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Abstract

For the last 5 years, we have developed
and maintained RSMTool – an open-source
tool for evaluating NLP systems that auto-
matically score written and spoken responses.
RSMTool is designed to be cross-disciplinary,
borrowing heavily from NLP, machine learn-
ing, and educational measurement. Its cross-
disciplinary nature has required us to learn a
user-centered development approach in terms
of both design and implementation. We share
some of these lessons in this paper.

1 Motivation

Automated scoring of open-ended written and spo-
ken responses is a fast growing field in educa-
tional NLP. Many automated scoring systems em-
ploy machine learning models to predict scores
for such responses based on features extracted
from the text/audio of such responses. Exam-
ples of deployed automated scoring systems in-
clude Project Essay Grade1 for written responses
and SpeechRater®2 for spoken responses (Zech-
ner et al., 2009; Chen et al., 2018). Automated
scoring systems may offer some advantages over
humans, e.g., higher score consistency (Williamson
et al., 2012). Yet like any other machine learning
algorithm, models used for score prediction may
inadvertently encode discrimination into their de-
cisions due to biases or other imperfections in the
training data, spurious correlations, and other fac-
tors (Xi, 2010; Romei and Ruggieri, 2013; von
Davier, 2016; Zieky, 2016). Given that many such
systems are used to score high-stakes standardized
tests, the consequences of any form of bias can
have a significant effect on people’s lives. There-
fore, it is critical that automated scoring systems

1https://www.measurementinc.com/
products-services/automated-essay-scoring

2https://www.ets.org/accelerate/ai-portfolio/
speechrater

be evaluated as thoroughly as possible to detect
any harmful, systematic biases in their predictions.
However, this may prove difficult for an NLP or
machine learning researcher since they may be un-
familiar with the required psychometric and statis-
tical checks. RSMTool incorporates a large, diverse
set of psychometric and statistical analyses aimed
at detecting possible bias in system performance
and makes them available in an easy-to-use pack-
age. RSMTool is open-source and non-proprietary
so that the automated scoring community can not
only audit the source code of the already available
analyses to ensure their compliance with fairness
standards but also contribute new analyses.

2 Introduction

Creating and releasing open-source software is a
great way to share knowledge by making highly-
specialized methods and techniques accessible
to a wider community. Yet many NLP (or ma-
chine learning) tools are not designed with a user-
centered focus, hindering their wider adoption. Al-
most a decade ago, Chapman et al. (2011) pointed
out that NLP systems were seldom deployed in
clinical settings because they were not well inte-
grated into existing user workflows and required
substantial input from an NLP expert. More re-
cently, Cai and Guo (2019) found that a “steep
learning curve”, the need to convert raw data into
algorithmic inputs and outputs, and various chal-
lenges in getting started are still the most common
hurdles reported by software engineers when using
open-source machine learning software.

In the subsequent sections, we share our experi-
ences of developing and maintaining RSMTool, an
open-source Python tool3 which provides a frame-
work to evaluate systems for automated scoring of

3https://github.com/EducationalTestingService/
rsmtool

https://www.measurementinc.com/products-services/automated-essay-scoring
https://www.measurementinc.com/products-services/automated-essay-scoring
https://www.ets.org/accelerate/ai-portfolio/speechrater
https://www.ets.org/accelerate/ai-portfolio/speechrater
https://github.com/EducationalTestingService/rsmtool
https://github.com/EducationalTestingService/rsmtool
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written and spoken responses (Madnani and Louk-
ina, 2016; Madnani et al., 2017). RSMTool is de-
veloped as part of a close collaboration between
NLP researchers and specialists in educational mea-
surement, assessment and psychometrics. It com-
bines the latest advances from these disciplines to
provide a comprehensive evaluation of automated
scoring systems, including model fairness and test-
theory based measures.

RSMTool was initially developed as a monolithic
command-line tool that accepted input in a single
format and generated a static model evaluation re-
port as the only output. Over time, it became clear
that this one-size-fits-all approach was not ideal.
Operational development of an automated scoring
system requires collaboration between many stake-
holders including NLP researchers, engineers, psy-
chometricians and business units (Madnani and
Cahill, 2018). The interdisciplinary nature of this
community led to the emergence of several distinct
RSMTool user groups. Each of these groups had
separate requirements in terms of entry points, in-
puts, outputs, and documentation. Only by address-
ing all of these diverse requirements were we able
to achieve wider adoption of RSMTool for model
evaluation (Rupp et al., 2019; Yoon and Lee, 2019;
Kwong et al., 2020).

