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Abstract
There is growing evidence that the prevalence
of disagreement in the raw annotations used to
construct natural language inference datasets
makes the common practice of aggregating
those annotations to a single label problematic.
We propose a generic method that allows one
to skip the aggregation step and train on the
raw annotations directly without subjecting the
model to unwanted noise that can arise from
annotator response biases. We demonstrate
that this method, which generalizes the notion
of a mixed effects model by incorporating an-
notator random effects into any existing neu-
ral model, improves performance over models
that do not incorporate such effects.

1 Introduction

A common method for constructing natural lan-
guage inference (NLI) datasets is (i) to gener-
ate text-hypothesis pairs using some method—
commonly, crowd-sourced hypothesis elicitation
given a text from some existing resource (Bowman
et al., 2015; Williams et al., 2018) or automated
text-hypothesis generation (Zhang et al., 2017); (ii)
to collect crowd-sourced judgments about infer-
ence from the text to the hypothesis; and (iii) to ag-
gregate the possibly multiple annotations provided
for a single text-hypothesis pair into a single label.
This final step follows common practice across an-
notation tasks in NLP; but for NLI in particular,
there is growing evidence that it is problematic due
to disagreement among annotators that is not cap-
tured by the probabilistic outputs of standard NLI
models (Pavlick and Kwiatkowski, 2019).

One way to capture this disagreement would be
to directly model the variability in the raw annota-
tions. But this approach presents a challenge: it can
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Figure 1: Distribution of [-50, 50] slider ratings (by
annotator) for the same 20 NLI pairs in Pavlick and
Kwiatkowski’s dataset (batch 1, described in their §3).

be difficult to assess how much disagreement arises
from disagreement about the interpretation of a
text-hypothesis pair and how much is due to biases
that annotators bring to the task. Such biases can
be extreme. For instance, Figure 1 plots the distri-
bution by annotator of [-50, 50] ratings—with -50
clear contradiction and 50 clear entailment—for the
same 20 NLI pairs in Pavlick and Kwiatkowski’s
dataset. Despite describing responses to the same
items, the distributions are quite variable, sug-
gesting variability in how annotators approach the
task. This difference in approach may be relatively
shallow—e.g. given some true label (or distribution
thereon), annotators merely differ in their mapping
of that value to the response scale—or they may be
quite deep—e.g. annotators differ in how they inter-
pret the relationship between texts and hypotheses.

We investigate both of these possibilities within
a mixed effects modeling framework (Gelman and
Hill, 2014). The core idea is to incorporate
annotator-specific parameters into standard NLI
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models that either (i) merely modify the output
of a standard classification/regression head or (ii)
modify the parameters of the head itself. These
two options correspond to the mixed effects mod-
eling concepts of random intercepts and random
slopes, respectively. For the same reason that such
random effects can be incorporated into effectively
any generalized linear model in a modular way, our
components can be be similarly incorporated into
any NLI model. We describe how this can be done
for a simple RoBERTa-based NLI model.

We find (i) that models containing only random
intercepts outperform both standard models and
models containing random slopes when annotators
are known; and (ii) that when annotators are not
known, performance drops precipitously for both
random effects models. Together, these findings
suggest that those building NLI datasets should
provide annotator information and that those de-
veloping NLI systems should incorporate random
effects into their models.

2 Extended Task Definition

In the standard supervised setting, NLI datasets are
(graphs of) functions from text-hypothesis pairs
〈Ti, Hi〉 ∈ Σ∗ × Σ∗ to inference labels yi ∈ Y—
where Y is commonly {contradicted, neutral, en-
tailed} or {not-entailed, entailed}, but may also
be a finer-grained (e.g. five-point) ordinal scale
(Zhang et al., 2017) or bounded continuous scale
(Chen et al., 2020). The NLI task is to produce a
single label from Y given a text-hypothesis pair.

We extend this setting by assuming that NLI
datasets are (graphs of) functions from text-
hypothesis pairs and annotator identifiers ai ∈ A
to inference labels and that the NLI task is to pro-
duce a single label given a text-hypothesis pair and
an annotator identifier. A particular model need
not make use of the annotator information during
training and may similarly ignore it at evaluation
time. Though many existing datasets do not pro-
vide annotator information, it is trivial for a dataset
creator to add (even post hoc), and so this extension
could feasibly be applied to any existing dataset.

3 Models

We assume some encoder that maps from
〈Ti, Hi〉 ∈ Σ∗ × Σ∗ to 〈xTi ,xHi〉 ∈ RM × RN

independently of annotator ai, and we focus mainly
on the mapping from zi ≡ 〈xTi ,xHi〉 and ai to yi.

