctly
classified as its ground-truth label y by the vic-
tim model F , the attack model A is supposed to
transform x into x̂ by small perturbations, whose
ground-truth label is still y but classification result
given by F is ŷ 6= y. Next, we introduce the catego-

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets
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rization of textual adversarial attack models from
three perspectives.

According to the attack model’s accessibility
to the victim model, existing attack models can
be categorized into four classes, namely gradient-
based, score-based, decision-based and blind mod-
els. First, gradient-based attack models are also
called white-box attack models, which require full
knowledge of the victim model to conduct gradi-
ent update. Most of them are inspired by the fast
gradient sign method (Goodfellow et al., 2015) and
forward derivative method (Papernot et al., 2016a)
in visual adversarial attacking.

In contrast to white-box attack models, black-
box models do not need to have complete informa-
tion on the victim model, and can be subcategorized
into score-based, decision-based and blind mod-
els. Blind models are ignorant of the victim model
at all. Score-based models require the prediction
scores (e.g., classification probabilities) of the vic-
tim model, while decision-based models only need
the final decision (e.g., predicted class).

According to the level of perturbations imposed
on original input, textual adversarial attack mod-
els can be classified into sentence-level, word-
level and character-level models. Sentence-level
attack models craft adversarial examples mainly by
adding distracting sentences (Jia and Liang, 2017),
paraphrasing (Iyyer et al., 2018; Ribeiro et al.,
2018) or text generation by encoder-decoder (Zhao
et al., 2018). Word-level attack models mostly con-
duct word substitution, namely substituting some
words in the original input with semantically iden-
tical or similar words such as synonyms (Jin et al.,
2020; Ren et al., 2019; Alzantot et al., 2018). Some
word-level attack models also use operations in-
cluding deleting and adding words (Zhang et al.,
2019; Garg and Ramakrishnan, 2020). Character-
level attack models usually carry out character ma-
nipulations including swap, substitution, deletion,
insertion and repeating (Eger et al., 2019; Ebrahimi
et al., 2018; Belinkov and Bisk, 2018).

Finally, adversarial attack models can also be cat-
egorized into targeted and untargeted models based
on whether the wrong classification result given by
the victim model (ŷ) is pre-specified (mainly for
the multi-class classification models). Most exist-
ing attack models support (by minor adjustment)
both targeted and untargeted attacks, and we give
no particular attention to this attribute of attack
models in this paper.
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Figure 1: Overall architecture of OpenAttack.

Currently OpenAttack includes 15 different
attack models, which cover all the victim model
accessibility and perturbation level types. Table 1
lists the attack models involved in OpenAttack.

3 Toolkit Design and Architecture

In this section, we describe the design philosophy
and modular architecture of OpenAttack.

We extract and properly reorganize the com-
monly used components from different attack mod-
els, so that any attack model can be assembled
by them. Considering the significant distinctions
among different attack models, especially those
between the sentence-level and word/char-level at-
tack models, it is hard to embrace all attack models
within a unified framework like TextAttack. There-
fore, we leave considerable freedom for the skele-
ton design of attack models, and focus more on
streamlining the general processing of adversarial
attacking and providing common components used
in attack models. Next we introduce the modules of
OpenAttack one by one, and Figure 1 illustrates
an overview of all the modules.

• TextProcessor. This module is aimed at pro-
cessing the original input so as to assist at-
tack models in generating adversarial exam-
ples. It consists of several functions used for
tokenization, lemmatization, delemmatization,
word sense disambiguation (WSD), named en-
tity recognition (NER) and dependency parsing.
Currently it supports English and Chinese, and
support for other languages can be realized sim-
ply by rewriting the TextProcessor base class.

• Victim. This module wraps the victim model.
It supports both neural network-based model
implemented by any programming framework
(especially the HuggingFace’s transformers) and
traditional machine learning model. It is mainly
composed of three functions that are used to
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obtain the gradient with respect to the input, pre-
diction scores and predicted class of a victim
model.

• Attacker. This is the core module of
OpenAttack. It comprises various attack
models and can generate adversarial examples
for given input against a victim model.

