
Proceedings of the 17th International Conference on Natural Language Processing, pages 76–84
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

76

Solving Arithmetic Word Problems with Transformers and Preprocessing
of Problem Text

Kaden Griffith and Jugal Kalita
University of Colorado

1420 Austin Bluffs Parkway
Colorado Springs CO 80918

kadengriffith@gmail.com and jkalita@uccs.edu

Abstract

This paper outlines the use of Transformer net-
works trained to translate math word problems
to equivalent arithmetic expressions in infix,
prefix, and postfix notations. We compare
results produced by many neural configura-
tions and find that most configurations outper-
form previously reported approaches on three
of four datasets with significant increases in
accuracy of over 20 percentage points. The
best neural approaches boost accuracy by 30%
when compared to the previous state-of-the-art
on some datasets.

1 Introduction

Students are exposed to simple arithmetic word
problems starting in elementary school, and most
become proficient in solving them at a young age.
However, it has been challenging to write programs
to solve such elementary school level problems
well. Even simple word problems, consisting of
only a few sentences, can be challenging to under-
stand for an automated system.

Solving a math word problem (MWP) starts with
one or more sentences describing a transactional
situation. The sentences are usually processed to
produce an arithmetic expression. These expres-
sions then may be evaluated to yield a numerical
value as an answer to the MWP.

Recent neural approaches to solving arithmetic
word problems have used various flavors of recur-
rent neural networks (RNN) and reinforcement
learning. However, such methods have had dif-
ficulty achieving a high level of generalization.
Often, systems extract the relevant numbers suc-
cessfully but misplace them in the generated ex-
pressions. They also get the arithmetic operations
wrong. The use of infix notation also requires pairs
of parentheses to be placed and balanced correctly,
bracketing the right numbers. There have been
problems with parentheses placement.

Figure 1: Possible generated expressions for an MWP.

Question:
At the fair Adam bought 13 tickets. After rid-
ing the ferris wheel he had 4 tickets left. If
each ticket cost 9 dollars, how much money did
Adam spend riding the ferris wheel?
Some possible expressions that can be pro-
duced:
(13�4)⇤9, 9⇤13�4, 5⇤13�4, 13�4⇤9, 13� (4⇤9),
(9 ⇤ 13� 4), (9) ⇤ 13� 4, (9) ⇤ 13� (4), etc.

To start, correctly extracting the numbers in the
problem is necessary. Figure 1 gives examples of
some infix representations that a machine learning
solver can potentially produce from a simple word
problem using the correct numbers. Of the expres-
sions shown, only the first one is correct. The use
of infix notation may itself be a part of the prob-
lem because it requires the generation of additional
characters, the open and closed parentheses, which
must be placed and balanced correctly.

The actual numbers appearing in MWPs vary
widely from problem to problem. Real numbers
take any conceivable value, making it almost impos-
sible for a neural network to learn representations
for them. As a result, trained programs sometimes
generate expressions that have seemingly random
numbers. For example, in some runs, a trained
program could generate a potentially inexplicable
expression such as (25.01� 4) ⇤ 9 for the problem
given in Figure 1, with one or more numbers not
in the problem sentences. To obviate this issue,
we replace the numbers in the problem statement
with generic tags like hii, hqi, and hxi and save
their values as a preprocessing step. This approach
does not take away from the generality of the solu-
tion but suppresses fertility in number generation
leading to the introduction of numbers not present
in the question sentences. We extend the prepro-

 



77

cessing methods to ease the understanding through
simple expanding and filtering algorithms. For ex-
ample, some keywords within sentences are likely
to cause the choice of operators for us as humans.
By focusing on these terms in the context of a word
problem, we hypothesize that our neural approach
will improve further.

