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Abstract

Recognising and linking entities is a crucial
first step to many tasks in biomedical text
analysis, such as relation extraction and target
identification. Traditionally, biomedical entity
linking methods rely heavily on heuristic rules
and predefined, often domain-specific features.
The features try to capture the properties of en-
tities and complex multi-step architectures to
detect, and subsequently link entity mentions.
We propose a significant simplification to the
biomedical entity linking setup that does not
rely on any heuristic methods. The system per-
forms all the steps of the entity linking task
jointly in either single or two stages. We ex-
plore the use of hierarchical multi-task learn-
ing, using mention recognition and entity typ-
ing tasks as auxiliary tasks. We show that hi-
erarchical multi-task models consistently out-
perform single-task models when trained tasks
are homogeneous. We evaluate the perfor-
mance of our models on the biomedical entity
linking benchmarks using MedMentions and
BC5CDR datasets. We achieve state-of-the-
art results on the challenging MedMentions
dataset, and comparable results on BC5CDR.

1 Introduction & Related Work

The task of identifying and linking mentions of
entities to the corresponding knowledge base is
a key component of biomedical natural language
processing, strongly influencing the overall perfor-
mance of such systems. The existing biomedical
entity linking systems can usually be broken down
into two stages: (1) Mention Recognition (MR)
where the goal is to recognise the spans of entity
mentions in text and (2) Entity Linking (EL, also re-
ferred as Entity Normalisation or Standardisation),
which given a potential mention, tries to link it to
an appropriate type and entity. Often, the entity
linking task includes the Entity Typing (ET) and
Entity Disambiguation (ED) as separate steps, with
the former task aiming to identify the type of the

mention, such as gene, protein or disease before
passing it to the entity disambiguation stage, which
effectively grounds the mention to an appropriate
entity.

Widely studied in the general domain, entity link-
ing is particularly challenging for the biomedical
text. This is mostly due to the size of the ontol-
ogy, (here referred to as the knowledge base), high
syntactic and semantic overlap between types and
entities, the complexity of terms, as well as the lack
of availability of annotated text.

Due to these challenges, the majority of the ex-
isting methods rely on hand-crafted complex rules
and architectures including semi-Markov methods
(Leaman and Lu, 2016), approximate dictionary
matching (Wang et al., 2019) or use a set of exter-
nal domain-specific tools with manually curated
ontologies (Kim et al., 2019). These methods often
include multiple steps, each of these steps carrying
over the errors to the subsequent stages. Never-
theless, these tasks are usually interdependent and
have been proven to often benefit from a joint ob-
jective (Durrett and Klein, 2014). Recently, both
in the general and biomedical domain, there has
been a steady shift to neural methods to solve EL
(Kolitsas et al., 2018; Habibi et al., 2017), leverag-
ing a range of methods including the use of entity
embeddings (Yamada et al., 2016), multi-task learn-
ing (Mulyar and McInnes, 2020; Khan et al., 2020),
and others (Radhakrishnan et al., 2018). There have
also been a plethora of mixed methods combining
heuristic approaches such as approximate dictio-
nary matching with language models (Loureiro and
Jorge, 2020).

This work focuses on multi-task approaches to
end-to-end entity linking, which has already been
studied in the biomedical domain. These include
ones leveraging pre-trained language models (Peng
et al., 2020; Crichton et al., 2017; Khan et al.,
2020), model dependency (Crichton et al., 2017)
and building out a cross-sharing model structure
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(Wang et al., 2019). An interesting approach has
been proposed by Zhao et al. (2019), where authors
established a multi-task deep learning model that
trained NER and EL models in parallel, with each
task leveraging feedback from the other. A model
with a similar setup and architecture to the one here,
casting the EL problem as a simple per token clas-
sification problem has been outlined by Broscheit
(2019). Nevertheless, its application domain, ar-
chitecture, and training regime strongly differ from
the one proposed here.

In this study, we investigate the use of a signif-
icantly simpler model, drawing on a set of recent
developments in NLP, such as pre-trained language
models, hierarchical and multi-task learning to out-
line a simple, yet effective approach for biomedical
end-to-end entity linking. We evaluate our models
on three tasks, mention recognition, entity typing,
and entity linking, investigating different task se-
tups and architectures on the MedMentions and
BioCreative V CDR corpora.

