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Abstract

The paper describes the systems submitted to SemEval-2020 Task 8: Memotion by the ‘NIT-
Agartala-NLP-Team’. A dataset of 8879 memes was made available by the task organizers to
train and test our models. Our systems include a Logistic Regression baseline, a BiLSTM +
Attention-based learner and a transfer learning approach with BERT. For the three sub-tasks A, B
and C, we attained ranks 24/33, 11/29 and 15/26, respectively. We highlight our difficulties in
harnessing image information as well as some techniques and handcrafted features we employ to
overcome these issues. We also discuss various modelling issues and theorize possible solutions
and reasons as to why these problems persist.

1 Introduction

Over the years, the internet and social media have become an indispensable part of our lives. Today,
an average netizen spends over 45 minutes on some form of social media everyday1. Therefore, social
media has become a goldmine for data to model and study human opinions and behaviour. Social media
analysis conventionally deals with data in the form of text, audio or video — but often only one prominent
modality is studied in isolation. This lack of multimodality in research works has led to entire modes
of communication being disregarded. One such form of internet communication that we have yet to tap
into is memes. While a meme was initially defined as “an idea, behaviour, or style that spreads from
person to person within a culture—often to convey a particular phenomenon, theme, or meaning2,” it
has transformed into the umbrella term for a suite of referential humor that plagues the internet. Memes
can more aptly be defined as “a form of referential humor that incites humor by leveraging images, text
and sometimes audio.” The image is more often than not coupled with a real-life event or media. The
images are then re-purposed to incite humor through the subversion of expectations and via reference.
Through the years, memes have been leveraged differently by various communities — apart from innocent,
humor inducing purposes. Corporations and companies are increasingly interested in harnessing memes
to sway their younger customers. More adversely, certain memes such as Pepe the Frog3 were adopted
by alt-right groups and used as a calling card of sorts. Memes are also used as performative acts, which
involve a conscious decision to support or oppose a movement (as seen in the case of the recent Hong
Kong protests 4). The abundance of memes on social media platforms such as Facebook, Instagram, and
Twitter (Zannettou et al., 2018b) further suggests that — these digital constructs have become a flagship of
internet culture, so and so that, to understand memes would mean to understand the views of a community.
The SemEval Task 8: Memotion (Sharma et al., 2020) shared task is one such grassroots endeavour to
understand memes better and incorporate multimodality in social media analysis. Apart from the rich
information that could be derived from understanding social media, solving the various challenges of the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1www.bit.ly/2NZQ5L5
2www.lexico.com/en/definition/meme
3https://en.wikipedia.org/wiki/Pepe_the_Frog
4www.pri.org/stories/2019-07-16/memes-hong-kong-protests
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task also pose unique research value — such as the training of models that could understand reference
derived from background knowledge and complex human expressions such as humor and sarcasm.

In this paper, we share the insights we gain from our time working with the task and dataset. In Section
2, we discuss some previous work and related approaches to tackling the problem. Then, in Section 3, we
introduce the task and the dataset. Subsequently, in Section 4, we outline the features employed and the
model architectures. Section 5 reports our results and model performance. In Section 6 and 7, we analyze
our results and discuss the possible source and solutions to our errors and issues. We summarize our key
results and conjectures in Section 8.