In this paper, we use the Transformer model
(Vaswani et al., 2017) to solve arithmetic word
problems as a particular case of machine transla-
tion from text to the language of arithmetic expres-
sions. Transformers in various configurations have
become a staple of NLP in the past three years.
We do not augment the neural architectures with
external modules such as parse trees or deep rein-
forcement learning. We compare performance on
four individual datasets. In particular, we show that
our translation-based approach outperforms state-
of-the-art results reported by (Wang et al., 2018;
Hosseini et al., 2014; Kushman et al., 2014; Roy
et al., 2015; Robaidek et al., 2018) by a large mar-
gin on three of four datasets tested. On average,
our best neural architecture outperforms previous
results by almost 10%, although our approach is
conceptually more straightforward.

We organize our paper as follows. The sec-
ond section presents related work. Then, we dis-
cuss our approach. We follow by an analysis of
baseline experimental results and compare them to
those of other recent approaches. We then take our
best performing model and train it with motivated
preprocessing, discussing changes in performance.
We follow with a discussion of our successes and
shortcomings. Finally, we share our concluding
thoughts and end with our direction for future work.

2 Related Work

Past strategies have used rules and templates to
match sentences to arithmetic expressions. Some
such approaches seemed to solve problems im-
pressively within a narrow domain but performed
poorly otherwise, lacking generality (Bobrow,
1964; Bakman, 2007; Liguda and Pfeiffer, 2012;
Shi et al., 2015). Kushman et al. (Kushman et al.,
2014) used feature extraction and template-based
categorization by representing equations as expres-
sion forests and finding a close match. Such meth-
ods required human intervention in the form of fea-
ture engineering and the development of templates
and rules, which is not desirable for expandability
and adaptability. Hosseini et al. (Hosseini et al.,

2014) performed statistical similarity analysis to
obtain acceptable results but did not perform well
with texts that were dissimilar to training examples.

Existing approaches have used various forms of
auxiliary information. Hosseini et al. (Hosseini
et al., 2014) used verb categorization to identify
important mathematical cues and contexts. Mitra
and Baral (Mitra and Baral, 2016) used predefined
formulas to assist in matching. Koncel-Kedziorski
et al. (Koncel-Kedziorski et al., 2015) parsed the
input sentences, enumerated all parses, and learned
to match, requiring expensive computations. Roy
and Roth (Roy and Roth, 2017) performed searches
for semantic trees over large spaces.

Some recent approaches have transitioned to
using neural networks. Semantic parsing takes
advantage of RNN architectures to parse MWPs
directly into equations, or expressions in a math-
specific language (Shi et al., 2015; Sun et al., 2019).
RNNs have shown promising results, but they have
had difficulties balancing parentheses. Sometimes
RNN models incorrectly choose numbers when
generating equations. Rehman et al. (Rehman
et al., 2019) used part-of-speech tagging and clas-
sification of equation templates to produce systems
of equations from third-grade level MWPs. Most
recently, Sun et al. (Sun et al., 2019) used a bi-
directional LSTM architecture for math word prob-
lems. Huang et al. (Huang et al., 2018) used a deep
reinforcement learning model to achieve character
placement in both seen and new equation templates.
Wang et al. (Wang et al., 2018) also used deep re-
inforcement learning. We take a similar approach
to (Wang et al., 2019) in preprocessing to prevent
ambiguous expression representation.

This paper builds upon (Griffith and Kalita,
2019), extending the capability of similar Trans-
former networks and solving some common issues
found in translations. Here, we simplify the tag-
ging technique used in (Griffith and Kalita, 2019),
and apply preprocessing to enhance translations.

3 Approach

We view math word problem solving as a sequence-
to-sequence translation problem. RNNs have ex-
celled in sequence-to-sequence problems such as
translation and question answering. The introduc-
tion of attention mechanisms has improved the per-
formance of RNN models. Vaswani et al. (Vaswani
et al., 2017) introduced the Transformer network,
which uses stacks of attention layers instead of



78

recurrence. Applications of Transformers have
achieved state-of-the-art performance in many NLP
tasks. We use this architecture to produce charac-
ter sequences that are arithmetic expressions. The
models we experiment with are easy and efficient
to train, allowing us to test several configurations
for a comprehensive comparison. We use several
configurations of Transformer networks to learn
the prefix, postfix, and infix notations of MWP
equations independently.