Our contributions are as follows: (1) we propose
and evaluate two simple setups using fully neural
end-to-end entity linking models for biomedical
literature. We treat the problem as a per token
classification or per entity classification problem
over the entire entity vocabulary. All the steps
included in the entity linking task are performed in
a single or two steps. (2) We examine the use of
mention recognition and entity typing as auxiliary
tasks in both multi-task and hierarchical multi-task
learning scenario, proving that hierarchical multi-
task models outperform single-task models when
tasks are homogeneous. (3) We outline the optimal
training regime including adapting the loss for the
extreme classification problem.

2 Methods

2.1 Tasks

Our main task, which we refer to as Entity Link-
ing (EL) aims at classifying each token or a men-
tion to an appropriate entity concept unique identi-
fier (CUI). In order for the mention to be correctly
identified, all tokens for the mention need to have
the correct golden annotation. If the model has
wrongly predicted the token right after or before
the entity’s golden annotated span, the entity pre-
diction is wrong at the mention-level (Mohan and
Li, 2019). For the per entity setup, where the entity
representation is derived through mean pooling of
all tokens spanning a predicted entity, both the final

Figure 1: The entity linking setup as a (a) per token (PT)
classification and (b) per entity (PE) classification problem
with a sentence and corresponding labels for EL, ET and
MR, which uses a BILOU scheme for annotations. Here, ”O”
denotes a Nil and ”M” a Mention prediction.

EL and the MR predictions need to be correct. Fig-
ure one provides more information on both setups.

We also make use of two other tasks: En-
tity Typing (ET) and Mention Recognition (MR),
with the former predicting entity Type Unique Iden-
tifier (TUI) for each token and the latter predicting
whether a token is a part of the mention. We always
use the BILOU scheme for mention recognition to-
ken annotation, and due to the low number of types
in the BC5CDR dataset, also for the ET task on
this corpora. We evaluate the entity prediction at
mention-level similarly as in the EL and ET. In per
token setup, all three tasks are essentially sequence
labelling problems, while in per entity setup, only
the MR is a sequence labelling problem and both
ET and EL are classification problems leveraging
the predictions produced by the MR model.

The reason behind employing ET and MR tasks
is for investigating the multi-task learning methods,
where we treat ET and MR as auxiliary tasks aimed
at regularising and providing additional informa-
tion to the main EL task leveraging its inherently
hierarchical structure. Correspondingly, we also
look at the performance impact of the two other
tasks on EL task.

2.2 Models

We outline three models: single-task model, multi-
task model, and hierarchical multi-task model. The
model architecture for the latter two models is de-
picted on Figure 2. All models take a sentence with



14

Figure 2: The architectures of the multi-task model (left)
and hierarchical multi-task model (right) with hierarchical
structure of the tasks and task-specific encoders.

the surrounding context as their input and output a
prediction for a token (PT setup) or an average of
token embeddings spanning an entity (PE setup).
For tokenisation, embedding layer and encoder we
use SciBERT (base).

The single-task model only adds a feedforward
neural network at the top of the encoder trans-
former, which acts as a decoder. In the multi-task
scenario, three feedforward layers are added on
the top of the transformer, each corresponding to a
specific task, namely MR, ET, and EL. All of these
tasks share the encoder and during a forward pass,
the encoder output is fed into each task-specific
layers separately, after which the cumulative loss
is summed and backpropagated through the model.
The intuition behind sharing the encoder is that
training on multiple interdependent tasks will act
as a regularisation method, thus improving the over-
all performance and speed of convergence.

The last model is a hierarchical multi-task model
that leverages the natural hierarchy between the 3
tasks by introducing an inductive bias by super-
vising lower level tasks at the bottom layers of
the model (MR, ET) and higher level task (EL) at
the top layer. Similarly, as in (Sanh et al., 2019),
we add task-specific encoders and shortcut con-
nections to process the information from lower to
higher level tasks. The higher level tasks take the
concatenation of the general transformer encoder
output and lower-level task encoder specific output
as their input. Here, we use multi-layer BiLSTMs
as task-specific encoders.

We experiment with all three models in the per
token scenario, as all tasks in this setup are se-
quence labelling problems. For the per entity frame-
work, we look at a single-task and hierarchical
multi-task model, where only the MR step is a
sequence labelling task and ET and EL are both
classification tasks.