The lessons we share are the salient ones we
have learnt along the way: that different users have
different needs and that going the extra mile on
robustness – tests, documentation, and packaging –
is essential to satisfy these needs. We believe that
many of the points we discuss will be applicable to
a range of NLP tools and, thus, could benefit the
wider NLP OSS community.

3 RSMTool

3.1 Motivation

A single evaluation metric such as Pearson’s corre-
lation coefficient or Quadratically-weighted Kappa
represents only one aspect of system performance.
An automated scoring system deployed in a high-
stakes application can have a significant impact on
people’s lives and, therefore, requires a comprehen-
sive evaluation to ensure its accuracy, validity and
fairness (Ramineni and Williamson, 2013). The
goal of RSMTool is to encourage comprehensive
reporting of model performance and to make it
easier for stakeholders to compare different mod-
els along all necessary dimensions before model
deployment. This includes not only standard agree-

ment metrics, but also metrics developed within
the educational measurement community and not
commonly found in existing Python packages, such
as measures of system performance based on test
theory (Haberman, 2008; Loukina et al., 2020) as
well as measures to evaluate fairness of system
scores (Williamson et al., 2012; Madnani et al.,
2017; Loukina et al., 2019). In this respect, our
approach is similar in spirit to “Model cards” pro-
posed by Mitchell et al. (2019) or standardized
data statements advocated by Bender and Fried-
man (2018).

3.2 Architecture

RSMTool combines multiple analyses that are com-
monly conducted when building and evaluating au-
tomated scoring engines in a single package. In
a typical use case, a user provides a file or a data
frame with numeric system scores, gold-standard
(human) scores, and metadata, if applicable. The
tool processes the data and generates an HTML
report containing a comprehensive evaluation in-
cluding descriptive statistics on the input data and
multiple measures of system performance and fair-
ness among others4. RSMTool is written entirely in
Python and makes heavy use of common Python
libraries such as pandas (McKinney, 2010) and
scikit-learn (Pedregosa et al., 2011). Each sec-
tion of the report is implemented as a separate
Jupyter notebook (Kluyver et al., 2016). The user
can choose which sections should be included in
the final HTML report and in which order.

RSMTool is available on Github with an Apache
2.0 license and has extensive online documenta-
tion5. It also includes a well-documented API al-
lowing advanced users to integrate various compo-
nents of RSMTool into their own applications. For
more details on how RSMTool works, see Madnani
and Loukina (2016); Madnani et al. (2017).

4 Lesson 1: Users have Different Needs

Over the years, we have identified several groups
of users for RSMTool. While the ultimate goal for
each group is to conduct a comprehensive eval-
uation of automated scoring systems, their spe-
cific needs were very different and could not be
addressed by a single one-size-fits-all approach. In
what follows, we describe these users and their
needs as well as how we addressed them.

4See a sample report at https://bit.ly/fair-tool.
5https://rsmtool.readthedocs.io

https://bit.ly/fair-tool
https://rsmtool.readthedocs.io
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4.1 Power users: NLP researchers

NLP researchers working on automated scoring
were our initial target group when developing RSM-
Tool. This group of users uses RSMTool to evaluate
how an NLP-driven change, e.g., a new scoring fea-
ture, affects various aspects of model performance,
above and beyond prediction accuracy.
Entry points. We found that the users in this
group feel constrained by an end-to-end pipeline.
Instead, they prefer to pick and choose the RSM-
Tool functionality to plug into their own pipeline
for model building and evaluation while also using
other Python packages. To achieve this, we cre-
ated a comprehensive API to expose various pre-
and post-processing functions as well as custom
metrics contained in RSMTool.
Inputs and outputs. We designed the various
API endpoints to accept and return standard data
types such as pandas dataframes and numpy arrays.
Whenever possible, we used naming and signature
conventions similar to other commonly used pack-
ages such as scikit-learn and SKLL, our other
open-source package for running batched machine
learning experiments6.
Documentation. Since these users rely mainly on
the API, they expect standardized Python API doc-
umentation. To this end, all public functions, meth-
ods and classes in RSMTool code contain PEP257-
compliant docstrings7.