We consider two types of model: one contain-
ing only annotator random intercepts and another
additionally containing annotator random slopes.
The first assumes that differences among annota-
tors are relatively shallow—e.g. given some true
label for a pair (or distribution thereon), annota-
tors have their own specific way of mapping that
value to a response—and the second assumes that
the differences among annotators are deeper—e.g.
annotators differ in how they interpret the relation
between texts and hypotheses. This distinction is
independent of the labels Y: regardless of whether
the labels are discrete or continuous, random ef-
fects can be incorporated. In the language of gener-
alized linear mixed models, the link functions are
the only thing that changes. We consider two label
types: three-way ordinal and bounded continuous.

Annotator random intercepts amount to anno-
tator specific bias terms ρai on the raw predictions
of a classification/regression head. Unlike stan-
dard fixed bias terms, however, what makes these
terms random intercepts is that they are assumed to
be distributed according to some prior distribution
with unknown parameters. This assumption mod-
els the idea that annotators are sampled from some
population, and it yields ‘adaptive regularization’
(McElreath, 2020), wherein the biases for annota-
tors who provide few labels will be drawn more
toward the central tendency of the prior.

Random intercepts for categorical outputs
can take two forms, depending on whether the
model enforces ordinality constraints—as linked
logit models do (Agresti, 2014)—or not. Since
most common categorical NLI models do not en-
force ordinality constraints, we do not enforce them
here, assuming that the model has some indepen-
dently tunable function hθ : RM × RN → R|Y|
that produces potentials for each label and that:

f(yi | zi,θ,ρai) = softmax (hθ(zi) + ρai)

where ρai ∼ N (0,Σ) with unknown Σ.

Random intercepts for continuous outputs
are effectively shifting terms on the single value
predicted by some independently tunable function
h : RM × RN → R. If the continuous output
is furthermore bounded, a squashing function g is
necessary. In the bounded case, we assume that
the variable—scaled to (0, 1)—is distributed Beta
(following Sakaguchi and Van Durme, 2018) with
mean µi and precision νi = exp (ρai1 + ν0).



MegaVeridicality
I Someone knew that something happened.

That thing happened.
I Someone thought that something happened.

That thing happened.

MegaNegRaising
I Someone didn’t think that something happened.

That person thought that thing didn’t happen.
I Someone didn’t know that something happened.

That person knew that thing didn’t happen.

Table 1: NLI sentence pairs from MegaVeridicality and
MegNegRaising. I indicates the line is a text, and
the following line is its corresponding hypothesis. Hy-
potheses in green indicate that the context entails the
hypothesis; those in red indicate that it does not.

µi = g (hθ(zi) + ρai2)

αi; βi = µiνi; (1− µi)νi
f(yi | zi,θ,ρai ; ν0) = Beta(yi | αi, βi)

where ρai ∼ N (0,Σ) with unknown Σ. This
implies that νi ∼ logN (ν0, σ

2
11) with unknown ν0.

The precision parameter νi controls the shape of
the Beta: with small νi, ai tends to give responses
near 0 and 1 (whichever is closer to µi); with large
νi, ai tends to give responses near µi.
Annotator random slopes amount to annotator-
specific classification/regression heads hφi

. We
swap these heads into the above equations in place
of hθ. As for the random intercept parameters, we
assume that the annotator-specific parameters φi,
which we refer to as the annotator random slopes,
are distributed φi ∼ N (θ,Σ) with unknown θ,Σ.
One way to think about this model is that hθ pro-
duces prototypical interpretation around which an-
notators’ actual interpretations are distributed.

4 Experiments

We compare models both with and without ran-
dom effects when fit to NLI datasets conforming
to the extended setting described in §2. The model
without random intercepts (the fixed model) simply
ignores annotator information—effectively locking
ρai to 0 for all annotators ai.
Encoder All models use pretrained RoBERTa
(Liu et al., 2019) as their encoder. We use the basic
LM pretrained versions (no NLI fine-tuning).
Data To our knowledge, the only NLI datasets
that both publicly provide annotator identifiers
and are large enough to train an NLI system are
MegaVeridicality (MV; White and Rawlins, 2018;
White et al., 2018), which contains three-way cate-
gorical annotations aimed at assessing whether dif-
ferent predicates give rise to veridicality inferences