3 Experiments

3.1 Training details

We treat both PE and PT setups as multi-class
classification problems over the entire entity vo-
cabulary. In both cases, we use categorical cross-
entropy to compute the loss. To address the class
imbalance problem in the PT framework, we ap-
ply a lower weight to the Nil token’s output class,
keeping other class weights equal. To improve con-
vergence speed and memory efficiency we compute
the loss only through the entity classes present in
the batch. Therefore, for token ti in a sequence T ,
(or correspondingly the mean pooled entity repre-
sentation from a set of tokens) with a label yi and
its assigned class weight wk in a minibatch B and
entity labels derived from this batch Ê = E(B) ,
the loss is computed by

L = − 1

|B| ∗ |T |

|Ê|∑
k

|B|∑
j

|T |∑
i

wky
k
ij log(hθ(tij , k)).

Here, ykij represents the target label for token i
in a sequence j for class k, and hθ(tij , k) repre-
sents the model prediction for token tij and class k,
where the parameters θ are defined by the encoder
and decoder layers in the model.

We found using the context, namely the sentence
after and before the sentence of interest beneficial
for the encoder. After encoder, the context sen-
tences are discarded from further steps. For the en-
coder, we use the SciBERT (base) transformer, and
we fine tune the model parameters during training.
For the hierarchical multi-task model, we follow
the training regime outlined in (Sanh et al., 2019)
and found tuning the encoder only on the EL task
marginally outperforming sharing it across all three
tasks. We treated the Nil output class weight as an
additional hyperparameter that we set to 0.125 for
MedMentions (full) and BC5CDR datasets, and
0.01 for MedMentions st21pv. All trainings were
performed using Adam (Kingma and Ba, 2015)
with 1e − 4 weight decay, 2 − e5 learning rate,
batch size of 32 and max sequence length of 128.

Dataset #Docs #Mentions #Unq TUI #Unq CUI
MedMentions (full) 4,392 352,496 126 34,724
MedMentions (st21pv) 4,392 203,282 21 25,419
Bio CDR 1,500 28,559 2 5,818

Table 1: Details of biomedical entity linking datasets used in
our experiments.
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MedMentions(full) MedMentions (st21pv) BC5CDR
Mention Recognition

Model Acc P R F1 Acc P R F1 Acc P R F1
SciSpacy N/A 69.61 68.56 69.08 N/A 41.23 70.57 52.05 N/A 81.47 73.47 77.81
BiLSTM-CRF 82.47 64.09 65.03 64.56 84.86 60.53 61.7 61.11 94.00 72.09 78.65 75.23
Single-task 85.56 73.4 69.38 71.33 87.72 73.55 66.92 70.05 97.04 89.64 88.25 88.94
Multi-task 85.62 72.62 69.72 71.14 87.84 73.34 66.53 69.76 96.93 90.56 87.24 88.87
Hier. Multi-task 85.40 73.13 68.93 70.97 85.59 74.19 59.25 65.88 96.68 89.31 84.91 87.05

Entity Typing
Model Acc P R F1 Acc P R F1 Acc P R F1
SciSpacy N/A 39.67 39.08 39.37 N/A 10.14 31.68 15.26 N/A N/A N/A N/A
BiLSTM-CRF 72.26 45.14 44.98 45.06 82.46 47.15 52.29 49.59 94.03 72.08 78.70 75.24
PT-Single-task 78.27 55.79 51.65 53.64 86.67 63.10 58.26 60.59 96.96 89.52 87.48 88.45
PE-Single-task N/A 57.5 52.62 54.95 N/A 65.05 60.43 62.65 N/A 90.53 87.65 89.07
PT-Multi-task 78.3 55.39 52.66 53.99 86.72 63.77 58.86 61.21 96.90 90.33 87.04 88.65
PT-Hier. Multi-task 76.7 61.94 49.41 50.61 80.87 46.22 40.76 43.32 96.57 88.40 84.24 86.27
PE-Hier. Multi-task N/A 50.91 46.49 48.65 N/A 59.44 55.27 57.30 N/A 88.15 85.34 86.72

