
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 90–95
July 9, 2020. c©2020 Association for Computational Linguistics

90

Improving Slot Filling by Utilizing Contextual Information

Amir Pouran Ben Veyseh*1, Franck Dernoncourt2,
and Thien Huu Nguyen1

1Department of Computer and Information Science,
University of Oregon, Eugene, Oregon, USA

2Adobe Research, San Jose, CA, USA
{apouranb, thien}@cs.uoregon.edu
franck.dernoncourt@adobe.com

Abstract

Slot Filling (SF) is one of the sub-tasks of Spo-
ken Language Understanding (SLU) which
aims to extract semantic constituents from a
given natural language utterance. It is formu-
lated as a sequence labeling task. Recently, it
has been shown that contextual information is
vital for this task. However, existing models
employ contextual information in a restricted
manner, e.g., using self-attention. Such meth-
ods fail to distinguish the effects of the con-
text on the word representation and the word
label. To address this issue, in this paper, we
propose a novel method to incorporate the con-
textual information in two different levels, i.e.,
representation level and task-specific (i.e., la-
bel) level. Our extensive experiments on three
benchmark datasets on SF show the effective-
ness of our model leading to new state-of-the-
art results on all three benchmark datasets for
the task of SF.

1 Introduction

Slot Filling (SF) is the task of identifying the se-
mantic constituents expressed in a natural language
utterance. It is one of the sub-tasks of spoken lan-
guage understanding (SLU) and plays a vital role
in personal assistant tools such as Siri, Alexa, and
Google Assistant. This task is formulated as a se-
quence labeling problem. For instance, in the given
sentence “Play Signe Anderson chant music that
is newest.”, the goal is to identify “Signe Ander-
son” as “artist”, “chant music” as “music-item” and
“newest” as “sort”.

Early work on SF has employed feature engi-
neering methods to train statistical models, e.g.,
Conditional Random Field (Raymond and Riccardi,
2007). Later, deep learning emerged as a promising
approach for SF (Yao et al., 2014; Peng et al., 2015;
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Liu and Lane, 2016). The success of deep models
could be attributed to pre-trained word embeddings
to generalize words and deep learning architectures
to compose the word embeddings to induce effec-
tive representations. In addition to improving word
representation using deep models, Liu and Lane
(2016) showed that incorporating the context of
each word into its representation could improve the
results. Concretely, the effect of using context in
word representation is two-fold: (1) Representa-
tion Level: As the meaning of the word is depen-
dent on its context, incorporating the contextual
information is vital to represent the true meaning
of the word in the sentence (2) Task Level: For SF,
the label of the word is related to the other words
in the sentence and providing information about
the other words, in prediction layer, could improve
the performance. Unfortunately, the existing work
employs the context in a restricted manner, e.g., via
attention mechanism, which obfuscates the model
about the two aforementioned effects of the contex-
tual information.

In order to address the limitations of the prior
work to exploit the context for SF, in this paper,
we propose a multi-task setting to train the model.
More specifically, our model is encouraged to ex-
plicitly ensure the two aforementioned effects of
the contextual information for the task of SF. In par-
ticular, in addition to the main sequence labeling
task, we introduce new sub-tasks to ensure each ef-
fect. Firstly, in the representation level, we enforce
the consistency between the word representations
and their context. This enforcement is achieved via
increasing the Mutual Information (MI) between
these two representations. Secondly, in the task
level, we propose two new sub-tasks: (1) To pre-
dict the label of the word solely from its context
and (2) To predict which labels exist in the given
sentence in a multi-label classification setting. By
doing so, we encourage the model to encode task-
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specific features in the context of each word. Our
extensive experiments on three benchmark datasets,
empirically prove the effectiveness of the proposed
model leading to new the state-of-the-art results on
all three datasets.

