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Abstract

In this paper, we focus on generating training
examples for few-shot intents in the realistic
imbalanced scenario. To build connections be-
tween existing many-shot intents and few-shot
intents, we consider an intent as a combina-
tion of a domain and an action, and propose a
composed variational natural language genera-
tor (CLANG), a transformer-based conditional
variational autoencoder. CLANG utilizes two
latent variables to represent the utterances cor-
responding to two different independent parts
(domain and action) in the intent, and the la-
tent variables are composed together to gen-
erate natural examples. Additionally, to im-
prove the generator learning, we adopt the con-
trastive regularization loss that contrasts the
in-class with the out-of-class utterance genera-
tion given the intent. To evaluate the quality of
the generated utterances, experiments are con-
ducted on the generalized few-shot intent de-
tection task. Empirical results show that our
proposed model achieves state-of-the-art per-
formances on two real-world intent detection
datasets.

1 Introduction

Intelligent assistants have gained great popularity
in recent years since they provide a new way for
people to interact with the Internet conversationally
(Hoy, 2018). However, it is still challenging to an-
swer people’s diverse questions effectively. Among
all the challenges, identifying user intentions from
their spoken language is important and essential
for all the downstream tasks.

Most existing works (Hu et al., 2009; Xu and
Sarikaya, 2013; Chen et al., 2016; Xia et al., 2018)
formulate intent detection as a classification task
and achieve high performance on pre-defined in-
tents with sufficient labeled examples. With this
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ever-changing world, a realistic scenario is that we
have imbalanced training data with existing many-
shot intents and insufficient few-shot intents. Previ-
ous intent detection models (Yin, 2020; Yin et al.,
2019) deteriorate drastically in discriminating the
few-shot intents.

To alleviate this scarce annotation problem, sev-
eral methods (Wei and Zou, 2019; Malandrakis
et al., 2019; Yoo et al., 2019) have been proposed
to augment the training data for low-resource spo-
ken language understanding (SLU). Wei and Zou
(2019) introduce simple data augmentation rules
for language transformation like insert, delete and
swap. Malandrakis et al. (2019) and Yoo et al.
(2019) utilize variational autoencoders (Kingma
and Welling, 2013) with simple LSTMs (Hochre-
iter and Schmidhuber, 1997) that have limited
model capacity to do text generation. Furthermore,
these models are not specifically designed to trans-
fer knowledge from existing many-shot intents to
few-shot intents.

In this paper, we focus on transferable natural
language generation by learning how to compose
utterances with many-shot intents and transferring
to few-shot intents. When users interact with in-
telligent assistants, their goal is to query some in-
formation or execute a command in a certain do-
main (Watson Assistant, 2017). For instance, the
intent of the input “what will be the highest tem-
perature next week” is to ask about the weather.
The utterance can be decomposed into two parts,
“what will be” corresponding to an action “Query”
and “the highest temperature” related to the domain
“Weather”. These actions or domains are very likely
to be shared among different intents including the
few-shot ones (Xu et al., 2019). For example, there
are a lot of actions (“query”, “set”, “remove”) that
can be combined with the domain of “alarm”. The
action “query” also exists in multiple domains like
“weather”, “calendar” and “movie”. Ideally, if we
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can learn the expressions representing for a certain
action or domain and how they compose an utter-
ance for existing intents, then we can learn how to
compose utterances for few-shot intents naturally.
Therefore, we define an intent as a combination of
a domain and an action. Formally, we denote the
domain as yd and the action as ya. Each intent can
be expressed as y = (yd, ya).

A composed variational natural language genera-
tor (CLANG) is proposed to learn how to compose
an utterance for a given intent with an action and a
domain. CLANG is a transformer-based (Vaswani
et al., 2017) conditional variational autoencoder
(CVAE) (Kingma et al., 2014). It contains a bi-
latent variational encoder and a decoder. The bi-
latent variational encoder utilizes two independent
latent variables to model the distributions of action
and domain separately. Special attention masks
are designed to guide these two latent variables to
focus on different parts of the utterance and disen-
tangle the semantics for action and domain sepa-
rately. Through decomposing utterances for exist-
ing many-shot intents, the model learns to generate
utterances for few-shot intents as a composition of
the learned expressions for domain and action.