Prefix and postfix representations of equations
do not contain parentheses, which has been a
source of confusion in some approaches. If the
learned target sequences are simple, with fewer
characters to generate, it is less likely to make mis-
takes during generation. Simple targets also may
help the learning of the model to be more robust.

3.1 Data
We work with four individual datasets. The datasets
contain addition, subtraction, multiplication, and
division word problems.

1. AI2 (Hosseini et al., 2014). AI2 is a collec-
tion of 395 addition and subtraction problems
containing numeric values, where some may
not be relevant to the question.

2. CC (Roy and Roth, 2015). The Common
Core dataset contains 600 2-step questions.
The Cognitive Computation Group at the Uni-
versity of Pennsylvania1 gathered these ques-
tions.

3. IL (Roy et al., 2015). The Illinois dataset
contains 562 1-step algebra word questions.
The Cognitive Computation Group compiled
these questions also.

4. MAWPS (Koncel-Kedziorski et al., 2016).
MAWPS is a relatively large collection, pri-
marily from other MWP datasets. MAWPS
includes problems found in AI2, CC, IL, and
other sources. We use 2,373 of 3,915 MWPs
from this set. The problems not used were
more complex problems that generate systems
of equations. We exclude such problems be-
cause generating systems of equations is not
our focus.

We take a randomly sampled 95% of examples
from each dataset for training. From each dataset,

1https://cogcomp.seas.upenn.edu/page/
demos/

MWPs not included in training make up the testing
data used when generating our results. Training
and testing are repeated three times, and reported
results are an average of the three outcomes.

3.2 Representation Conversion
We take a simple approach to convert infix expres-
sions found in the MWPs to the other two rep-
resentations. Two stacks are filled by iterating
through string characters, one with operators found
in the equation and the other with the operands.
From these stacks, we form a binary tree structure.
Traversing an expression tree in preorder results in
a prefix conversion. Post-order traversal gives us a
postfix expression. We create three versions of our
training and testing data to correspond to each type
of expression. By training on different representa-
tions, we expect our test results to change.

3.3 Metric Used
We calculate the reported results, here and in later
sections as:

modelavg =
1

R

RX

r=1

✓
1

N

NX

n=1

C 2 Dn

P 2 Dn

◆
(1)

where R is the number of test repetitions, which is
3; N is the number of test datasets, which is 4; P is
the number of MWPs; C is the number of correct
equation translations, and Dn is the nth dataset.

4 Experiment 1: Search for
High-Performing Models

The input sequence for a translation is a natural lan-
guage specification of an arithmetic word problem.
We encode the MWP questions and equations using
the subword text encoder provided by the Tensor-
Flow Datasets library. The output is an expression
in prefix, infix, or postfix notation, which then can
be manipulated further and solved to obtain a final
answer. Each expression style corresponds to a
model trained and tested separately on that specific
style. For example, data in prefix will not intermix
with data in postfix representation.

All examples in the datasets contain numbers,
some of which are unique or rare in the corpus.
Rare terms are adverse for generalization since the
network is unlikely to form good representations
for them. As a remedy to this issue, our networks
do not consider any relevant numbers during train-
ing. Before the networks attempt any translation,
we preprocess each question and expression by a



79

number mapping algorithm. We consider numbers
found to be in word form also, such as “forty-two”
and “dozen.” We convert these words to numbers
in all questions (e.g., “forty-two” becomes “42”).
Then by algorithm, we replace each numeric value
with a corresponding identifier (e.g., hji, hxi) and
remember the necessary mapping. We expect that
this approach may significantly improve how net-
works interpret each question. When translating,
the numbers in the original question are tagged and
cached. From the encoded English and tags, a pre-
dicted sequence resembling an expression presents
itself as output. Since each network’s learned
output resembles an arithmetic expression (e.g.,
hji+ hxi ⇤ hqi), we use the cached tag mapping to
replace the tags with the corresponding numbers
and return a final mathematical expression.