• AttackAssist. This is an assistant module of
Attacker. It mainly packs different word and
character substitution methods that are widely
used in word- and character-level attack mod-
els. Attacker queries this module to get substi-
tutions for a word or character. Now it includes
word embedding-based (Alzantot et al., 2018;
Jin et al., 2020), synonym-based (Ren et al.,
2019) and sememe-based (Zang et al., 2020)
word substitution methods, and visual character
substitution method (Eger et al., 2019). In addi-
tion, some useful components used in sentence-
level attack models are also included, such as
paraphrasing based on back-translation.

• Metric. This module provides several adversar-
ial example quality metrics which can serve as ei-
ther the constraints on the adversarial examples
during attacking or evaluation metrics for eval-
uating adversarial attacks. It currently includes
following metrics: (1) language model predic-
tion score for a given word in a context given by
Google one-billion words language model (Joze-
fowicz et al., 2016) (this metric can be used as
the constraint on adversarial examples only); (2)
word modification rate, the percentage of modi-
fied words of an adversarial example compared
with the original example; (3) formal similar-
ity between the adversarial example and origi-
nal example, which is measured by Levenshtein
edit distance (Levenshtein, 1966), character- and
word-level Jaccard similarity (Jaccard, 1912)
and BLEU score (Papineni et al., 2002); (4)
semantic similarity between the adversarial ex-
ample and original example measured by Uni-
versal Sentence Encoder (Cer et al., 2018) and
Sentence Transformers (Reimers and Gurevych,
2019); (5) adversarial example fluency measured
with perplexity computed by GPT-2 (Radford
et al., 2019); and (6) grammaticality measure by
the grammatical errors given by LanguageTool.3

3https://www.languagetool.org

Perspective Metric Better?

Attack
Effectiveness

Attack Success Rate Higher

Adversarial
Example
Quality

Word Modification Rate Lower
Formal Similarity Higher

Semantic Similarity Higher
Fluency (GPT-2 perplexity) Lower

Grammaticality (Grammatical Errors) Lower
Attack

Efficiency
Average Victim Model Query Times Lower

Average Running Time Lower

Table 2: Evaluation metrics in OpenAttack.
“Higher” and “Lower” mean the higher/lower the met-
ric is, the better an attack model performs.

• AttackEval. This module is used to evaluate
textual adversarial attacks from different per-
spectives including attack effectiveness, adver-
sarial example quality and attack efficiency: (1)
the attack effectiveness metric is attack success
rate, the percentage of the attacks that success-
fully fool the victim model; (2) adversarial exam-
ple quality is measured by the last five metrics
in the Metric module; and (3) attack efficiency
has two metrics including average victim model
query times and average running time of attack-
ing one instance. Table 2 lists all the evaluation
metrics in OpenAttack.

The realization of multi-processing is incorpo-
rated in this module, with the help of Python
multiprocessing library. In addition, this
module can also visualize and save attack re-
sults, e.g., display original input and adversarial
examples and emphasize their differences.

• DataManager. This module manages all the
data as well as saved models that are used
in other modules. It supports accessing and
downloading data/models. Specifically, it deals
with the data used in the AttackAssist module
such as character embeddings, word embeddings
and WordNet synonyms, the models used in
the TextProcessor module such as NER model
and dependency parser, the built-in trained vic-
tim models, and auxiliary models used in At-
tacker such as the paraphrasing model for the
paraphrasing-based attack models. This module
helps efficiently and handily utilize data.

4 Toolkit Usage

OpenAttack provides a set of easy-to-use inter-
faces that can meet almost all the needs in textual
adversarial attacking, such as preprocessing text,
generating adversarial examples to attack a victim

https://www.languagetool.org
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Figure 2: Part of attack results for individual instances.

model and evaluating attack models. Moreover,
OpenAttack has great flexibility and extensibil-
ity and supports easy customization of victim mod-
els and attack models. Next, we showcase some
basic usages of OpenAttack.

4.1 Built-in Attack and Evaluation

OpenAttack builds in some commonly used
NLP models such as LSTM (Hochreiter and
Schmidhuber, 1997) and BERT (Devlin et al.,
2019) that have been trained on commonly used
NLP datasets. Users can use the built-in victim
models to quickly conduct adversarial attacks. The
following code snippet shows how to use Genetic
(Alzantot et al., 2018) to attack BERT on the test
set of SST-2 (Socher et al., 2013) with 4-process
parallel running:

import OpenAttack as oa
import datasets # HuggingFace’s datasets library
import multiprocessing
# choose a trained victim model
victim = oa.loadVictim(’BERT.SST’)
# choose a evaluation dataset from datasets
dataset = datasets.load_dataset(’sst’, ’test’)
# choose Genetic as the attacker
attacker = oa.attackers.GeneticAttacker()
# prepare for multi-process attacking
attack_eval = oa.attack_evals.