Additionally, we adopt the contrastive regulariza-
tion loss to improve our generator learning. During
the training, an in-class utterance from one intent
is contrasted with an out-of-class utterance from
another intent. Specifically, the contrastive loss
is to constrain the model to generate the positive
example with a higher probability than the negative
example with a certain margin. With the contrastive
loss, the model is regularized to focus on the given
domain and intent and the probability of generating
negative examples is reduced.

To quantitatively evaluate the effectiveness of
CLANG for augmenting training data in low-
resource intent detection, experiments are con-
ducted for the generalized few-shot intent detection
task (GFSID) (Xia et al., 2020). GFSID aims to
discriminate a joint label space consisting of both
existing many-shot intents and few-shot intents.

Our contributions are summarized below. 1)
We define an intent as a combination of a domain
and an action to build connections between exist-
ing many-shot intents and few-shot intents. 2) A
composed variational natural language generator
(CLANG) is proposed to learn how to compose an
utterance for a given intent with an action and a
domain. Utterances are generated for few-shot in-

tents via a composed variational inferences process.
3) Experiment results show that CLANG achieves
state-of-the-art performance on two real-world in-
tent detection datasets for the GFSID task.

2 Composed Variational Natural
Language Generator

In this section, we introduce the composed vari-
ational natural language generator (CLANG). As
illustrated in Figure 1, CLANG consists of three
parts: input representation, bi-latent variational en-
coder, and decoder.

2.1 Input Representation

For a given intent y decomposed into a do-
main yd and an action ya and an utterance x =
(w1, w2, ..., wn) with n tokens, we designed the in-
put format like BERT as ([CLS], yd, ya, [SEP], w1,
w2, ..., wn, [SEP]). As the example in Figure 1,
the intent has the domain of “weather” and the ac-
tion of “query”. The utterance is “what will be the
highest temperature next week”. The input is repre-
sented as ([CLS], weather, query, [SEP], what, will,
be, the, highest, temperature, next, week, [SEP]).

Texts are tokenized into subword units by Word-
Piece (Wu et al., 2016). The input embeddings
of a token sequence are represented as the sum
of three embeddings: token embeddings, position
embeddings (Vaswani et al., 2017), and segment
embeddings (Devlin et al., 2018). The segment
embeddings are learned to identify the intent and
the utterance with different embeddings.

2.2 Bi-latent Variational Encoder

As illustrated in Figure 1, the bi-latent variational
encoder is to encode the input into two latent vari-
ables that contain the disentangled semantics in
the utterance corresponding to domain and action
separately.

Multiple transformer layers (Vaswani et al.,
2017) are utilized in the encoder. Through the self-
attention mechanism, these transformer layers not
only extract semantic meaningful representations
for the tokens, but also model the relation between
the intent and the utterance. The embeddings for
the domain token and the action token output from
the last transformer layer are denoted as ed and
ea. We encode ed into variable zd to model the
distribution for the domain and ea are encoded into
variable za to model the distribution for the action.

Ideally, we want to disentangle the information
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Figure 1: The overall framework of CLANG.

for the domain and the action, making ed attend to
tokens related to domain and ea focus on the ex-
pressions representing the action. To achieve that,
we make a variation of the attention calculations
in transformer layers to avoid direct interactions
among the domain token and the action token in
each layer.

Instead of applying the whole bidirectional at-
tention to the input, an attention mask matrix
M ∈ RN×N is added to determine whether a pair
of tokens can be attended to each other (Dong et al.,
2019). N is the length of the input. For the l-th
Transformer layer, the output of a self-attention
head Al is computed via:

Q = Tl−1Wl
Q,

K = Tl−1Wl
K ,

V = Tl−1Wl
V ,

Al = softmax
(
QK>√
dk

+M

)
V,

(1)

where the attention mask matrix calculated as:

Mij =

{
0, allow to attend;
−∞, prevent from attending.

(2)

The output of the previous transformer layer
Tl−1∈RN×dh is linearly projected to a triple of
queries, keys and values parameterized by matrices
Wl

Q,W
l
K ,W

l
V ∈Rdh×dk . dh is the hidden dimen-

sion for the transformer layer, and dk is the hidden
dimension for a self-attention head.

The proposed attention mask for the domain to-
ken and the action token is illustrated in Figure 2.
The Domain yd and the action ya are prevented

from attending to each other. All the other tokens
have are allowed to have full attentions. The ele-
ments in the mask matrix for the attentions between
domain and action are −∞, and 0 for all the others.