4.2 Minimalists: Data Analysts & Engineers

Operational scoring systems are routinely moni-
tored by running data through the system at regular
intervals to ensure that operational metrics con-
tinue to be met. The data analysts & engineers
responsible for this effort may lack the statistical
or programming background to interact with the
API directly and generally expect an out-of-the box
pipeline.
Entry points. A key requirement for this group is
a simple way to run the evaluation pipeline in batch
mode. To address this, we have created command-
line tools as well as Python API endpoints that can
run the entire evaluation pipeline that a user can
easily call in wrapper shell scripts, for example.
Inputs and outputs. This group of users often
need to run evaluations on data that may not have
all of the information necessary for some of the
evaluation notebooks. To accommodate this, we de-

6https://skll.readthedocs.io
7https://www.python.org/dev/peps/pep-0257/

signed the command-line tools and API endpoints
to accept custom configuration parameters via JSON
files or Python dictionaries, respectively. Further-
more, we also produce the outputs of each individ-
ual evaluation as CSV/TSV/XLSX for further use in
monitoring workflows.
Documentation. Minimalists need access to
enough information to get started with the tool.
Therefore, in addition to API doctrings, we also cre-
ated plaintext documentation comprising installa-
tion instructions, how to run the full pipeline along
with the available configuration options, and a de-
tailed tutorial with a real-life example. Nonetheless,
we found that such users are often reluctant to read
through the (admittedly large) list of configuration
options. Therefore, we built in an interactive con-
figuration generator with autocompletion8 that can
help such users create configuration files based on
their specific needs.

4.3 Decision Makers: Managers & Business
Units

The final decision about the architecture of the scor-
ing system and its deployment is made by multiple
stakeholders: business units, psychometricians, as-
sessment specialists, and senior NLP researchers
not involved in hands-on development.
Inputs and outputs. The users in this group re-
quire a self-contained, concise, clear, and readable
evaluation report that can be reviewed, shared or
used to create a slide deck or a memo. This group
remains the primary user of our HTML reports.
Documentation. A standard request from this
group has been to provide a document explaining
various aspects of RSMTool functionality, struc-
tured as a general-purpose memo rather than tech-
nical documentation. Therefore, in addition to the
user manual, the RSMTool documentation contains
a general overview of its functionality as well as the
formulae used to compute all evaluation metrics.

5 Lesson 2: Go the Extra Mile

Based on our experience developing and maintain-
ing RSMTool, we claim that one way to properly
address the different needs of the different types
of users is by going the extra mile to write ro-
bust software. We define robust software as fol-
lows: the impact of any code change on its ac-
curacy and performance can be measured (well-

8https://rsmtool.readthedocs.io/en/
stable/automated_configuration.html#
interactive-generation

https://skll.readthedocs.io
https://www.python.org/dev/peps/pep-0257/
https://rsmtool.readthedocs.io/en/stable/automated_configuration.html##interactive-generation
https://rsmtool.readthedocs.io/en/stable/automated_configuration.html##interactive-generation
https://rsmtool.readthedocs.io/en/stable/automated_configuration.html##interactive-generation
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tested), its documentation is always up-to-date
(well-documented), and it (along with its depen-
dencies) can be easily installed by the users. Of
course, many of us in the NLP community are not
trained as software engineers and do not have much
experience with these practices. We argue that it
is necessary to put in the extra work to learn them
in order to make a meaningful contribution to the
community. Fortunately, there are several open-
source and/or free-to-use tools and services that
can help make adopting these practices relatively
painless.

5.1 Testing & Continuous Integration

A critical component of any software is a compre-
hensive test suite that covers a large percentage of
the overall codebase. Open-source software should
be no different. As developers of the software, it is
important to ensure that the code does what we (or
our users) think it does. Test-driven development
(Beck, 2003) is now a common development prac-
tice that is well-supported by most programming
languages and frameworks. Specifically for Python,
there are several open-source packages that make it
easy to write tests (unittest; nose; pytest), gen-
erate test coverage reports (coverage), and reduce
code duplication across tests (parameterized).

We also strongly recommend the use of continu-
ous integration services like Travis CI9 and Azure
Pipelines10. These services are free for open-source
projects and can be easily integrated with GitHub
such that the entire test suite is automatically run on
all major platforms (Linux, macOS, and Windows)
whenever a change is proposed to the code, with
the proposer of the change not allowed to merge
it unless all the tests pass and there is no decrease
in test coverage. This reduces the likelihood that
a new change is untested or that it introduces a
regression in existing functionality.

5.2 Documentation

A recent survey of open-source software users11

reported that over 90% of them cited incomplete
or outdated documentation as the most pervasive
problem they encounter in open-source projects.
Our experience with RSMTool echoes this: docu-
mentation is our most important resource since it
helps orient users in how to navigate the project.