We train and test three representation mod-
els: Prefix-Transformer, Postfix-Transformer, and
Infix-Transformer. For each experiment, we use
representation-specific Transformer architectures.
Each model uses the Adam optimizer with beta1 =
0.95 and beta2 = 0.99 with a standard epsilon of
1 ⇥ e�9. The learning rate is reduced automati-
cally in each training session as the loss decreases.
Throughout the training, each model respects a
10% dropout rate. We employ a batch size of 128
for all training. Each model is trained on MWP
data for 300 iterations before testing. The networks
are trained on a machine using 4 Nvidia 2080 Ti
graphics processing unit (GPU).

We compare medium-sized, small, and minimal
networks to show if a smaller network size can
increase training and testing efficiency while re-
taining high accuracy. Networks over six layers
have shown to be non-effective for this task. We
tried many configurations of our network models
but report results with only three configurations of
Transformer.

- Transformer Type 1: This network is a
small to medium-sized network consisting of
4 Transformer layers. Each layer utilizes 8
attention heads with a depth of 512 and a feed-
forward depth of 1024.

- Transformer Type 2: The second model is
small in size, using 2 Transformer layers. The
layers utilize 8 attention heads with a depth of
256 and a feed-forward depth of 1024.

- Transformer Type 3: The third type of
model is minimal, using only 1 Transformer

layer. This network utilizes 8 attention heads
with a depth of 256 and a feed-forward depth
of 512.

Objective Function We calculate the loss in
training according to a mean of the sparse cate-
gorical cross-entropy formula. Sparse categorical
cross-entropy (De Boer et al., 2005) is used for
identifying classes from a feature set, assuming a
large target classification set. The performance met-
ric evaluates the produced class (predicted token)
drawn from the translation classes (all vocabulary
subword tokens). During each evaluation, target
terms are masked, predicted, and then compared to
the masked (known) value. We adjust the model’s
loss according to the mean of the translation accu-
racy after predicting every determined subword in
a translation.

4.1 Experiment 1 Results

This experiment compares our networks to recent
previous work. We count a given test score by
a simple “correct versus incorrect” method. The
answer to an expression directly ties to all of the
translation terms being correct, which is why we do
not consider partial precision. We compare average
accuracies over 3 test trials on different randomly
sampled test sets from each MWP dataset. This cal-
culation more accurately depicts the generalization
of our networks.

We present the results of our various outcomes
in Table 1. We compare the three representations
of target equations and three architectures of the
Transformer model in each test.

4.1.1 Experiment 1 Analysis
All of the network configurations used were very
successful for our task. The prefix representation
overall provides the most stable network perfor-
mance. We note that while the combined averages
of the prefix models outperformed postfix, the post-
fix representation Transformer produced the high-
est average for a single model. The type 2 postfix
Transformer received the highest testing average
of 87.2%. To highlight the capability of our most
successful model (type 2 postfix Transformer), we
present some outputs of the network in Figure 2.

The models respect the syntax of math expres-
sions, even when incorrect. For most questions, our
translators were able to determine operators based
solely on the context of language.



80

Table 1: Test results for Experiment 1 (* denotes averages on present values only).

(Type) Model AI2 CC IL MAWPS Average
(Hosseini et al., 2014) 77.7 – – – ⇤77.7
(Kushman et al., 2014) 64.0 73.7 2.3 – ⇤46.7
(Roy et al., 2015) – – 52.7 – ⇤52.7
(Robaidek et al., 2018) – – – 62.8 ⇤62.8
(Wang et al., 2018) 78.5 75.5 73.3 – ⇤75.4
(1) Prefix-Transformer 71.9 94.4 95.2 83.4 86.3
(1) Postfix-Transformer 73.7 81.1 92.9 75.7 80.8
(1) Infix-Transformer 77.2 73.3 61.9 56.8 67.3
(2) Prefix-Transformer 71.9 94.4 94.1 84.7 86.3
(2) Postfix-Transformer 77.2 94.4 94.1 83.1 87.2
(2) Infix-Transformer 77.2 76.7 66.7 61.5 70.5
(3) Prefix-Transformer 71.9 93.3 95.2 84.1 86.2
(3) Postfix-Transformer 77.2 94.4 94.1 82.4 87.0
(3) Infix-Transformer 77.2 76.7 66.7 62.4 70.7

Figure 2: Successful postfix translations.