MultiProcessAttackEval(attacker, victim,
num_process=4)

# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)

Figure 2 displays the printed attack results for
individual instances from above code. We can see
OpenAttack prints the original input as well as
the word-aligned adversarial example, where the
perturbed words are colored. In addition, a series
of attack evaluation results are listed. At the end of
individual attack results, OpenAttack provides
an attack summary composed of average evaluation
results of specified metrics among all instances, as
shown in Figure 3.

Figure 3: Summary of attack results.

4.2 Customized Victim Models

It is very common for users to launch attacks
against their own models that have been trained
on specific datasets, particularly when evaluating
the robustness of a victim model. It is impossible to
exhaustively build in all victim models. Thus, easy
customization for victim models is very important.
OpenAttack provides simple and convenient

interfaces for victim model customization. For a
trained model implemented with whichever pro-
gramming framework, users just need to configure
some model access interfaces that provide accessi-
bility required for the attack model under the Vic-
tim class. The following code snippet shows how
to use Genetic to attack a customized sentiment
analysis model, a statistical model in NLTK (Bird
et al., 2009), on the test set of SST.

import OpenAttack as oa
import numpy as np
import datasets
from nltk.sentiment.vader import

SentimentIntensityAnalyzer

# configure access interface of customized model
class MyModel(oa.Victim):

def __init__(self):
self.model = SentimentIntensityAnalyzer()

def get_prob(self, input_):
rt = []
for sent in input_:

rs = self.model.polarity_scores(sent)
prob = rs["pos"] / (rs["neg"] + rs["

pos"])
rt.append(np.array([1 - prob, prob]))

return np.array(rt)
# choose evaluation dataset
dataset = datasets.load_dataset(’sst’,’test’)
# choose the customized victim model
victim = MyModel()
# choose Genetic as the attack model
attacker = oa.attackers.GeneticAttacker()
# prepare for attacking
attack_eval = oa.attack_evals.DefaultAttackEval(

attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)

In addition, OpenAttack supports easy cus-
tomization of attack models thanks to its inclusive
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Model
Type Effectiveness Adversarial Example Quality Attack Efficiency

Accessibility Perturbation ASR WMR LES SemSim Fluency Grm #Query T1 T2 S

SEA Decision Sentence 0.12 – 14.7 0.90 398 2.2 2.0 37.1 – –
SCPN Blind Sentence 0.68 – 55.6 0.56 432 2.7 11.0 3.58 2.30 1.56
GAN Decision Sentence 0.41 – 68.8 0.26 512 4.2 2.0 0.60 2.00 0.30

TextFooler Score Word 0.90 0.11 14.1 0.87 621 4.6 130.5 5.75 3.25 1.77
PWWS Score Word 0.78 0.20 17.9 0.84 613 2.9 124.8 5.26 2.88 1.83
Genetic Score Word 0.36 0.11 13.4 0.88 689 4.7 242.1 54.11 27.56 1.96

SememePSO Score Word 0.82 0.14 2.9 0.89 711 2.9 177.9 102.44 52.41 1.95
BERT-ATTACK Score Word 0.87 0.31 4.2 0.86 796 4.4 51.9 2.38 1.57 1.51

BAE Score Word 0.77 0.68 5.4 0.82 1147 4.3 103.0 2.97 1.79 1.66
FD Gradient Word 0.16 0.24 17.9 0.85 908 3.1 10.9 34.57 28.36 1.22

TextBugger Gradient Word+Char 0.25 0.15 10.6 0.61 512 7.1 150.0 8.49 4.37 1.94
UAT Gradient Word 0.43 0.15 24.0 0.85 620 2.8 2.0 0.08 – –

HotFlip Gradient Word 0.47 0.08 8.9 0.93 333 2.7 105.4 2.77 1.82 1.52
VIPER Blind Char 0.27 – 24.2 0.22 347 15.8 3.0 4.01 2.04 1.97