The disentangled embeddings ed and ea are en-
coded into two latent variables zd and za to model
the posterior distributions determined by the in-
tent elements separately: p(zd|x, yd), p(za|x, ya).
The latent variable zd is conditioned on the do-
main yd, while za is controlled by the action ya.
By modeling the true distributions, p(zd|x, yd) and
p(za|x, ya), using a known distribution that is easy
to sample from (Kingma et al., 2014), we con-
strain the prior distributions, p(zd|yd) and p(za|ya),
as multivariate standard Gaussian distributions.
A reparametrization trick (Kingma and Welling,
2013) is used to generate the latent vector zd and
za separately. Gaussian parameters (µd, µa, σ2d,
σ2a) are projected from ed and ea:

µd = edWµd + bµd ,

log(σ2d) = edWσd + bσd ,

µa = eaWµa + bµa ,

log(σ2a) = eaWσa + bσa ,

(3)

where we have Wµd ,Wµa ,Wσd ,Wσa ∈ Rdh×dh ,
bµd , bµa , bσd , bσa ∈ Rdh . Noisy variables εd ∼
N (0, I), εa ∼ N (0, I) are utilized to sample zd
and za from the learned distribution:

zd = µd + σd · εd,
za = µa + σa · εa.

(4)

The KL-loss function is applied to regularize the
prior distributions for these two latent variables to
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be close to the Gaussian distributions:

LKL = DKL[q(zd|x, yd), p(zd|yd)]
+ DKL[q(za|x, ya), p(za|ya)] .

(5)

A fully connected layer with Gelu (Hendrycks
and Gimpel, 2016) activation function is applied
on zd and za to compose these two latent variables
together and outputs z. The composed latent infor-
mation z is utilized in the decoder to do generation.

. . . DCLS SEPA SEPW1 Wn

Figure 2: The attention map of domain and action in the
encoder.

2.3 Decoder
The decoder utilizes the composed latent informa-
tion together with the intent to reconstruct the input
utterance p(x|zd, za, yd, ya). As shown in Figure 1,
a residual connection is built from the input repre-
sentation to the decoder to get the embeddings for
all the tokens. To keep a fixed length and introduce
the composed latent information z into the decoder,
we replace the first [CLS] token with z.

The decoder is built with multiple transformer
layers to generate the utterance. Text generation
is a sequential process that we use the left context
to predict the next token. To simulate the left-to-
right generation process, another attention mask is
utilized for the decoder. In the attention mask for
the decoder, tokens in the intent can only attend
to intent tokens, while tokens in the utterance can
attend to both the intent and all the left tokens in
the utterance.

For the first token z which holds composed latent
information, it is only allowed to attend to itself due
to the vanishing latent variable problem. The latent
information can be overwhelmed by the informa-
tion of other tokens when adapting VAE to natural
language generators either for LSTM (Zhao et al.,
2017) or transformers (Xia et al., 2020). To further
increase the impact of the composed latent infor-
mation z and alleviate the vanishing latent variable
problem, we concatenate the token representations
of z to all the other token embeddings output from
the last transformer layer in the decoder.

The hidden dimension increases to 2× dh after
the concatenation. To reduce the hidden dimension

to dh and get the embeddings to decode the vocab-
ulary, two fully-connected (FC) layers followed by
a layer normalization (Ba et al., 2016) are applied
on top of the transformer layers. Gelu is used as
the activation function in these two FC layers. The
embeddings output from these two FC layers are
decoded into tokens in the vocabulary. The em-
beddings at position i = {1, ..., n − 1} are used
to predict the next token at position i + 1 till the
[SEP] token is generated.

To train the decoder to reconstruct the input, a
reconstruction loss is formulated as:

Lr = −Eq(zd|x,yd),q(za|x,ya)[log p(x|zd, za, yd, ya)].
(6)

2.4 Learning with contrastive loss
Although the model can generate utterances for
a given intent, such as “are there any alarms set
for seven am” for “Alarm Query”, there are some
negative utterances generated. For example, “am i
free between six to seven pm” is generated with the
intent of “Alarm Query”. This would be because in
the training, it lacks supervision to distinguish in-
class from out-of-class examples especially for few-
shot intents. To alleviate the problem, we adopt a
contrastive loss in the objective function and reduce
the probability to generate out-of-class samples.