AI2
A spaceship traveled 0.5 light-year from earth to planet
x and 0.1 light-year from planet x to planet y. Then it
traveled 0.1 light-year from planet y back to Earth. How
many light-years did the spaceship travel in all?

Translation produced:

0.5 0.1 + 0.1 +

CC
There were 16 friends playing a video game online when
7 players quit. If each player left had 8 lives, how many
lives did they have total?

Translation produced:

8 16 7 - *

IL
Lisa flew 256 miles at 32 miles per hour. How long did
Lisa fly?

Translation produced:

256 32 /

MAWPS
Debby’s class is going on a field trip to the zoo. If each
van can hold 4 people and there are 2 students and 6
adults going, how many vans will they need?

Translation produced:

2 6 + 4 /

Table 1 provides detailed results of Experiment 1.
The numbers are absolute accuracies, i.e., they cor-
respond to cases where the arithmetic expression
generated is 100% correct, leading to the correct
numeric answer. Results by (Wang et al., 2018;
Hosseini et al., 2014; Roy et al., 2015; Robaidek
et al., 2018) are sparse but indicate the scale of
success compared to recent past approaches. Pre-
fix, postfix, and infix representations in Table 1
show that network capabilities are changed by how
teachable the target data is.

While our networks fell short of Wang, et al.
AI2 testing accuracy (Wang et al., 2018), we
present state-of-the-art results for the remaining
three datasets in Table 1. The AI2 dataset is tricky
because its questions contain numeric values that
are extraneous or irrelevant to the actual computa-
tion, whereas the other datasets have only relevant
numeric values. Following these observations, we
continue to more involved experiments with only
the type 2 postfix Transformer. The next sections
will introduce our preprocessing methods. Note
that we start from scratch in our training for all
experiments following this section.

5 Experiment 2: Preprocessing for
Improved Results

We use various additional preprocessing methods
to improve the training and testing of MWP data.
One goal of this section is to improve the notably
low performance on the AI2 tests. We introduce
eight techniques for improvement and report our
results as an average of 3 separate training and



81

testing sessions. These techniques are also tested
together in some cases to observe their combined
effects.

5.1 Preprocessing Algorithms

We take note of previous pitfalls that have pre-
vented neural approaches from applying to general
MWP question answering. To improve English to
equation translation further, we apply some trans-
formation processes before the training step in our
neural pipeline. First, we optionally remove all
stop words in the questions. Then, again optionally,
the words are transformed into a lemma to prevent
easy mistakes caused by plurals. These simple
transformations can be applied in both training and
testing and require only base language knowledge.

We also try minimalistic manipulation ap-
proaches in preprocessing and analyze the results.
While in most cases, the tagged numbers are rele-
vant and necessary when translating; in some cases,
there are tagged numbers that do not appear in
equations. To avoid this, we attempt three differ-
ent methods of preprocessing: Selective Tagging,
Exclusive Tagging, and Label-Selective Tagging.

When applying Selective Tagging, we iterate
through the words in each question and only re-
place numbers appearing in the equation with a
tag representation (e.g., hji). In this method, we
leave the original numeric values in each sentence,
which have do not collect importance in network
translations. Similarly, we optionally apply Exclu-
sive Tagging, which is nearly identical to Selective
Tagging, but instead of leaving the numbers not
appearing in the equation, we remove them. These
two preprocessing algorithms prevent irrelevant
numbers from mistakenly being learned as relevant.
These methods are only applicable to training.