2 Related Work

Research on Memes, in particular, are few and far in between. Some works have experimented with
memes as sentiment predictors: In their work on Facebook sentiment analysis, French (2017) reported a
positive correlation between the category of the meme used and the affection of the discussion from its
texts. French (2017) go on to confirm that memes were far more successful in conveying the sentiment
of the debate over textual data. Other works attempt to automate the meme generation process (Peirson
and Tolunay, 2018; Oliveira et al., 2016) but fail at replicating the humor expressed by particular memes.
While Peirson and Tolunay (2018) attempts to re-purpose image captioning algorithms to capture the
humor, Oliveira et al. (2016) attempt to use macros within news headlines to do the same. However, both
works fail to generate coherent humor that can persuade annotators consistently. Another similar work
by Wang and Wen (2015) apply multimodal techniques to generate captions for popular meme formats.
Finally, the propagation and effect of memes on social media are also studied in works such as the one by
Zannettou et al. (2018a) which provides an assessment of the popularity and use of certain memes, in
the context of each community. In another work, Ferrara et al. (2013) aim to detect and analyze meme
usage in social media streams, particularly by using an unsupervised clustering framework. Work in
the space also make use of meta-information (Wang and Wen, 2015; Ferrara et al., 2013) regarding the
meme to provide context to their frameworks. Apart from memes, other work on multimodal social media
analysis and humor analysis could provide valuable insights. Shin et al. (2018) show how multimodal
information can be used to enhance the analysis of unstructured data on social media. There are numerous
works that attempt to predict the sentiment of images (Kanishcheva and Angelova, 2015; Xu et al., 2014).
However, these works focus on a single modality — images. Works on Multimodal sentiment analysis
like the one by Hu and Flaxman (2018) use both image and text embeddings in their models to show
slight improvements over the text-only models. A comprehensive overview of multimodal sentiment
analysis can be found in work, such as that Kaur and Kautish (2019) and Soleymani et al. (2017). In the
realm of humor analysis — work such as the recent paper by Weller and Seppi (2019) have shown that
deep learning models can outperform humans in classifying humor mainly due to a disparity in the sense
of humor of the annotators and the testers. In an interesting work by Chandrasekaran et al. (2018) an
attempt is made to capture wit by using synonyms of words in image descriptions to incite puns through
the subversion of expectations. While the work reports impressive results and beats out humans in a
controlled vocabulary setting, humans quickly regain dominance when the vocabulary is unconstrained.

3 Data

The task organizers have made available a dataset (Sharma et al., 2020) of 8879 annotated memes scrapped
from various sources across the internet. Each meme was annotated by two annotators to ensure annotation
quality. The text was extracted from the image using the Google OCR system and manually corrected
by crowdsourced workers — to ensure that model accuracy doesn’t depend on the quality of the OCR
techniques used. We briefly describe each subtask of the Memotion Shared Task below:

• Task A — Sentiment Classification: Given a meme, the task is to classify it as a positive, negative
or neutral meme.

• Task B — Multilabel Characteristic Classification: Given a meme, the system has to identify
the existence of the following characteristics — humor, sarcasm, offense and motivation. Being a
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multilabel classification task a meme can exhibit any combination of the above characteristics or
none at all.

• Task C — Scales of Semantic Classes: The third task is to quantify the extent to which a particular
effect is being expressed, i.e. if the meme is humorous whether it is funny, very funny or hilarious
and so on.

The dataset shows a significant imbalance, particularly in the representation of the labels negative,
hilarious, very twisted and hateful offensive of the sentiment, humor, sarcasm and
offensive categories, respectively. We represent the distribution of labels in Table 1.

Categories Tags No. of Samples Percentage(%)

Sentiment Analysis
negative 631 09.01
neutral 2,205 31.50
positive 4165 59.49

Humor

not funny 1,651 23.58
funny 2,457 35.10
very funny 2,241 32.01
hilarious 652 09.31

Sarcasm

general 3,512 50.16
not sarcastic 1,546 22.09
twisted meaning 1,549 22.12
very twisted 394 05.63

Offensive

not offensive 2,715 38.78
slight offensive 2,596 37.08
very offensive 1,469 20.98
hateful offensive 221 03.16

Motivational not motivational 4,530 64.70
motivational 2,471 35.30

Table 1: Sample distribution of the corpus

4 Preprocessing and System Overview

Before we outline our features and models, we digress to briefly explain the steps we undertook to reduce
noise in the text. We perform basic lower casing and the removal of unnecessary punctuation as the initial
step. The second step was to remove specific noise inducing aspects such as the removal of URLs and
User mentions (using regular expressions).

We did not perform any global image preprocessing steps; however, we did perform basic preprocessing
steps such as resizing and grayscale conversion for specific feature extraction techniques.

4.1 Features
Depending on the model we use, we employ three different text vectorization techniques — word (1,2)-
gram TFIDF features for the Logistic Regression model; A GLoVe (Pennington et al., 2014) embedding
pretrained on 27 billion tweets for the BiLSTM + Attention based model; Contextual BERT embeddings
(Devlin et al., 2019) for our transfer learning approach.

