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Abstract

We seek to maximally use various data
sources, such as parallel and monolingual data,
to build an effective and efficient document-
level translation system. In particular, we start
by considering a noisy channel approach (Yu
et al., 2020) that combines a target-to-source
translation model and a language model. By
applying Bayes’ rule strategically, we reformu-
late this approach as a log-linear combination
of translation, sentence-level and document-
level language model probabilities. In addi-
tion to using static coefficients for each term,
this formulation alternatively allows for the
learning of dynamic per-token weights to more
finely control the impact of the language mod-
els. Using both static or dynamic coefficients
leads to improvements over a context-agnostic
baseline and a context-aware concatenation
model.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) has been re-
ported to reach near human-level performance
on sentence-by-sentence translation (L&dubli et al.,
2018). Going beyond sentence-level, document-
level NMT aims to translate sentences by taking
into account neighboring source or target sentences
in order to produce a more cohesive output (Jean
etal., 2017; Wang et al., 2017; Maruf et al., 2019).
These approaches often train new models from
scratch using parallel data.

In this paper, in a similar spirit to Voita et al.
(2019a); Yu et al. (2020), we seek a document-level
approach that maximally uses various available cor-
pora, such as parallel and monolingual data, lever-
aging models trained at the sentence and document
levels, while also striving for computational effi-
ciency. We start from the noisy channel model (Yu
et al., 2020) which combines a target-to-source
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translation model and a document-level language
model. By applying Bayes’ rule, we reformulate
this approach into a log-linear model. It consists
of a translation model, as well as sentence and
document-level language models. This reformula-
tion admits an auto-regressive expression of token-
by-token target document probabilities, facilitating
the use of existing inference algorithms such as
beam search. In this log-linear model, there are
coefficients modulating the impact of the language
models. We first consider static coefficients and,
for more fine-grained control, we train a merging
module that dynamically adjusts the LM weights.

With either static or dynamic coefficients, we ob-
serve improvements over a context-agnostic base-
line, as well as a context-aware concatenation
model (Tiedemann and Scherrer, 2017). Similarly
to the noisy channel model, our approach reuses
off-the-shelf models and benefits from future trans-
lation or language modelling improvements.

2 Log-linear reformulation of the noisy
channel model

Given the availability of various heterogeneous
data sources that could be used for document-level
translation, we seek a strategy to maximally use
them. These sources include parallel data, at either
the sentence or document level, as well as more
broadly available monolingual data.

As the starting point, we consider the noisy chan-
nel approach proposed by Yu et al. (2020). Given
a source document (X X(V)) and its trans-
lation (Y (1) ... Y (N)), they assume a generation
process where target sentences are produced from
left to right, and where each source sentence is
translated only from the corresponding target sen-
tence. Under these assumptions, the probability of
a source-target document pair is given by
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As such, the conditional probability of the target
document given the source is expressed by
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We therefore generate context-aware transla-
tions by combining a translation model (TM)
P(Y™|X ™) with both sentence-level P(Y (™)
and document-level P(Y (™)|Y (<")) language mod-
els (LM). To calibrate the generation process, we
introduce coefficients & € R and § € R to control
the contribution of each language model, which are
tuned on a validation set:
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where Ci(n) is a normalization constant and L,, is
the target sentence length.

Similarly to the noisy channel approach (Yu
et al., 2020), we use off-the-shelf translation and
language models. As such, future improvements to
either translation or language modelling can easily
be leveraged. Our reformulation however admits a
more efficient search procedure, unlike that by Yu
et al. (2020).
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The translation model is implemented as any
auto-regressive neural translation model. We
use the Transformer encoder-decoder architec-
ture (Vaswani et al., 2017). Given a source sentence

Model parameterization
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x1,...,2r, each token and its position are pro-
jected into a continuous embedding sq.1, . . ., So, -
These representations are passed through a se-
quence of M encoder layers that each comprise
self-attention and feed-forward modules, resulting
in the final representations sps1,..., Sy, The
decoder updates target embeddings through simi-
lar layers, which additionally attend to the encoder
output, to obtain final hidden states ¢ 1, ..., L.
Token probabilities may be obtained by projecting
these representations and applying softmax normal-
ization.

Language models are implemented as Trans-
former decoders without cross-attention. We use
a single language model trained on sequences of
consecutive sentences to obtain both sentence-level
and document-level probabilities.

3 Dynamic merging

As extra-sentential information is not uniformly
useful for translation, we propose dynamic coef-
ficients for the different models by generalizing
Eq. 1:
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With the translation and language models kept
fixed, the coefficients agn) and ﬁi(") are computed
by an auxiliary neural network which uses Y (<),
Y™ and X(™). We call this network a merging
module and implement it as a feed-forward network

on top of the translation and language models.