9https://travis-ci.com
10https://azure.com/pipelines/
11https://opensourcesurvey.org/2017/#insights

We have already discussed that documentation
designed to accommodate different users should
include the motivation for the project, installation
instructions, tutorials, and a detailed user manual.
21% of respondents in the Cai and Guo (2019)
survey cited lack of tutorials and examples as a sig-
nificant hurdle to the adoption of machine learning
packages. The respondents also noted that for users
lacking conceptual understanding, a simple “hello
world” tutorial makes it hard to progress beyond
the initial installation. We recommend including
multiple tutorials in the documentation; tutorials
that not only allow the users to test that their in-
stallation works, but also walk them through using
the software to solve an actual problem. Tutorials
should explain the reasoning behind each step and
include download links for any necessary files.

Additionally, the documentation must also make
it easy for interested users to contribute to the
project by including (a) instructions for setting up
a development environment, (b) best practices for
writing tests, and (c) adding to the documentation
itself. Finally, we also recommend formalizing a
release process consisting of specific actions that
must be taken to produce a new release and includ-
ing it as a part of the documentation. This makes it
easy for any developer to create a new release and
makes the process transparent to the users.

The documentation files must be included in ver-
sion control as part of the main codebase under
a separate sub-directory. To ensure that the docu-
mentation stays up-to-date, any new functionality
proposed for the code must include a documen-
tation component that is reviewed for accuracy
as well as readability as part of the code review.
Specifically for Python, we recommend using the
reStructuredText format for documentation along
with Sphinx12 to build the documentation. Sphinx
provides many useful functionalities such as auto-
matic rendering of LATEX mathematical formulae
via MathJax, automatic API documentation from
Python function and class docstrings, and gener-
ating documentation in multiple formats such as
HTML, PDF, and ePub. Freely available services
like ReadTheDocs13 can be integrated with GitHub-
based development workflows such that the docu-
mentation is automatically built and deployed to a
public-facing server for specified branches.

Finally, a different but equally important part

12https://sphinx-doc.org
13readthedocs.org

https://travis-ci.com
https://azure.com/pipelines/
https://opensourcesurvey.org/2017/##insights
https://sphinx-doc.org
readthedocs.org
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of the documentation is the project changelog.
Each release must be tagged in the git repository
and be accompanied by a detailed changelog that
clearly describes the different types of changes
contained in the release: new features, bugfixes,
and backwards-incompatible changes, if any. Each
change in the log should ideally be linked to the
corresponding issue and pull request on GitHub
providing the full context and discussion for the
change to the interested user.

5.3 Packages & Dependencies

Another important aspect of open-source software
is its ease of installation. Using it should not re-
quire an end user to figure out how to compile and
install complicated dependencies. A better solu-
tion is a self-contained package installable with a
standard package management tool that can also au-
tomatically install any required dependencies. For
Python, we can use either source or wheel (binary)
packages that are released to the Python Package
Index (PyPI) and can be installed using pip. An
alternative is to build conda packages14 that can
be released either via the default channel15 or via
a community-managed channel16. New packages
should be built as part of every release and de-
ployed to the appropriate package registry: this
can be done either manually or automatically using
GitHub actions17.

Most scientific open-source Python software
builds on top of other packages such as numpy,
pandas, scikit-learn, matplotlib, among oth-
ers. An important part of building packages is to
properly version such dependencies in the package
manifest so that the code behaves exactly as ex-
pected when installed. The most effective way to
achieve this is to pin every single dependency to
the exact version used during development. How-
ever, such a conservative approach is likely to cause
conflicts since many open-source packages fre-
quently release minor versions. We recommend
leaving most dependencies unpinned except for
those where a specific or a minimum version of a
dependency is required. This may cause the code
to break if an unpinned package releases an incom-
patible update. To deal with this possibility, we
recommend setting up a weekly scheduled build in
Travis CI that will create a new test environment

14https://conda.io
15https://anaconda.org
16https://conda-forge.org
17https://github.com/features/actions

– pulling in the latest versions of all dependencies
– and run the tests in the main branch. A hotfix
release can quickly be made if said weekly build
starts failing. This approach works best if your test
suite has high code coverage.

6 Summary

In this paper, we shared the lessons we have learned
as developers and maintainers of open-source soft-
ware: different groups of users tend to have differ-
ent needs and to meet these needs without compro-
mising on quality, we must spend extra time and
effort on testing, documentation and packaging.
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