Beyond text vectorization we explore a few hand crafted features to improve model performance. We
use features previously employed by Bertero and Fung (2016) in their work to detect humor in sitcoms
and Mahajan and Zaveri (2017)’s submission to the SemEval 2017 Task 6. The stylistic features are as
follows: number of words, number of parts-of-speech (POS) tags such as nouns, adjectives and verbs
and their ratio to the number of words. The POS tags mentioned are obtained using CMU POS Tagger
(Owoputi et al., 2013).

Ambiguity features are useful in representing the multiple meanings that can be delivered simultaneously
as found in pun related humor (Yang et al., 2015; Miller and Gurevych, 2015). For this purpose we use
a concept called Synset (short for Synonym set). A Synset is defined as a set of one or more synonyms
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that can be interchangeably used in the same context to express the same meaning which was originally
embedded. We derive these synonyms using the NLTK Corpus (Loper and Bird, 2002). For example
the Synset for the word ‘new’ would be { new, fresh, raw, newfangled, modern, newly }. The ambiguity
features used are as follows: Mean Synset Length (it is the mean of the length of synset of each word
of the text) , Maximum Synset Length (it is the maximum length of synset that a single word in the text
can have), Synset Length Gap (it the difference between the Maximum Synset Length and Mean Synset
Length).

Initially, we experimented with the use of pretrained feature extractors to extract image information.
Our approach, using various pretrained models trained on the ILSVRC (Deng et al., 2009) such as the
popular Inception V2 ResNet (Szegedy et al., 2017), exhibited underwhelming results and sometimes
proved to be detrimental to model performance. In this regard, we elected to employ more hand crafted
features rather than pretrained feature extractors. For each image: hue, saturation and value are calculated
by converting the RGB images into HSV channels using the scikit-image toolkit (van der Walt et al.,
2014). We average the hue, saturation and value over all the pixels in the image to obtain the hue
(Himage), saturation (Simage) and luminance (Vimage) of the image. We also include RMS contrast
features for each image — which can simply be defined as the standard deviation of pixel intensities
(i.e. the brightness). We draw inspiration from previous work by Zhang et al. (2015b) and explore more
features that can be quantitatively derived from the HSV model such as Colourfulness — a metric defined
Hasler and Suesstrunk (2003) that exhibits high correlation to human perception of colourfulness — and
metrics by Valdez and Mehrabian (1994) features – that relate brightness and saturation to the following
emotions: Pleasure, Arousal and Dominance. Following this, we also entertain the idea of employing
facial expressions as an extra image feature. To do this we re-purpose an opensource emotion detection
application 5. The approach used a convolution neural network at its core, to detect the following emotions
— Angry, Disgusted, Fearful, Happy, Neutral, Sad and Surprised. The model is pretrained on the FER2013
Kaggle dataset 6 and used as feature extractor in our pipeline.

At this juncture, it might be apt to recognise the small dataset size and label imbalance exhibited by
the Memotion Dataset (Sharma et al., 2020). To tackle the imbalance and data scarcity we consider
many techniques such as oversampling, weighted training and resampling techniques (such as SMOTE
(Chawla et al., 2002)) in our pipelines. We also consider a text augmentation technique found in work
from Zhang et al. (2015a). We re-purpose open source code found on github 7. The core of the idea is to
extend the given dataset by simple word replacement wherein we replace certain words in the sentence
with corresponding synonyms or phrase replacements pulled from an auxiliary database/dictionary. The
image features are then replicated for the newly created synthetic sample. Our database of choice for such
replacements was the paraphrase bank8 database. We apply this technique on the training split of the data
and duplicate the corresponding image and dense features.

4.2 Model Descriptions
For a baseline approach to the given problem, we elected an L2 regularized Logistic Regression as an
ideal starting point. The input representation for text was TF-IDF uni-grams and bi-grams. We also
use the handcrafted text and image dense features as well the emotion vectors with this model. All the
modelling was done using the sci-kit learn toolkit (Pedregosa et al., 2011). This model uses the previously
explained data augmentation technique as well as balanced class weights during training.