2 Related Work

In the literature, Slot Filling (SF), is categorized
as one of the sub-tasks of spoken language un-
derstanding (SLU). Early work employed feature
engineering for statistical models, e.g., Conditional
Random Field (Raymond and Riccardi, 2007). Due
to the lack of generalisation ability of feature based
models, deep learning based models superseded
them (Yao et al., 2014; Peng et al., 2015; Kurata
et al., 2016; Hakkani-Tür et al., 2016). Also, joint
models to simultaneously predict the intent of the
utterance and to extract the semantic slots has also
gained a lot of attention (Guo et al., 2014; Liu and
Lane, 2016; Zhang and Wang, 2016; Wang et al.,
2018; Goo et al., 2018; Qin et al., 2019; E et al.,
2019). In addition to the supervised settings, re-
cently other setting such as progressive learning
(Shen et al., 2019) or zero-shot learning has also
been studied (Shah et al., 2019). To the best of our
knowledge, none of the existing work introduces a
multi-task learning solely for the SF to incorporate
the contextual information in both representation
and task levels.

3 Model

Our model is trained in a multi-task setting in which
the main task is slot filling to identify the best possi-
ble sequence of labels for the given sentence. In the
first auxiliary task we aim to increase consistency
between the word representation and its context.
The second auxiliary task is to enhance task spe-
cific information in contextual information. In this
section, we explain each of these tasks in more
details.

3.1 Slot Filling

Formally, the input to a SF model is a sequence of
words X = [x1, x2, . . . , xn] and our goal is to pre-
dict the sequence of labels Y = [y1, y2, . . . , yn]. In
our model, the word xi is represented by vector ei
which is the concatenation of the pre-trained word
embedding and POS tag embedding of the word
xi. In order to obtain a more abstract representa-
tion of the words, we employ a Bi-directional Long
Short-Term Memory (BiLSTM) over the word rep-

resentations E = [e1, e2, . . . , en] to generate the
abstract vectors H = [h1, h2, . . . , hn]. The vector
hi is the final representation of the word xi and
is fed into a two-layer feed forward neural net to
compute the label scores si for the given word,
si = FF (hi). As the task of SF is formulated
as a sequence labeling task, we exploit a condi-
tional random field (CRF) layer as the final layer
of SF prediction. More specifically, the predicted
label scores S = [s1, s2, . . . , sn] are provided as
emission score to the CRF layer to predict the la-
bel sequence Ŷ = [ŷ1, ŷ2, . . . , ŷn]. To train the
model, the negative log-likelihood is used as the
loss function for SF prediction, i.e., Lpred.

3.2 Consistency between Word and Context

In this sub-task we aim to increase the consistency
between the word representation and its context.
To obtain the context of each word, we use max
pooling over the outputs of the BiLSTM for all
words of the sentence excluding the word itself,
hci = MaxPooling(h1, h2, ..., hn/hi). We aim to
increase the consistency between vectors hi and hci .
To this end, we propose to maximize the Mutual
Information (MI) between the word representation
and its context. In information theory, MI evalu-
ates how much information we know about one
random variable if the value of another variable
is revealed. Formally, the mutual information be-
tween two random variable X1 and X2 is obtained
by:

MI(X1, X2) =

∫
X1

∫
X2

P (X1, X2)·

log
P (X1, X2)

P (X1)P (X2)
dX1dX2

(1)

Using this definition of MI, we can reformu-
late the MI equation as KL-Divergence between
the joint distribution PX1X2 = P (X1, X2) and
the product of marginal distributions PX1

⊗
X2

=
P (X1)P (X2):

MI(X1, X2) = DKL(PX1X2 ||PX1
⊗

X2
) (2)

Based on this understanding of MI, if the two
random variables are dependent then the mutual
information between them (i.e. the KL-Divergence
in Equation 2) would be the highest. Consequently,
if the representations hi and hci are encouraged to
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have large mutual information, we expect them to
share more information.