It is common in MWPs to provide a label or in-
dication of what a number represents in a question.
For example, if we observe the statement “George
has 2 peaches and 4 apples. Lauren gives George
5 of her peaches. How many peaches does George
have?” we only need to know quantifiers for the
label “peach.” We consider “peaches” and “apples”
as labels for the number tags. For the most basic
interpretation of this series of mathematical prose,
we know that we are supposed to use the number of
peaches that George and Lauren have to formulate
an expression to solve the MWP. Thus, determin-
ing the correct labels or tags for the numbers in an
MWP is likely to be helpful. Similar to Selective

Tagging and Exclusive Tagging, we avoid tagging
irrelevant numbers when applying Label-Selective
Tagging. Here, the quantity we need to ignore for
a reliable translation is: “4 apples.” This is as if we
are associating each number with the appropriate
unit notation, like “kilogram” or “meter.”

The Label-Selective Tagging method iterates
through every word in an MWP question. We first
count the occurrence of words in the question sen-
tences and create an ordered list of all terms. In
our example, we note that the word “peaches” oc-
curs three times in the sentence. Compared to the
word “apples” (occurring only once), we reduce
our search for numbers to only the most common
terms in each question. We impose a check to
verify that the most common term appears in the
sentence ending in a question mark, and if it is not,
the Label-Selective Tagging fails and produces tags
for all numbers.

If we can identify the label reliably, we then look
at each number. We assume that labels for quanti-
ties are within a window of three (either before the
number or after). When we detect a number, we
then look at four words before the number and four
words after the number, and before any punctua-
tion for the most common word we have previously
identified. If we find the assumed label, we tag
the number, indicating it is relevant. Otherwise,
we leave the word as a number, which indicates
that it is irrelevant. This method can be applied
in training and testing equally because we do not
require any knowledge about our target translation
equation. We could have performed noun phrase
chunking and some additional processing to iden-
tify nouns and their numeric quantifiers. However,
our heuristic method works very well.

In addition to restrictive tagging methods, we
also try replacing all words with an equivalent part-
of-speech denotation. The noun, “George,” will
appear as “NN,” for example. There are two ways
we employ this method. The first substitutes the
word with its part-of-speech counterpart, and the
second adds on the part-of-speech tag like “(NN
George),” for each word in the sentence. These
two algorithms can be applied both in training and
testing since the part-of-speech tag comes from the
underlying English language.

We also try reordering the sentences in each
MWP. For each of the questions, we sort the sen-
tences in random order, not requiring the question
within the MWP to appear last, as it typically does.



82

The situational context is not linear in most cases
when applying this transformation. We check to
see if the network relies on the linear nature of
MWP information to be successful.

The eight algorithms presented are applied solo
and in combination, when applicable. For a sum-
mary of the preprocessing algorithms, refer to Ta-
ble 2.

Table 2: Summary of Algorithms.

Name Abbreviation
Remove Stop Words SW
Lemmatize L
Selective Tagging ST
Label-Selective Tagging LST
Exclusive Tagging ET
Part of Speech POS
Part of Speech w/ Words WPOS
Sentence Reordering R

5.1.1 Experiment 2 Results and Analysis
We present the results of Experiment 2 in Table
3. From the results in Table 3, we see that Label-
Selective Tagging is very successful in improving
the translation quality of MWPs. Other methods,
such as removing stop words, improve accuracy
due to the reduction in the necessary vocabulary,
but fail to outperform LST for three of the four
datasets. Using a frequency measure of terms to
determine number relevancy is a simple addition
to the network training pipeline and significantly
outperforms our standalone Transformer network
base.