Our second model is an attention based deep learning model. Attention is a technique first introduced
in the machine translation research space by Bahdanau et al. (2014). The idea was further extended to text
classification by work such as the ones by Yang et al. (2016) and Raffel and Ellis (2015) — which are
what we implement here. All modelling tasks for this model was carried out using keras with a tensorflow
(Abadi et al., 2015) backend. The model uses the ’Adam’ learning rate optimizer and categorical cross
entropy loss function during the training phase. The model architecture is more intuitively described in

5www.github.com/atulapra/Emotion-detection
6www.kaggle.com/deadskull7/fer2013
7www.github.com/Opla/SmallData-Augmentation-MachineLearning
8www.paraphrase.org

www.github.com/atulapra/Emotion-detection
www.kaggle.com/deadskull7/fer2013
www.github.com/Opla/SmallData-Augmentation-MachineLearning
www.paraphrase.org
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Figure 1: Attention informed model architecture

Figure 1. Due to the small dataset size we associate large dropout values with the embedding layer (0.5),
LSTM layers (0.3) and Dense layers (0.3, apart from a L2 regularization kernel). We also implement
early stopping, to further alleviate overfitting. This model also makes use of the data augmentation
technique previously mentioned and SMOTE (Chawla et al., 2002) for balancing/resampling purposes.
The model uses a 200D GLoVe (Pennington et al., 2014) embedding pretrained on 27 billion tweets
for text representation and the handcrafted image features and emotion vectors for image representation
(which is concatenated to the dense layer output which follows the Attention mechanism). The model was
set to train for 100 epochs with a batch size of 2048 and initial learning rate of 0.001 but we found that
the model started overfitting at an average of 40 epochs.

We also explore the possibility of leveraging dynamic contextual embeddings through the use of a
transfer learning model — BERT. The developers of BERT provide a simple classification API for BERT
through the run classifier API available on their github page 9. Our underlying model of choice
was the BERTbase,uncased — which trains a total of 110 million parameters, contains 12 transformer
blocks and 12 self-attention heads with a hidden layer dimension of 768 . This model simply draws the
[CLS] token embedding of the second to last layer of the BERT model for classification. During the
training process the weights of the model are modified slightly to better cater to the task at hand. We
finetune hyper parameters such as the learning rate, batch size and maximum sequence length to improve
performance for different categories. In this case the model only takes advantage of the data augmentation
and preprocessing techniques mentioned above, no extra image and dense features were provided.

5 Experimental Setup and Results

The dataset was provided to task participants as a pre-annotated training dataset (containing 7001 samples)
and an un-annotated test dataset (containing 1878 samples). We first perform a model and ablation analysis
using 10-fold cross validation methods on the training dataset and follow up with scores obtained by our
systems on the test dataset, as provided by the task organizers. All results are represented using Accuracy
and Macro F1 metrics which were used for ranking the systems by the task organizers.

For the training Dataset, Initially, a validation dataset is also maintained to diagnose variance and bias
issues that arise in the training phase and to aid hyperparameter tuning. Our overall train, validation,
test split ratio is 80:10:10. However, for our final results, we conflate the validation and training set and
represent 10-fold cross validation results. We represent our results for Subtask A and the categories within
Subtask C (as subtask B and C only vary by semantic levels) in Table 2. We then perform an ablation

9www.github.com/google-research/bert

www.github.com/google-research/bert
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Model Sentiment Analysis Humor Sarcasm Offensive Motivational

F1 (%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%)

Logistic Regression 31.97 53.84 25.85 31.67 23.36 42.12 24.96 35.74 49.71 53.75

Attention based Learner 24.43 36.67 22.48 30.00 19.62 25.54 23.18 31.18 46.82 60.58

Fine-tuned BERT 32.47 49.89 25.20 33.00 22.69 43.21 23.95 33.58 50.29 56.82

Table 2: 10-fold cross validation results (macro-F1 and accuracy) on subtask A and C, with the training
dataset