Entity Linking
Model Acc P R F1 Acc P R F1 Acc P R F1
SciSpacy N/A 34.14 33.63 33.88 N/A 25.17 53.52 34.24 N/A 58.43 52.70 55.42
BiLSTM-CRF* 62.73 39.89 30.25 32.22 71.35 33.65 25.46 28.99 89.52 52.72 47.59 50.02
PT-Single-task 67.98 46.41 39.46 42.65 75.57 44.09 35.58 39.36 91.62 64.14 57.56 60.67
PE-Single-task N/A 46.3 42.37 44.25 N/A 43.03 39.97 41.45 N/A 64.98 62.91 63.93
PT-Multi-task 68.23 45.88 40.13 42.81 76.43 44.03 37.85 40.71 91.45 63.51 54.35 58.62
PT-Hier. Multi-task 68.13 46.89 39.93 43.13 76.14 44.32 37.69 40.74 91.65 64.35 59.27 63.15
PE-Hier. Multi-task N/A 46.21 42.29 44.16 N/A 43.12 40.06 41.53 N/A 64.54 62.49 63.5

Table 2: Results: performance of various models on MR, EL and ET tasks on the test sets. Here Acc-pt denotes per token
accuracy. * for EL task on MedMentions full and st21pv we used a MLP layer on top of BiLSTM instead of CRF due to the
lower performance of CRF on large number of output classes.

The models were trained on a single NVIDIA V100
GPU until convergence.

3.2 Datasets and Evaluation metrics

We evaluate our models on three datasets; two ver-
sions of the recently released MedMentions dataset;
(1) full set and (2) and st21pv subset of it (Mohan
and Li, 2019) and BioCreative V CDR task cor-
pus (Li et al., 2016). Each mention in the dataset
is labelled with a concept unique identifier (CUI)
and type unique identifier (TUI). Both MedMen-
tions datasets target UMLS ontology but vary in
terms of number of types and mentions, while the
BioCreative V corpora is normalised with MeSH
identifiers. The datasets details are summarised in
Table 1.

We measure the performance of each task using
mention-level metrics described in (Mohan and Li,
2019), providing precision, recall, and F1 scores.
Additionally, we record the per token accuracy for
the per token setup. As benchmarks, we use SciS-
pacy (Neumann et al., 2019) package, which has
been shown to outperform other biomedical text

processing tools such as QuickUMLS or MetaMap
on full MedMentions and BC5CDR (Vashishth
et al., 2020). Due to little results reported on the
end-to-end entity linking task on MedMentions,
we also use BiLSTM-CRF in per token setup as a
benchmark.

3.3 Results and discussion

In Tables 2 and 3 we outline the results on MR,
ET, and EL tasks. While the reported results are
all optimal for single-task models, it should be
noted that all multi-task models optimise for the
EL task with MR and ET serving as auxiliary tasks,
hence the EL is the focus of the discussion. All
of the models outlined here significantly outper-
form SciSpacy and BiLSTM-CRF, particularly in
ET and EL. The per entity setup proves to perform
better on EL than the simpler per token framework
by 0.87 F1 points on average, yielding particularly
better recall results (2.03 points). Error analysis
has shown that this is often due to the lexical over-
lap of some Nil tokens with entity tokens, resulting
in a model often assigning an entity label for to-
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kens with gold Nil token label. Furthermore, in
the per token setup, the multi-task models consis-
tently outperform the single-task models on EL,
with the hierarchical multi-task model achieving
the best results (on average 1.45 F1 points better
than single-task models). In contrast, this has not
been the case for the per entity framework, where
the single-task models have on average performed
marginally better on EL. We hypothesise that this
is due to the homogeneity of the tasks in the per
token setup, with all the tasks being sequence la-
belling problems, which is not the case for the per
entity case. Interestingly, the achieved results are
higher for the full MedMentions dataset than for
the st21pv subset. This highlights the problem of
achieving high macro performance mentioned in
(Loureiro and Jorge, 2020) for biomedical entity
linking.

4 Conclusion & Future Work

In this work, we have proposed a simple neural
approach to end-to-end entity linking for biomedi-
cal text which makes no use of heuristic features.
We have proven that the problem can benefit from
the hierarchical multi-task learning when tasks are
homogeneous. We report state-of-the-art results on
EL on the full MedMentions dataset and compara-
ble results on the MR and ET tasks on BC5CDR
(Zhao et al., 2019). The work could easily be ex-
tended by, for example, using the output of the
PT setup as features or by further developing the
hierarchical multi-task framework of end-to-end
entity linking problem. Moreover, the additional
parameters such as output class weights or loss scal-
ing which has not been used here could be easily
adapted to a particular problem.
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