The LST algorithm was successful for two rea-
sons. The first reason LST is more realistic in this
application is its applicability to inference time
translations. Because the method relies only on
each question’s vocabulary, there are no restric-
tions on usability. This method reliably produces
the same results in the evaluation as in training,
which is a unique characteristic of only a subset of
the preprocessing algorithms tested. The second
reason LST is better for our purpose is that it pre-
vents unnecessary learning of irrelevant numbers
in the questions. One challenge in the AI2 dataset
is that some numbers present in the questions are
irrelevant to the intended translation. Without some
preprocessing, we see that our network sometimes
struggles to determine irrelevancy for a given num-
ber. LST also reduces compute time for other areas

Figure 3: Example of an unsuccessful translation using
type 2 postfix Transformer and LST.

MAWPS
There were 73 bales of hay in the barn. Jason stacked
bales in the barn today. There are now 96 bales of hay
in the barn . How many bales did he store in the barn?

Translation produced:

96 73 -

Expected translation:

73 96 +

of the data pipeline. Only a fraction of the num-
bers in some questions need to be tagged for the
network, which produces less stress on our number
tagging process. Still some common operator infer-
ence mistakes were made while using LST, shown
in Figure 3.

The removal of stop words is a common practice
in language classification tasks and was somewhat
successful in translation tasks. We see an improve-
ment on all datasets, suggesting that stop words
are mostly ignored in successful translations and
paid attention to more when the network makes
mistakes. There is a significant drop in reliability
when we transform words into their base lemmas.
Likely, the cause of this drop is the loss of informa-
tion by imposing two filtering techniques at once.

Along with the successes of the tested prepro-
cessing came some disappointing results. Raw part-
of-speech tagging produces slightly improved re-
sults from the base model, but including the words
and the corresponding part-of-speech denotations
fail in our application.

Reordering of the question sentences produced
significantly worse results. The accuracy differ-
ence mostly comes from the random position of
the question, sometimes appearing with no context
to the transaction. Some form of limited sentence
reordering may improve the results, but likely not
the degree of success of the other methods.

By incorporating simple preprocessing tech-
niques, we grow the generality of the Transformer
architecture to this sequence-to-sequence task.

5.1.2 Overall Results
Table 3 shows that the Transformer architecture
with simple preprocessing outperforms previous
state-of-the-art results in all four tested datasets.
While the Transformer architecture has been well-
proven in other tasks, we show that applying the



83

Table 3: Test results for Experiment 2 (* denotes averages on present values only). Rows after the top 5 indicate
type 2 postfix Transformer results.

Preprocessing Method AI2 CC IL MAWPS Average
(Hosseini et al., 2014) 77.7 – – – ⇤77.7
(Kushman et al., 2014) 64.0 73.7 2.3 – ⇤46.7
(Roy et al., 2015) – – 52.7 – ⇤52.7
(Robaidek et al., 2018) – – – 62.8 ⇤62.8
(Wang et al., 2018) 78.5 75.5 73.3 – ⇤75.4

Type 2 Postfix-Transformer

None 77.2 94.4 94.1 83.1 87.2
SW 73.7 100.0 100.0 94.0 91.9
L 63.2 86.7 80.9 68.1 74.7
SW + L 61.4 60.0 57.1 66.4 61.2
ST 80.7 93.3 100.0 84.3 89.6
SW + ST 71.9 93.3 100.0 83.5 87.2
SW + L + ST 50.9 63.3 48.8 64.1 56.8
LST 82.5 100.0 100.0 93.7 94.0
SW + LST 70.2 100.0 100.0 92.6 90.7
SW + L + LST 54.4 71.1 50.0 68.1 60.9
ET 80.7 93.3 100.0 84.0 89.5
SW + ET 70.2 93.3 100.0 84.0 86.9
SW + L + ET 59.6 63.3 53.6 66.1 60.7
POS 79.0 100.0 73.8 91.5 86.1
WPOS 40.4 0.0 84.5 53.0 44.5
R 38.0 59.6 58.7 42.3 49.6

attention schema here improves MWP solving.
With our work, we show that relatively small

networks are more stable for our task. Postfix and
prefix both are a better choice for training neural
networks, with the implication that infix can be
re-derived if it is preferred by the user of a solver
system. The use of alternative mathematical repre-
sentation contributes greatly to the success of our
translations.