Features Sentiment Analysis Humor Sarcasm Offensive Motivational

F1 (%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%)

TFIDF Word (1,2)-gram + Dense Features 27.15 59.15 23.01 33.84 17.60 49.89 22.04 37.57 42.09 64.29

+ balanced training 30.88 55.69 25.99 31.82 22.41 44.07 24.40 35.42 49.23 53.29

+ augmentation 28.15 57.95 23.81 33.84 18.70 49.04 22.76 37.44 43.87 63.21

+ image features 27.29 59.08 23.35 33.94 22.33 37.84 22.33 37.84 42.36 64.18

+ balanced training + augmentation 31.51 54.06 25.38 31.45 23.35 42.54 24.95 35.34 49.01 53.26

+ balanced training + image features 31.25 55.49 26.02 31.75 22.72 43.28 24.92 35.82 49.56 53.32

+ augmentation + image features 28.43 58.16 23.58 33.45 18.78 48.72 23.09 37.84 44.14 62.96

+ balanced training + augmentation + image features 31.97 53.84 25.85 31.67 23.36 42.12 24.96 35.74 49.71 53.75

Table 3: Ablation study results (macro-F1 and accuracy) on subtask A and C, with the training dataset

Model Subtask A Subtask B Subtask C

F1 (%) Rank F1(%) Rank F1(%) Rank

Final Mixed System 32.48 24 49.94 11 30.74 15

ML Model 31.44 28 49.98 11 30.74 15

Attention Model 31.68 28 49.34 18 28.69 21

BERT Model 32.48 24 49.75 11 29.81 19

Table 4: Test set results (macro-F1 and potential ranks) on all subtasks. Official submission in bold.

analysis with a 10-fold cross validation split using the Logistic Regression model to better understand the
effect of the various techniques and features employed and how they affect model performance. Due to
the task specific nature of the experiment, we decide to carry out the experiment for all the categories
— sentiment analysis, humor, sarcasm, offense and motivation classification. We represent the results in
Table 3.

On the test dataset, the task organizers rank each system based on averaged Macro F1. For subtasks
B and C where there are 4 separate categories within the task an average score over the four categories
was provided. Ranks were provided for only the top submission of each team. Initially, we submit
three different systems for task evaluation — the Logistic Regression model, the BiLSTM + Attention
model, the BERT model. However, we saw that the certain models performed better on certain subtasks.
Therefore, for our final evaluation, a mixed system (referred to in Table 4 as Final Mixed System) —
BERT for Subtask A, Attention for Subtask B (except motivational category) and Logistic Regression for
Subtask C (including motivational category in Subtask B) — this represents our official submission to the
task. We also represent the macro F1 score and potential ranks of the individual models in Table 4.

Our model study revealed that Logistic Regression and the BERT model exhibit the best results,
trading places based on what metric was considered. The results of the Attention based learner were
underwhelming and were not competitive with the other models.

Our ablation analysis reveals that in general balancing and augmentation techniques provide the
biggest performance improvements (on the basis of macro F1). We also note that both these techniques
were implemented to address the data scarcity and imbalance issue. Image features too, provide slight
improvements when added (in all combinations). However, when these techniques are considered in
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combination, the addition of augmentation over text + balancing + image features, lead to a drop in
performance for the humor category and also in the sarcasm task, where the text + image features model
outperforms the text + augmentation + image features model. In an additional test, we also observed that
for the Attention based learner, image information provided little to no improvement on the performance.

On the test dataset, again BERT and the Logistic Regression model obtain the best results. We also
observed that the Attention based learner exhibits lower performance on addition of image features, on all
sub tasks.