3.1 Dynamic coefficient computation

For every token, the corresponding last hidden
states of the translation model, sentence-level LM
and document-level LM are concatenated. Each
non-final layer (k 1 K — 1) is a feed-
forward block

gy

hi = LN(hg—1 +drop(Wi 2(ReLU(W}, 1hr—1))),

where LN and drop respectively denote layer
normalization and dropout (Ba et al., 2016; Sri-
vastava et al., 2014). The final layer is simi-
lar, but there is no residual connection (and no



dropout) as the final linear transformation projects
the result to 2 dimensions, so that («,/3)
WK’Q(RGLU(WK’lhK_l)).

4 [Experiments

4.1 Settings

Data We run experiments on English-Russian
data from OpenSubtitles (Lison et al., 2018), which
was used in many recent studies on document-level
translation (Voita et al., 2019b,a; Mansimov et al.,
2020; Jean et al., 2019). Language models are
trained on approximately 30M sequences of 4 con-
secutive sentences (Voita et al., 2019a).The parallel
data was originally preprocessed by Voita et al.
(2019b), yielding 6M examples. For 1.5M of these
data points, the 3 preceding source and target sen-
tences are provided. We use this subset to train
the merging module that predicts the per-token co-
efficients for each model. We uniformly set the
number of contextual sentences between 1 and 3 to
match the test condition.

We apply byte-pair encoding (BPE) (Sennrich
et al., 2016), with a total of 32k merge operations,
separately on each language pair, as Russian and
English use different sets of alphabets.

Models Translation models are standard Trans-
formers in their base configuration (Vaswani et al.,
2017). The language model is implemented as a
Transformer decoder of the same size, except for a
smaller feed-forward dimension d ¢y = 1024. The
merging module has 2 layers, with ds; = 1536.

Learning The translation and language models,
as well as the merging module, are trained with
label smoothing set to 10%. The TM is trained
with 20% dropout, while it is set to 10% for the
LMs and merging module.

Evaluation Translation quality is evaluated with
tokenized BLEU on lowercased data, using beam
search with its width set to 5. We average 5 check-
points for the translation models. Sentences are
generated from left to right, and the beam is reset
for every sentence.

4.2 Results

With our approach, using static coefficients, we
reach a BLEU score of 34.31, which is a modest
gain of 0.21 BLEU over the baseline and 0.8 over a
model trained on concatenated sentences (Table 1).
By optimizing dynamic coefficients, we reach a
similar score of 34.22.
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BLEU

Baseline 34.10
Concat 33.51
Static coeffs. 34.31
Dynamic coeffs. | 34.22
CADec 33.86
DocRepair 34.60

Table 1: Test set BLEU scores (beam width 5, all 4 sen-
tences concatenated). CADec and DocRepair results
from (Voita et al., 2019a).

5 “l o 02 04 06
0 | 315 310 293 269
02 |307 317 312 295
04 |233 301 316 31.1
06 | 143 219 269 308

Table 2: Greedy validation BLEU (last sentence only)
for different static values of o and 3. Both LMs are
critical to the approach.

DocRepair (Voita et al., 2019a), a two-pass
method that post-edits the output of a baseline sys-
tem, obtains a slightly higher BLEU score of 34.60.
Both approaches could be combined by instead
post-editing the output of our models, which we
leave for future investigation.

BLEU-NLL correlation We observe lim-
ited correlation between BLEU and reference
NLL (Och, 2003; Lee et al., 2020). On the
validation set, the per-token baseline loss (with
label smoothing) is 13.09. Using static coefficients,
it actually increases to 13.23, while it decreases to
12.86 with dynamic coefficients.

Contribution of each language model (static)
Table 2 presents the BLEU scores on the validation
set using greedy validation for different static val-
ues of o and . Only using the document-level LM
(a > 0,8 = 0) leads to worse performance than
the baseline. It is critical to counter-balance the
document-level LM with the sentence-level LM.

Dynamic coefficients The dynamic coefficients
« and f3 predicted by the merging module are highly
correlated (Figure 1 (left)). As a conjecture, this
high correlation may be explained by the use of the
same language model to obtain both sentence and
document-level scores.

Figure 1 (right) shows the average value of the
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Figure 1: Scatter plot of « and [ for tokens appearing
at least 100 times over the validation set (left). Aver-
age dynamic coefficient o for frequent words over the
validation set (right).

D LC I VP

LM difference | 95.5 91.7 71.8 85.6
Baseline 50.0 459 534 26.6
Concat 849 477 842 78.6
Static 66.6 655 56.6 40.2
Dynamic 742 51.1 578 56.8
CADec 81.6 58.1 722 80.0
DocRepair 91.8 80.6 864 752

Table 3: Deixis (D), lexical cohesion (LC), inflection
ellipsis (I) and VP ellipsis (VP) accuracy (%). Best
scores from translation models only are highlighted.

dynamic coefficient o for frequent words within
the validation reference set. In particular, Tsr and
Br1, which are translations of you that depend on
plurality and formality, are assigned high weights.

Challenge sets While static and dynamic coef-
ficients lead to similar BLEU, using dynamic co-
efficients often results in better performance on
multiple-choice scoring-based challenge sets target-
ing specific translation phenomena (Table 3) (Voita
et al., 2019b).! We conjecture this likely happens
because dynamic coefficients can more narrowly
focus on particular subsets of target sentences that
benefit from document-level context.