Given an intent y = (yd, ya), an in-class ut-
terance x+ from this intent and an out-of-class
utterance x− from another intent. The con-
trastive loss constrains the model to generate
the in-class example x+ with a higher proba-
bility than x−. In the same batch, we feed
the in-class example (yd, ya, x+) and the out-
of-class example (yd, ya, x−) into CLANG to
model the likelihood: P (x+|y) and P (x−|y).
The chain rule is used to calculate the like-
lihood of the whole utterance: p(x|y) =
p(w1|y)p(w2|y, w1)...p(wn|y, w1, ..., Twn−1). In
the contrastive loss, the log-likelihood of the in-
class example is constrained to be higher than the
out-of-class example with a certain margin λ:

Lc = max{0, λ−logp(x+|y)+logp(x−|y)}. (7)

To leverage challenging out-of-class utterances,
we choose the most similar utterance with a dif-
ferent intent as the out-of-class utterance. Three
indicators are considered to measure the similarity
between the in-class utterance and all the utterances
with a different intent: the number of shared uni-
grams s1, bi-grams s2 between the utterances and
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the number of shared uni-grams between the name
of intents s3. The sum of these three numbers,
s = s1+ s2+ s3, is utilized to find the out-of-class
utterance with the highest similarity. If there are
multiple utterances having the same highest sim-
ilarity s, we random choose one as the negative
utterance.

The overall loss function is a summation of the
KL-loss, the reconstruction loss and the contrastive
loss:

L = LKL + Lr + Lc . (8)

2.5 Generalized Few-shot Intent Detection
Utterances for few-shot intents are generated by
sampling two latent variables, zd and za, separately
from multivariate standard Gaussian distributions.
Beam search is applied to do the generation. To im-
prove the diversity of the generated utterances, we
sample the latent variables for s times and save the
top k results for each time. The overall generation
process follows that of Xia et al. (2020).

These generated utterances are added to the orig-
inal traning dataset to alleviate the scare annota-
tion problem. We finetune BERT with the aug-
mented dataset to solve the generalized few-shot
intent detection task. The whole pipeline is referred
as BERT + CLANG in the experiments.

Dataset SNIPS-NLU NLUED
Vocab Size 10,896 6,761
#Total Classes 7 64
#Few-shot Classes 2 16
#Few-shots / Class 1 or 5 1 or 5
#Training Examples 7,858 7,430
#Training Examples / Class 1571.6 155
#Test Examples 2,799 1,076
Average Sentence Length 9.05 7.68

Table 1: Data Statistics for SNIPS-NLU and NLUED. #Few-
shot examples are excluded in the #Training Exampels. For
NLUED, the statistics is reported for KFold 1.

3 Experiments

To evaluate the effectiveness of the proposed ap-
proach for generating labeled examples for few-
shot intents, experiments are conducted for the GF-
SID task on two real-world datasets. The few-shot
intents are augmented with utterances generated
from CLANG.

3.1 Datasets
Following (Xia et al., 2020), two public intent
detection datasets are used in the experiments:
SNIPS-NLU (Coucke et al., 2018) and NLUED

(Xingkun Liu and Rieser, 2019). These two
datasets contain utterances from users when inter-
acting with intelligent assistants and are annotated
with pre-defined intents. Dataset details are illus-
trated in Table 1.

SNIPS-NLU1 contains seven intents in total. Two
of them (RateBook and AddToPlaylist) as regraded
as few-shot intents. The others are used as existing
intents with sufficient annotation. We randomly
choose 80% of the whole data as the training data
and 20% as the test data.

NLUED2 is a natural language understanding
dataset with 64 intents for human-robot interaction
in home domain, in which 16 intents as randomly
selected as the few-shot ones. A sub-corpus of 11,
036 utterances with 10-folds cross-validation splits
is utilized.