6 Error Analysis

Due to the under-representation of specific labels, we saw our models were unable to classify sam-
ples into these classes effectively. This was especially apparent for the highly under-represented
hateful offensive (of the offensive category) and very twisted (of the sarcasm category)
where very few samples could be correctly classified. While we have reservations regarding the subjective
nature of humor and offense, we generally found offensive memes wrongly classified as non-offensive and
funny memes wrongly classified as not funny when the context mostly derived from the image. This points
to our inability to capture image information effectively. This also indicates the absence of any background
knowledge, which is imperative when understanding references that most memes tend to invoke. On
analyzing the errors and ground truth of the motivation category, we find many of the annotations puzzling.
We are, therefore, more curious as to what the annotation guidelines for this category are and refrain from
making any conjectures regarding the classification errors. Another issue we would like to explore is the
underwhelming results of the BiLSTM + Attention model. The main issues faced during the training
phase are the small overall dataset size and under-representation of specific labels. This led to the inability
to train larger and deeper models without facing high variance issues. Another issue that arose due to
the small dataset size is the inability to train an image feature extractor from scratch (to alleviate data
dissimilarity between the dataset and pretrained models) and better harness image information.

7 Discussion

In our time with the task of meme emotion analysis, we have come to believe that there are many inherent
challenges in modelling the task apart from the machine learning algorithms being leveraged. We want
to bring attention to the fact that memes are ever-changing — new memes enter and old memes leave
the meme ecosystem very frequently and are quite often informed by current affairs. This could imply
that training a model on historical meme samples could provide little insight into the meme ecosystem of
today. The trends learnt by training with historical samples might not translate well to the trends of today.
In the data collection and annotation phase, we make the following observations:

Meme Heterogeneity: Memes come in different forms and styles — or so-called templates. These
templates can either represent a certain punchline or message and may not share the same referential
image. For example, the set of memes {“The Scroll of Truth”10, “Nancy Pelosi Ripping Paper”11,“Most
People rejected his message” 12} represent the same idea of ‘ignoring a fact or supposed truth’ but use
different referential images to enhance the humor. Memes belonging to the same template can be assumed
to convey a similar message. There exists a countless number of such templates that are used online.
Therefore, we think datasets should not attempt to draw memes from all templates but certain ubiquitous
ones — as in the former case, the dataset does not contain enough samples to adequately represent the
meme template’s idea. As a product of this, models face the insurmountable task of learning trends from
a large number of templates, each with a minimal set of samples. It may be apt to reverse this idea and
create datasets with few selected templates but a large number of samples corresponding to each template.

Annotator Bias: As humans, many of us share different tastes and consequently have different senses
of humor. What one may find hilarious might not affect another. Therefore, it may be the case that in tasks
such as these, we are modelling humor specific to the annotators — thereby working with an annotator

10https://knowyourmeme.com/memes/the-scroll-of-truth
11https://knowyourmeme.com/memes/nancy-pelosi-ripping-paper
12https://knowyourmeme.com/memes/most-people-rejected-his-message

https://knowyourmeme.com/memes/the-scroll-of-truth
https://knowyourmeme.com/memes/nancy-pelosi-ripping-paper
https://knowyourmeme.com/memes/most-people-rejected-his-message
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Annotators Sentiment Analysis humor Sarcasm Offensive Motivational

F1 (%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%)

Annotator 1 24.28 26.00 20.83 29.00 19.08 30.00 36.67 53.00 53.38 68.00

Annotator 2 27.92 32.00 18.64 22.00 25.40 35.00 31.82 41.00 46.15 49.00

Annotator 3 33.21 38.00 21.69 30.00 24.34 32.00 24.37 34.00 50.47 66.00

Annotator 4 32.54 36.00 28.32 32.00 34.63 39.00 27.24 44.00 47.92 72.00

Annotator Average 29.49 33.00 22.37 28.25 25.86 34.00 30.02 43.00 49.48 63.75

Model Performance 43.79 59.00 21.61 27.00 22.48 47.00 26.37 38.00 51.00 57.00

Table 5: Annotator bias experiment

bias. In a recent work by Weller and Seppi (2019), it was seen that a sample of random humans could
not outperform a model trained on the same jokes. This indicates that the model has learned annotator
specific biases and may not generalise well to the populace. We are also curious as to what could be the
human error on a task such as this.