in different syntactic structures, and MegaNegRais-
ing (MN; An and White, 2020), which contains
bounded continuous [0, 1] annotations aimed at
assessing whether different predicates give rise to
neg(ation)-raising inferences in different syntactic
structures. Table 1 shows example pairs from each
dataset. Both datasets contain 10 annotations per
text-hypothesis pair from 10 different annotators.
MV contains 3,938 pairs (39,380 annotations) with
507 distinct annotators, and MN contains 7,936
pairs (79,360 annotations) with 1,108 distinct an-
notators. In both datasets, each pair is constructed
to include a particular main clause predicate and a
particular syntactic structure. To test each model’s
robustness to lexical and structure variability, we
use this information to construct folds of the cross-
validation (see Evaluation).
Classification/Regression Heads We consider
heads with one hidden affine layer followed by
a rectifier. We use a hidden layer size of 128 and
the default RoBERTa-base input size of 768.
Training All models were implemented in Py-
Torch 1.4.0 and were trained for a maximum of 25
epochs on a single Nvidia GeForce GTX 1080 Ti
GPU, with early stopping upon a change in average
per-epoch loss of less than 0.01. We use Adam opti-
mization (lr=0.01, β1=0.9, β2=0.999, ε=10−7) and
a batch size of 128. All code is publicly available.
Loss We use the negative log-likelihood of the
observed values under the model as the loss.
Evaluation We evaluate all of our models using
5-fold cross-validation. We consider four partition-
ing methods: (i) RANDOM: completely random
partitioning; (ii) PREDICATE: partitioning by the
main clause predicate found in the text (a particular
main clause predicate occurs in one and only one
partition); (iii) STRUCTURE: partitioning by the
syntactic structure found in the text (a particular
structure occurs in one and only one partition); and
(iv) ANNOTATOR: a particular annotator occurs in
one and only one partition. For the first three meth-
ods, we ensure that each annotator occurs in every
partition, so that random intercepts and random
slopes for that annotator can be estimated. For the
ANNOTATOR method, where we do not have an
estimate for the random effects of annotators in the
held-out data, we use the mean of the prior.1

We report mean accuracy on held-out folds for
the categorical data (MV); and following Chen et al.

1We additionally experimented with marginalizing over
the random effects, but the results did not differ.

https://github.com/wgantt/nli-mixed-models


RANDOM PREDICATE STRUCTURE ANNOTATOR

Model Acc Corr Acc Corr Acc Corr Acc Corr

Fixed 1.00 0.35 0.92 0.23 0.83 0.27 0.91 0.31
Random Intercepts 1.15 1.53 1.13 1.53 1.05 1.53 0.98 0.20
Random Slopes 1.17 1.42 1.13 1.42 0.82 1.41 0.42 0.05

Table 2: Mean of the rescaled accuracy (categorical data) and rank correlation (bound continuous data) across
cross-validation folds for each partitioning method (scoremod from §4). Bolded values are best in column.
(2020), we report mean rank correlation on held-
out folds for the bounded continuous data (MN).
To make these metrics comparable, we report them
relative to the performance of both a baseline model
and the best possible fixed model.

scoremod =
raw-scoremod − raw-scorebase

raw-scorebest − raw-scorebase

For the categorical data, the baseline model pre-
dicts the majority class across all pairs, and the
best possible fixed model predicts the majority
class across annotators for each pair. Similarly, for
the bounded continuous data, the baseline model
predicts the mean response across all pairs, and
the best possible fixed model predicts the mean
response across annotators for each pair.2

These relative scores are 0 when the model does
not outperform the baseline and 1 when the model
performs as well as the best possible fixed model.
It is possible for a random effects model to obtain
a score of greater than 1 by leveraging annotator
information or less than 0 if it overfits the data.

5 Results

Table 2 shows the results. The random intercepts
models reliably outperform the fixed models in
all cross-validation settings except ANNOTATOR

in Bonferroni-corrected Wilcoxon rank-sum tests
(ps<0.05). Indeed, they tend to reliably outperform
even the best possible fixed model, having rescaled
scores above 1. The random slopes models, while
in many cases comparable to the random intercepts
models, confer no additional benefit over them. In
the one instance in which the random slopes model
performs best (the random partition for categorical
data), the advantage relative to the random inter-
cepts model is not statistically significant.

Consistent with Pavlick and Kwiatkowski’s find-
ings, these results suggest that variability in annota-
tors’ responding behavior is substantial; otherwise,
it would not be possible for the random effects

2Rank correlation is technically undefined when one of the
variables is constant. For the purposes of computing scoremod
for the bounded continuous data, we treat raw-scorebase as 0.

models to outperform the best possible fixed model,
and we would not expect the observed drops in per-
formance when annotator information is removed.
But this variability is likely relatively shallow: if
these differences were due to deeper differences
in annotators’ interpretation of the pair, we would
expect this to manifest in better performance by the
random slopes models, as the latter subsumes the
random intercepts model and can leverage the ad-
ditional power of annotator-specific classification
or regression heads. Of course, it remains a live
possibility that the encoder we used does not ex-
tract features that are linearly related to the relevant
interpretive variability, and so further investigation
of random slopes models with different encoders
may be warranted (see Geva et al., 2019).