Computing the KL-Divergence in equation 2
could be prohibitively expensive (Belghazi et al.,
2018), so we need to estimate it. To this end,
we exploit the adversarial method introduced in
(Hjelm et al., 2019). In this method, a discrim-
inator is employed to distinguish between sam-
ples from the joint distribution and the product
of the marginal distributions to estimate the KL-
Divergence in Equation 2. In our case, the sample
from joint distribution is the concatenation [hi : hci ]
and the sample from the product of the marginal
distribution is the concatenation [hi : hcj ] where
hcj is a context vector randomly chosen from the
words in the mini-batch. Formally:

Ldisc =
1

n
Σn
i=1 − (log(D[hi, h

c
i ])+

log(1−D([hi, h
c
j ])))

(3)

Where D is the discriminator. This loss is added to
the final loss function of the model.

3.3 Prediction by Contextual Information
In addition to increasing consistency between the
word representation and its context representation,
we aim to increase the task-specific information in
contextual representations. To this end, we train the
model on two auxiliary tasks. The first one aims
to use the context of each word to predict the label
of that word. The goal of the second auxiliary task
is to use the global context information to predict
sentence level labels. We describe each of these
tasks in more details in the following subsections.

Predicting Word Label
In this sub-task, we use the context representa-
tions of each word to predict its label. It will
increase the information encoded in the context
of the word about the label of the word. We use
the same context vector hci for the i-th word as
described in the previous section. This vector is
fed into a two-layer feed forward neural network
with a softmax layer at the end to output the proba-
bilities for each class, Pi(.|{x1, x2, ..., xn}/xi) =
softmax(FF (hci )). Finally, we use the following
negative log-likelihood as the loss function to be
optimized during training:

Lwp =
1

n
Σn
i=1 − log(Pi(yi|{x1, x2, ..., xn}/xi))

(4)

Predicting Sentence Labels
The word label prediction enforces the context of
each word to contain information about its label
but it lacks a global view about the entire sentence.
In order to increase the global information about
the sentence in the representation of the words, we
aim to predict the labels existing in a sentence from
the representations of its words. More specifically,
we introduce a new sub-task to predict which labels
exists in the given sentence. We formulate this task
as a multi-label classification problem. Formally,
for each sentence, we predict the binary vector
Y s = [ys1, y

s
2, ..., y

s
|L|] where L is the set of all

possible word labels. In the vector Y s, ysi is 1 if
the sentence X contains i-th label from the label
set L otherwise it is 0.

To predict vector Y s, we first compute the rep-
resentation of the sentence. This representation is
obtained by max pooling over the outputs of the
BiLSTM, H = MaxPooling(h1, h2, ..., hn). Af-
terwards, the vector H is fed into a two-layer feed
forward neural net with a sigmoid activation func-
tion at the end to compute the probability distribu-
tion of Y s(i.e., Pk(.|x1, x2, ..., xn) = σk(FF (H))
for k-th label in L). Note that since this task is a
multi-label classification, the number of neurons
at the final layer is equal to |L|. We optimize the
following binary cross-entropy loss:

Lsp =
1

|L|
Σ
|L|
k=1 − (ysk · log(Pk(ysk|x1, x2, ..., xn))+

(1− ysk) · log(1− Pk(ysk|x1, x2, ..., xn)))

(5)

Finally, to train the entire model we optimize the
following combined loss:

L = Lpred + αLdiscr + βLwp + γLsp (6)

where α, β and γ are the trade-off parameters to be
tuned based on the development set performance.

4 Experiments

4.1 Dataset and Parameters
We evaluate our model on three SF datasets.
Namely, we employ ATIS (Hemphill et al.,
1990), SNIPS (Coucke et al., 2018) and EditMe
(Manuvinakurike et al., 2018). ATIS and SNIPS
are two widely adopted SF dataset and EditMe is
a SF dataset for editing images with four slot la-
bels (i.e., Action, Object, Attribute and Value). The
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statistics of the datasets are presented in the Ap-
pendix A. Based on the experiments on EditMe
development set, the following parameters are se-
lected: GloVe embedding with 300 dimensions to
initialize word embedding ; 200 dimensions for the
all hidden layers in LSTM and feed forward neural
net; 0.1 for trade-off parameters α, β and γ; and
Adam optimizer with learning rate 0.001. Follow-
ing previous work, we use F1-score to evaluate the
model.