3.2 Baselines

We compare the proposed model with a few-shot
learning model and several data augmentation
methods. 1) Prototypical Network (Snell et al.,
2017) (PN) is a distance-based few-shot learning
model. It can be extended to the GFSID task natu-
rally by providing the prototypes for all the intents.
BERT is used as the encoder for PN to provide
a fair comparison. We fine-tune BERT together
with the PN model. This variation is referred to as
BERT-PN+. 2) BERT. For this baseline, we over-
sampled the few-shot intents by duplicating the
few-shots to the maximum training examples for
one class. 3) SVAE (Bowman et al., 2015) is a vari-
ational autoencoder built with LSTMs. 4) CGT (Hu
et al., 2017) adds a discriminator based on SVAE
to classify the sentence attributes. 5) EDA (Wei
and Zou, 2019) uses simple data augmentations
rules for language transformation. We apply three
rules in the experiment, including insert, delete,
and swap. 6) CG-BERT (Xia et al., 2020) is the
first work that combines CVAE with BERT to do
few-shot text generation. BERT is fine-tuned with
the augmented training data for these generation
baselines. The whole pipelines are referred to as
BERT + SVAE, BERT + CGT, BERT + EDA and
BERT + CG-BERT in Table 2. An ablation study
is also provided to understand the importance of
contrastive loss by removing it from CLANG.

1https://github.com/snipsco/nlu-benchmark/
2https://github.com/xliuhw/NLU-Evaluation-Data
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Many-shot Few-shot H-Mean Many-shot Few-shot H-Mean
SNIPS-NLU 1-shot SNIPS-NLU 5-shot

BERT-PN+ 92.66 ± 4.49 60.52 ± 7.58 72.99 ± 5.97 95.96 ± 1.13 86.03 ± 2.00 90.71 ± 1.19
BERT 98.20 ± 0.06 44.42 ± 4.35 57.74 ± 7.50 98.34 ± 0.10 81.82 ± 6.16 89.22 ± 3.74
BERT + SVAE 98.24 ± 0.09 45.15 ± 5.54 61.67 ± 5.11 98.34 ± 0.06 82.10 ± 4.06 89.49 ± 2.47
BERT + CGT 98.20 ± 0.07 45.80 ± 5.68 62.30 ± 5.17 98.32 ± 0.14 82.65 ± 4.31 89.78 ± 2.83
BERT + EDA 98.20 ± 0.08 47.52 ± 5.96 63.87 ± 5.29 98.09 ± 0.18 82.00 ± 3.47 89.30 ± 2.12
BERT + CG-BERT 98.13 ± 0.15 63.04 ± 5.49 76.65 ± 4.24 98.30 ± 0.17 86.89 ± 4.05 92.20 ± 2.32
BERT + CLANG 98.34 ± 0.10 64.63 ± 6.16 77.86 ± 4.39 98.34 ± 0.06 88.04 ± 1.34 92.90 ± 0.71

NLUED 1-shot NLUED 5-shot
BERT-PN+ 81.24 ± 2.76 18.95 ± 4.42 30.67 ± 5.53 83.41 ± 2.62 60.28 ± 4.19 69.93 ± 3.49
BERT 94.00 ± 0.93 7.88 ± 3.28 14.39 ± 5.66 94.12 ± 0.89 51.69 ± 3.19 66.67 ± 2.51
BERT + SVAE 93.80 ± 0.70 8.88 ± 3.66 16.01 ± 6.06 93.60 ± 0.63 54.03 ± 3.91 68.42 ± 3.06
BERT + CGT 94.00 ± 0.66 9.33 ± 3.68 16.78 ± 6.16 93.61 ± 0.63 54.70 ± 4.06 68.96 ± 3.17
BERT + EDA 93.78 ± 0.66 11.65 ± 4.89 20.41 ± 7.56 93.71 ± 0.64 57.22 ± 4.35 70.95 ± 3.35
BERT + CG-BERT 94.01 ± 0.70 20.39 ± 5.77 33.12 ± 7.92 93.80 ± 0.60 61.06 ± 4.29 73.88 ± 3.10
BERT + CLANG 93.60 ± 0.79 22.03 ± 6.10 35.29 ± 8.05 93.29 ± 0.86 66.44 ± 3.07 77.56 ± 2.05

Table 2: Generalized few shot intent detection with 1-shot and 5-shot settings on SNIPS-NLU and NLUED. Seen is the accuracy
on the seen intents (accs), Unseen/Novel is the accuracy on the novel intents (accs), H-Mean is the harmonic mean of seen and
unseen accuracies.