5 Related work

Document-level NMT Neural machine transla-
tion may be extended to include extra-sentential
information in many ways, as surveyed by Maruf
et al. (2019). The model architecture may be mod-
ified, for example by encoding previous source
sentences or generated translations and attending
to them (Jean et al., 2017; Wang et al., 2017;
Voita et al., 2018; Zhang et al., 2018; Miculi-
cich et al., 2018; Maruf and Haffari, 2018; Tu

''Using the difference of language models scores gives
higher accuracy, but they cannot be used in isolation to gener-
ate relevant translations.
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et al., 2018). Otherwise, by simply concatenat-
ing multiple sentences together as input, existing
model architectures may be used without additional
changes (Tiedemann and Scherrer, 2017; Junczys-
Dowmunt, 2019).

Voita et al. (2019b) and Voita et al. (2019a)
propose refining the output of a context-agnostic
baseline, using a new model trained from either
document-level parallel data or from round-trip
translated monolingual data. The noisy channel
approach similarly uses large-scale monolingual
data (Yu et al., 2020) to refine translations, while
using arbitrary, and potentially pre-trained, transla-
tion or language models, as discussed in Sec. 2.

Our approach shares many similarities with the
above, but admits a more straightforward genera-
tion process. If desired, we could still rerank the
beam search output with a channel model, which
might improve general translation quality for rea-
sons not necessarily related to context.

Language modelling Language model proba-
bilities have been used to rerank NMT hypothe-
ses (see, e.g., Stahlberg et al., 2019). Addition-
ally, direct integration of a language model into a
translation model, using various fusion techniques,
improves generation quality and admits the use
of single-pass search algorithms (Gulcehre et al.,
2015). To promote diversity in dialogue systems,
model scores may be adjusted by negatively weigh-
ing a language model (Li et al., 2015).

6 Conclusion

In this paper, we set to use heterogeneous data
sources in an effective and efficient manner for
document-level NMT. We reformulated the noisy
channel approach (Yu et al., 2020) and end up with
a left-to-right log-linear model combining a base-
line machine translation model with sentence-level
and document-level language models.

To modulate the impact of the language models,
we dynamically adapt their coefficients at each time
step with a merging module taking into account
the translation and language models. We observe
improvements over a context-agnostic baseline and
using dynamic coefficients helps capture document-
level linguistic phenomena better.

Future directions include combining our ap-
proach with MT models trained on back-translated
documents, exploring its applicability to other
modalities such as vision and speech, and consider-
ing deeper fusion of the models.
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A Expanded derivation

The conditional probability of the target document
given the source is expressed by

PYW, yWix®  xN)y=
[T, PXO|Y ™) pym)y(<n)
P(XW) . X))y =
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where C(X) = —Pl_(I)Té?f)’”EX(Ng)
the optimal target sentences given a source docu-
ment.

does not affect

B Hyper-parameters

Translation model We validate models with
greedy search. We use the base transformer con-
figuration (Vaswani et al., 2017). We use effec-
tive batches of approximately 31500 source to-
kens and optimize models with Adam (Kingma
and Ba, 2014). We follow a learning rate sched-
ule similar to Vaswani et al. (2017), with 16,000
warmup steps and scaled by 4. We experimented
with 10% and 20% dropout, obtaining higher vali-
dation BLEU with the latter. We use pre-LN trans-
former layers (Xiong et al., 2020).

Language model We use a similar configu-
ration to the translation model, except with
64,000 warmup steps and post-LN transformer
layers (Xiong et al., 2020).

Static coefficients We evaluate greedy valida-
tion BLEU with a grid search over («,3) €
{0,0.1,...,1} x {0,0.1,...,1}.

Dynamic coefficients We varied the number of
layers between 1 and 3. We also considered adding
cross-attention within the merging module, but we
did not observe improvements in preliminary ex-
periments.

C Label smoothing

If we train the merging module without label
smoothing (instead of 10%), greedy validation
BLEU drops by approximately 1 BLEU point. We
also observe much higher variability in the coef-
ficients, which may be caused by the unbounded
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optimal value of o when a target token is the most
likely according to the document-level LM.

D Challenge set validation scores

D LC

LM difference | 95.4 92.6
Baseline 50.0 46.2
Concat 86.6 47.8
Static 65.6 67.8
Dynamic 74.6 504

Table 1: Deixis (D) and lexical cohesion (LC) valida-
tion accuracy (%).

E Number of parameters

TM: 77,633,536 LM: 29,399,040, Merging mod-
ule: 7,088,642

F Computing infrastructure

We train models with PyTorch 1.2.0 (Paszke et al.,
2019). We use a single NVIDIA 1080 Ti or
2080 Ti, running CUDA 10.2 on CentOS Linux
7 (Core).

G Links

Data:
https://box.com/shared/static/
agmad0j3ebgknas9nwznywlw0l5vgpdf4.
zip

multi_bleu.perl:
https://raw.githubusercontent.
com/moses—smt/mosesdecoder/
master/scripts/generic/
multi-bleu.perl
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