Contrasting the results on ordinal and bounded
continuous data, the fixed model tends to perform
better on ordinal data than on bounded continu-
ous data. A similar trend is not seen for the ran-
dom effects models. Indeed, the random intercepts
model performs substantially better on the bounded
continuous data under all settings except for AN-
NOTATOR. These results could be due to the link
function we used for the bounded continuous data:
the fixed model consistently learned small values
for the precision parameter ν0, resulting in sparse
(bimodal) beta distributions. But the fact that the
random intercepts model reliably outperforms the
best possible fixed model implies that any tweaks
to the link function would not bring the fixed model
up to the level of the random intercepts model.

6 Analysis

To understand how annotator biases tend to pat-
tern with ordinal and bounded continuous scales,
we investigate the mean ρa for each annotator a
in the random intercepts models across folds un-
der the RANDOM partition method. Figure 2 plots
the distribution of biases across categorical annota-
tors when the fixed effect potentials—hθ(zi) in the
equations in §3—are set to 0: softmax(ρa). This
distribution can be thought of as an indicator of



Figure 2: Distribution of biases across categorical an-
notators when fixed effect potentials set to 0.

how an annotator would respond in the absence of
any correct answer. We see the most variability
in terms of annotators’ biases for or against neu-
tral: the interquartile range for neutral biases is
[0.23, 0.42] compared to [0.24, 0.41] for contra-
diction and [0.25, 0.40] for entailment. Interest-
ingly, these biases do not reflect the fact that the
scale is ordinal: if they did, we would expect more
positive correlations between adjacent values; but
neutral biases are more strongly rank anticorrelated
with contradiction (r = −0.57) and entailment (r =
−0.48) than contradiction is with entailment (r =
−0.35). This finding suggests that three-value “or-
dinal” NLI scales are better thought of as nominal.

Figure 3 plots the analogous distribution for the
bounded continuous annotators, with the y-axis
showing ρa1 and the x-axis showing logit−1(ρa2).
The lines behind the points show, for particular
values of hθ(zi), the ρa1 at which the distribu-
tion for a particular annotator becomes sparse—
i.e. where α, β < 1—heavily favoring responses
very near zero or one, rather than the mean. We
see a weak rank correlation (r = 0.24, p < 0.05)
between precision and annotators’ biases to give
responses nearer to one, suggesting that one-biased
annotators tend to give less sparse responses. This
correlation might, in part, explain the poor perfor-
mance of the bounded continuous models in the
ANNOTATOR cross-validation setting.

7 Related Work

The models developed here are closely related to
models from Item Response Theory (IRT). IRT has
been used to assess annotator quality (Hovy et al.,
2013, 2014; Rehbein and Ruppenhofer, 2017; Paun
et al., 2018a,b; Zhang et al., 2019; Felt et al., 2018)
and various properties of an item (Passonneau and

Figure 3: Distribution of biases across bounded contin-
uous annotators when fixed effect potentials set to 0.
Carpenter, 2014; Sakaguchi and Van Durme, 2018;
Card and Smith, 2018), including difficulty (Lalor
et al., 2016, 2018, 2019). Other non-IRT-based
work attempts to measure the relationship between
annotator disagreement and item difficulty (Plank
et al., 2014; Kalouli et al., 2019).

Other recent work focuses on incorporating
annotator information in modeling annotator-
generated text. Geva et al. (2019) find that concate-
nating annotator IDs as input features to a BERT-
based text generation model yields improved per-
formance on several datasets. Although we reach
similar conclusions about the importance of anno-
tator information in this work, our approach dif-
fers in at least one critical respect: by explicitly
distinguishing linguistic input from annotator infor-
mation, our model cleanly separates the linguistic
representations from representations of the anno-
tators interpreting or producing those representa-
tions. This clean separation is of potential benefit
not only to those interested in using NLI models
(or deep learning architectures more generally) in
an experimental (psycho)linguistics setting, where
distinguishing the two sorts of representations can
be crucial, but also to those interested in possibly
quite substantial reductions in model size.

8 Conclusion
We find (i) that models containing only random
intercepts outperform standard models when anno-
tators are known, and (ii) that models that further
contain random slopes do not yield any additional
benefit. These results indicate that, though differ-
ences among NLI annotators’ response behavior
are important to model, these differences may not
be particularly deep, limited to the ways in which
annotators use the response scale, but not relating
to deeper interpretive differences.
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