3.3 Implementation Details

Both the encoder and the decoder use six trans-
former layers. Pre-trained weights from BERT-
base are used to initialize the embeddings and the
transformer layers. The weights from the first six
layers in BERT-base are used to initialize the trans-
former layers in the encoder and the later six layers
are used to initialize the decoder. Adam optimizer
(Kingma and Ba, 2014) is applied for all the exper-
iments. The margin for the contrastive loss is 0.5
for all the settings. All the hidden dimensions used
in CLANG is 768. For CLANG, the learning rate
is 1e-5 and the batch size is 16. Each epoch has
1000 steps. Fifty examples from the training data
are sampled as the validation set. The reconstruc-
tion error on the validation set is used to search for
the number of training epochs in the range of [50,
75, 100]. The reported performances of CLANG
and the ablation of contrastive loss are both trained
with 100 epochs.

The hyperparameters for the generation process
including the top index k and the sampling times s
are chosen by evaluating the quality of the gener-
ated utterances. The quality evaluation is described
in section 3.5. We search s in the list of [10, 20],
and k in the list of [20, 30]. We use k = 30 and
s = 20 for BERT + CLANG in NLUED, while use
k = 30 and s = 10 for all the other experiments.
When fine-tuning BERT for the GFSID task, we
fix the hyperparameters as follows: the batch size
is 32, the learning rate is 2e-5, and the number of
the training epochs is 3.

3.4 Experiment Results
The experiment results for the generalized few-
shot intent detection task are shown in Table 2.
Performance is reported for two datasets with both
1-shot and 5-shot settings. For SNIPS-NLU, the
performance is calculated with the average and
the standard deviation over 5 runs. The results on
NLUED are reported over 10 folds.

Three metrics are used to evaluate the model
performances, including the accuracy on existing
many-shot intents (accm), the accuracy on few-shot
intents (accf ) together with their harmonic mean
(H). As the harmonic mean of accm and accf , H
is calculated as:

H = 2× (accm × accf )/(accm + accf ). (9)

We choose the harmonic mean as our evaluation
criteria instead of the arithmetic mean because
the overall results are significantly affected by the
many-shot class accuracy accm over the few-shot
classes accf in arithmetic mean (Xian et al., 2017).
Instead, the harmonic mean is high only when the
accuracies on both many-shot and few-shot intents
are high. Due to this discrepancy, we evaluate the
harmonic mean which takes a weighted average of
the many-shot and few-shot accuracy.

As illustrated in Table 2, the proposed pipeline
BERT + CLANG achieves state-of-the-art per-
formance on the accuracy for many-shot intents,
few-shot intents, and their harmonic mean for the
SNIPS-NLU dataset. As for the NLUED dataset,
BERT + CLANG outperforms all the baselines
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on the accuracy for few-shot intents and the har-
monic mean, while achieves comparable results on
many-shot intents compared with the best baseline.
Since the many-shot intents have sufficient training
data, the improvement mainly comes from few-shot
intents with scarce annotation. For example, the
accuracy for few-shot intents on NLUED with the
5-shot setting improves 5% from the best baseline
(BERT + CG-BERT).

Compared to the few-shot learning method,
CLANG achieves better performance consistently
in all the settings. BERT-PN+ achieves decent per-
formance on many-shot intents while lacks the abil-
ity to provide embeddings that can be generalized
from existing intents to few-shot intents.

For data augmentation baselines, CLANG ob-
tains the best performance on few-shot intents and
the harmonic mean. These results demonstrate the
high quality and diversity of the utterances gener-
ated form CLANG. CGT and SVAE barely im-
prove the performance for few-shot intents. They
only work well with sufficient training data. The ut-
terances generated by these two models are almost
the same as the few-shot examples. The perfor-
mance improved by EDA is also limited since it
only provides simple language transformation like
insert and delete. Compared with CG-BERT that
incorporates the pre-trained language model BERT,
CLANG further improves the ability to generate
utterances for few-shot intents with composed nat-
ural language generation.

From the ablation study illustrated in Table 3,
removing the contrastive loss decreases the accu-
racy for few-shot intents and the harmonic mean. It
shows that the contrastive loss regularizes the gen-
eration process and contributes to the downstream
classification task.