4.2 Baselines
We compare our model with other deep learn-
ing based models for SF. Namely, we compare
the proposed model with Joint Seq (Hakkani-Tür
et al., 2016), Attention-Based (Liu and Lane, 2016),
Sloted-Gated (Goo et al., 2018), SF-ID (E et al.,
2019), CAPSULE-NLU (Zhang et al., 2019), and
SPTID (Qin et al., 2019). Note that we compare
our model with the single-task version of these
baselines. We also compare our model with other
sequence labeling models which are not specifi-
cally proposed for SF. Namely, we compare the
model with CVT (Clark et al., 2018) and GCDT
(Liu et al., 2019). CVT aims to improve input repre-
sentation using improving partial views and GCDT
exploits contextual information to enhance word
representations via concatenation of context and
word representation.

4.3 Results
Table 1 reports the performance of the model and
baselines. The proposed model outperforms all
baselines in all datasets. Among all baselines,
GCDT achieves best results on two out of three
datasets. This superiority shows the importance
of explicitly incorporating the contextual informa-
tion into word representation for SF. However, the
proposed model improves the performance sub-
stantially on all datasets by explicitly encouraging
the consistency between a word and its context in
representation level and task-specific (i.e., label)
level. Also, Table 1 shows that EditMe dataset is
more challenging than the other datasets, despite
having fewer slot types. This difficulty could be
explained by the limited number of training exam-
ples and more diversity in sentence structures in
this dataset.

4.4 Ablation Study
Our model consists of three major components: (1)
MI: Increasing mutual information between word

Model SNIPS ATIS EditMe
Joint Seq(2016) 87.3 94.3 -
Attention-Based(2016) 87.8 94.2 -
Sloted-Gated(2018) 89.2 95.4 84.9
SF-ID(2019) 90.9 95.5 85.2
CAPSULE-NLU(2019) 91.8 95.2 84.6
SPTID(2019) 90.8 95.1 85.3
CVT(2018) 91.4 94.8 85.4
GCDT(2019) 92.0 95.1 85.6
Ours 93.6 95.8 87.2

Table 1: Performance of the model and baselines on the
Test sets.

Model SNIPS ATIS EditMe
Full 93.6 95.8 87.2
Full - MI 92.9 95.3 84.2
Full - WP 91.7 94.9 83.2
Full - SP 92.5 95.2 84.1

Table 2: Test F1-score for the ablated models

and its context representations (2) WP: Predicting
the label of the word using its context to increase
word level task-specific information in the word
context (3) SP: Predicting which labels exist in
the given sentence in a multi-label classification to
increase sentence level task-specific information
in word representations. In order to analyze the
contribution of each of these components, we also
evaluate the model performance when we remove
one of the components and retrain the model. The
results are reported in Table 2. This Table shows
that all components are required for the model to
have its best performance. Among all components,
the word level prediction using the contextual in-
formation has the major contribution to the model
performance. This fact shows that contextual infor-
mation trained to be informative about the final task
is necessary to obtain the representations which
could boost the performance.

5 Conclusion

In this work, we introduced a new deep model for
the task of Slot Filling (SF). In a multi-task set-
ting, our model increases the mutual information
between the word representation and its context,
improves label information in the context and pre-
dicts which concepts are expressed in the given
sentence. Our experiments on three benchmark
datasets show the effectiveness of our model by
achieving the state-of-the-art results on all datasets
for the SF task.
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A Dataset Statistics

In our experiments, we employ three benchmark
datasets, ATIS, SNIPS and EditMe. Table 3
presents the statistics of these three datasets. More-
over, in order to provide more insight into the Ed-
itMe dataset, we report the labels statistics of this
dataset in Table 4.

Dataset Train Dev Test
SNIPS 13,084 700 700
ATIS 4,478 500 893

EditMe 1,737 497 559

Table 3: Total number of examples in test/dev/train
splits of the datasets

Label Train Dev Test
Action 1,562 448 479
Object 4,676 1,447 1,501

Attribute 1,437 403 462
Value 507 207 155

Table 4: Label Statistics of EditMe dataset