DeepWordBug Score Char 0.46 – 7.9 0.73 731 6.1 22.0 0.97 0.62 1.56

Table 3: Evaluation results of different attack models when attacking BERT on SST-2. ASR = Attack Success
Rate, WMR = Word Modification Rate that is only applicable to word-level attacks, LES = Levenshterin Edit
Distance, SemSim = Semantic Similarity measured by Universal Sentence Encoder, Fluency = GPT-2 perplexity,
Grm = number of grammatical errors, #Query = average victim model query times, T1 and T2 represent average
running time of attacking one instance (seconds) with single and dual process, S = T1/T2 is speedup. Notice that it
is meaningless to run SEA and UAT with multi-process because they learn and conduct global perturbations.

modular design. Due to limited space, please visit
the GitHub project page for more examples includ-
ing attacking HuggingFace’s pre-trained models,
using customized evaluation metrics and conduct-
ing adversarial training.4

5 Evaluation

In this section, we conduct evaluations for all the
attack models included in OpenAttack.

We use SST-2 as the evaluation dataset and
choose BERT, specifically BERTBASE, as the vic-
tim model. After fine-tuning on the training set,
BERT achieves 90.31 accuracy on the test set. Due
to great diversity of attack models, it is hard to
impose many constraints on attacks like previous
work that focuses on a specific kind of attack. We
only restrict the maximum victim model query
times to 500. In addition, to improve evaluation
efficiency, we randomly sample 1, 000 correctly
classified instances from the test set as the original
input to be perturbed. We use the original default
hyper-parameter settings of all attack models.

Table 3 shows the evaluation results. By compar-
ison with originally reported results, we confirm
the correctness of our implementation. We also
observe that multi-processing can effectively im-
prove attack efficiency of most attack models (the
speedup is greater than 1). For some very efficient
attack models whose average running time is quite

4https://github.com/thunlp/OpenAttack/
tree/master/examples

short (like GAN), the additional time cost from
multi-processing may reduce efficiency instead.

6 Related Work

There have been quite a few open-source libraries
of generating adversarial examples for continuous
data, especially images, such as CleverHans (Pa-
pernot et al., 2018), Foolbox (Rauber et al., 2017),
Adversarial Robustness Toolbox (ART) (Nicolae
et al., 2018) and AdvBox (Goodman et al., 2020).
These libraries enable practitioners to easily make
adversarial attacks with different methods and have
greatly facilitated the development of adversarial
attacking for continuous data.

As for discrete data, particularly text, there ex-
ist few adversarial attack libraries. As far as we
know, TextAttack (Morris et al., 2020) is the only
such library. It utilizes a relatively rigorous frame-
work to unify many attack models and provides
interfaces for using the existing attack models or
designing new attack models. As mentioned in
Introduction, our OpenAttack is mainly differ-
ent from and complementary to TextAttack in all-
attack-type support, multilinguality and parallel
processing.

There are also some other toolkits concerned
with textual adversarial attacking. TEAPOT
(Michel et al., 2019) is an open-source toolkit
to evaluate the effectiveness of textual adversar-
ial examples from the perspective of preservation
of meaning. It is mainly designed for the attacks

https://github.com/thunlp/OpenAttack/tree/master/examples
https://github.com/thunlp/OpenAttack/tree/master/examples
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against sequence-to-sequence models, but can also
be geared towards text classification models. Al-
lenNLP Interpret (Wallace et al., 2019b) is a frame-
work for explaining the predictions of NLP models,
where adversarial attacking is one of its interpreta-
tion methods. It focuses on interpretability of NLP
models and only incorporates two attack models.

7 Conclusion and Future Work

In this paper, we present OpenAttack, an open-
source textual adversarial attack toolkit that pro-
vides a wide range of functions in textual adversar-
ial attacking. It is a great complement to existing
counterparts because of its unique strengths in all-
attack-type support, multilinguality and parallel
processing. Moreover, it has great flexibility and
extensibility and provides easy customization of
victim models and attack models. In the future,
we will keep OpenAttack updated to incorpo-
rate more up-to-date attack models and support
more functions to facilitate the research on textual
adversarial attacks.
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