To address these concerns, we perform an experiment that randomly samples 100 memes from the
training dataset (previously annotated) and gets four independent annotators to tag them on all five
categories — sentiment, humor, sarcasm, offensive and motivational. The annotation process was mainly
carried out in-house by the authors of this manuscript. We use basic guidelines (in the form of dictionary
definitions and examples from the dataset) on tagging the categories and labels. We then calculate
macro F1 scores and accuracy for each annotator and compare their performance with the Logistic
Regression model’s predictions on the same 100 memes. We also calculate inter-annotator agreement
metrics to understand better if all the annotators are on the same page. We represent the results of this
in Table 5. On calculating Randolph (2005) free-marginal multi-rater Kappa metrics, we found poor
agreement on annotations over all the categories — Sentiment (0.22), humor (0.10), Sarcasm (0.09),
Offense (0.36), Motivational (0.38). The poor agreement scores are an indicator of how concepts such
as humor and offense can be subjective. We also find that the human annotators barely outperform our
Logistic Regression model, which are indicators of low human performance in such tasks. Few Annotators
also report different memes as random or nonsensical. On manual checking, we found these memes to be
related to pieces of media (e.g., Star Wars, Lord of the Rings) that the annotator was not familiar with.

8 Conclusion

Our work on this dataset highlights the difficulty in effectively harnessing image information to understand
reference and media that are part and parcel of a meme. Consistent with previous work, we are only able to
obtain small performance improvements by employing image-based features. We also highlight modelling
issues that arise due to the heterogeneous nature of data (a small number of samples, a large number
of templates) and the high variance issues. We also bring to question — annotation and data collection
practices that might not immediately translate to the task of meme analysis. A general suggestion would
be to use a large number of annotators or to harness popularity metrics such as likes and upvotes used
on websites like Reddit and Instagram. Popularity metrics could provide a more generalized view of the
humor or other characteristics of the meme. We think that memes can be imperative to understanding user
sentiment in the present internet ecosystem and beyond. We look forward to the new interest that enters
this space due to work done here and in the memotion shared task.
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Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D. Warner, Neil
Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image contributors. 2014. scikit-image: image process-
ing in Python. PeerJ, 2:e453, 6.

William Yang Wang and Miaomiao Wen. 2015. I can has cheezburger? a nonparanormal approach to combining
textual and visual information for predicting and generating popular meme descriptions. In Proceedings of the
2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 355–365, Denver, Colorado, May–June. Association for Computational Linguistics.

Orion Weller and Kevin Seppi. 2019. Humor detection: A transformer gets the last laugh. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), pages 3612–3616, Hong Kong, China, November.
Association for Computational Linguistics.

Can Xu, Suleyman Cetintas, Kuang chih Lee, and Li-Jia Li. 2014. Visual sentiment prediction with deep convolu-
tional neural networks. ArXiv, abs/1411.5731.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy. 2015. Humor recognition and humor anchor extraction. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2367–2376,
Lisbon, Portugal, September. Association for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention
networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 1480–1489, San Diego,
California, June. Association for Computational Linguistics.

Savvas Zannettou, Tristan Caulfield, Jeremy Blackburn, Emiliano De Cristofaro, Michael Sirivianos, Gianluca
Stringhini, and Guillermo Suarez-Tangil. 2018a. On the origins of memes by means of fringe web communities.
CoRR, abs/1805.12512.



1189

Savvas Zannettou, Tristan Caulfield, Jeremy Blackburn, Emiliano De Cristofaro, Michael Sirivianos, Gianluca
Stringhini, and Guillermo Suarez-Tangil. 2018b. On the origins of memes by means of fringe web communities.
In Proceedings of the Internet Measurement Conference 2018, IMC ’18, pages 188–202, New York, NY, USA.
ACM.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a. Character-level convolutional networks for text classification.
In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, page 649–657, Cambridge, MA, USA. MIT Press.

Yaowen Zhang, Lin Shang, and Xiuyi Jia. 2015b. Sentiment analysis on microblogging by integrating text and im-
age features. In Tru Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu-Bao Ho, David Cheung, and Hiroshi Motoda, editors,
Advances in Knowledge Discovery and Data Mining, pages 52–63, Cham. Springer International Publishing.


	Introduction
	Related Work
	Data
	Preprocessing and System Overview
	Features
	Model Descriptions

	Experimental Setup and Results
	Error Analysis
	Discussion
	Conclusion