6 Conclusions and Future Work
In this paper, we have shown that the use of Trans-
former networks improves automatic math word
problem-solving. We have also shown that post-
fix target expressions perform better than the other
two expression formats. Our improvements are
well-motivated but straightforward and easy to use,
demonstrating that the well-acclaimed Transformer
architecture for language processing can handle
MWPs well, obviating the need to build special-
ized neural architectures for this task.

In the future, we wish to work with more com-
plex MWP datasets. Our datasets contain basic
arithmetic expressions of +, -, *, and /, and only up

to 3 of them. For example, datasets such as Dol-
phin18k (Huang et al., 2016), consisting of web-
answered questions from Yahoo! Answers, require
a wider variety of language to be understood by the
system.

We wish to use other architectures stemming
from the base Transformer to maximize the accu-
racy of the system. For our experiments, we use
the 2017 variation of the Transformer (Vaswani
et al., 2017), to show that generally applicable neu-
ral architectures work well for this task. With that
said, we also note the importance of a strategically
designed architecture to improve our results.

To further the interest in automatic solving of
math word problems, we have released all of the
code used on GitHub.2

References
Yefim Bakman. 2007. Robust understanding of

word problems with extraneous information. arXiv

preprint math/0701393.
2https://github.com/kadengriffith/

MWP-Automatic-Solver



84

Daniel G Bobrow. 1964. Natural Language Input for

a Computer Problem Solving System. Ph.D. thesis,
Massachusetts Institute Of Technology.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and
Reuven Y Rubinstein. 2005. A tutorial on the cross-
entropy method. Annals of operations research,
134(1):19–67.

K. Griffith and J. Kalita. 2019. Solving arithmetic word
problems automatically using transformer and un-
ambiguous representations. In 2019 International

Conference on Computational Science and Compu-

tational Intelligence (CSCI), pages 526–532.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing

(EMNLP), pages 523–533.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th Inter-

national Conference on Computational Linguistics,
pages 213–223, Santa Fe, New Mexico, USA. Asso-
ciation for Computational Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the

54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages
887–896.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-

tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of

the 2016 Conference of the North American Chap-

ter of the Association for Computational Linguistics:

Human Language Technologies, pages 1152–1157.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the

52nd Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages
271–281.

Christian Liguda and Thies Pfeiffer. 2012. Modeling
math word problems with augmented semantic net-
works. In International Conference on Application

of Natural Language to Information Systems, pages
247–252. Springer.

Arindam Mitra and Chitta Baral. 2016. Learning to use
formulas to solve simple arithmetic problems. In
Proceedings of the 54th Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1:

Long Papers), pages 2144–2153.

Tayyeba Rehman, Sharifullah Khan, Gwo-Jen Hwang,
and Muhammad Azeem Abbas. 2019. Automat-
ically solving two-variable linear algebraic word
problems using text mining. Expert Systems,
36(2):e12358.

Benjamin Robaidek, Rik Koncel-Kedziorski, and Han-
naneh Hajishirzi. 2018. Data-driven methods for
solving algebra word problems. arXiv preprint

arXiv:1804.10718.

Subhro Roy and Dan Roth. 2015. Solving gen-
eral arithmetic word problems. arXiv preprint

arXiv:1608.01413, pages 1743–1752.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Thirty-First AAAI Conference on Artifi-

cial Intelligence.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-

tions of the Association for Computational Linguis-

tics, 3:1–13.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing,
pages 1132–1142.

Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin
Wang, and Cui Wei. 2019. A neural semantic parser
for math problems incorporating multi-sentence in-
formation. ACM Transactions on Asian and Low-

Resource Language Information Processing (TAL-

LIP), 18(4):37.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-

cessing systems, pages 5998–6008.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In Thirty-Second AAAI Con-

ference on Artificial Intelligence.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings of

the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7144–7151.