Many-shot Few-shot H-Mean
NLUED 1-shot

CLANG 93.60 ± 0.79 22.03 ± 6.10 35.29 ± 8.05
-Lv 93.88 ± 0.84 21.76 ± 6.44 34.92 ± 8.48

NLUED 5-shot
CLANG 93.29 ± 0.86 66.44 ± 3.07 77.56 ± 2.05
-Lv 92.94 ± 0.72 65.26 ± 2.95 76.64 ± 2.06

Table 3: Ablation study for removing the contrastive loss Lv

from CLANG on NLUED.

3.5 Result Analysis

To further understand the proposed model,
CLANG, result analysis and generation quality
evaluation are provided in this section. We take
the fold 7 of the NLUED dataset with the 5-shot

setting as an example. It contains 16 novel intents
with 5 examples per intent.

The intent in this paper is defined as a pair of
a domain and an action. The domain or the ac-
tion might be shared among the many-shot intents
and the few-shot intents. The domain/action that
exists in many-shot intents is named as a seen
domain/action; otherwise, it is called a novel do-
main/action. To analyze how well our model per-
forms on different few-shot intents, we split few-
shot intents into four types: a novel domain with
a seen action (Noveld), a novel action with a seen
domain (Novela), both domain and action are seen
(Duals), both domain and action are novel (Dualu).
We compare our proposed model with CG-BERT
on these different types. As illustrated in Table
4, CLANG consistently performs better than CG-
BERT on all the types. The performance for intents
with a seen action and a novel domain improves
20.90%. This observation indicates that our model
is better at generalizing seen actions into novel
domains.

Total Noveld Novela Duals Dualu
Number 16 4 8 3 1
CG-BERT 58.76% 47.76% 60.43% 67.34% 63.16%
CLANG 67.88% 68.66% 62.58% 75.51% 84.21%
+Improve 9.12% 20.90% 2.15% 8.17% 21.05%

Table 4: Accuracies on different types of few-shot intents.

As a few-shot natural language generation
model, diversity is a very important indicator for
quality evaluation. We compare the percentage
of unique utterances generated by CLANG with
CG-BERT. In CG-BERT, the top 20 results are
generated for each intent by sampling the hidden
variable for once. There are 257 unique sentences
out of 320 utterances (80.3%). In CLANG, the top
30 results for each intent are generated by sampling
the latent variables for once. We got 479 unique
sentences out of 480 utterances (99.8%), which is
much higher than CG-BERT.

Several generation examples are shown in Table
5. CLANG can generate good examples (indicated
by G) that have new slots values (like time, place,
or action) not existing in the few-shot examples
(indicated by R). For example, G1 has a new time
slot and G5 has a new action. Bad cases (indi-
cated by B) like B1 and B5 fill in the sentence with
improper slot values. CLANG can also learn sen-
tences from other intents. For instance, G3 trans-
fer the expression in R3 from “Recommendation
Events” to “recommendation movies”. However,



3386

B4 fails to transfer R4 into the movie domain.

Intent: Alarm Query
R1: what time is my alarm set for tomorrow morning
G1: what time is my alarm set for this weekend
B1: how much my alarm set for tomorrow morning
R2: i need to set an alarm how many do i have set
G2: do i have an alarm set for tomorrow morning
B2: how many emails i have set
Intent: Recommendation Movies
R3 (events): is there anything to do tonight
G3 (movies):are there anything movie tonight
R4 (events): what bands are playing in town this weekend
B4 (movies): what bands are playing in town this weekend
Intent: Takeaway Order
R5: places with pizza delivery near me
G5: search for the delivery near me
B5: compose a delivery near me
G6: places with pizza delivery near my location
B6: places with pizza delivery near my pizza

Table 5: Generation examples from CLANG. R are real
examples in the few-shots, G are good generation examples
and B are bad cases.

A case study is further provided for the Alarm
Query intent with human evaluation. There are 121
unique utterances generated in total. As shown in
Table 6, 80.99% are good examples and 19.01%
are bad cases. Good cases mainly come from four
types: Add/Delete/Replacement which provides
simple data augmentation; New Time slot that has
a new time slot value; New Question that queries
alarm in new question words; Combination that
combines two utterances together. Bad cases either
come from a wrong intent (intents related to Query
or Alarm) or use a wrong question word.

Type Count Percent
Add/Delete/Replacement 33 27.27%
New Time slot 30 24.79%
New Question 28 23.14%
Combination 7 5.79%
Total Good Cases 98 80.99%
Wrong Intent (Query) 10 8.26%
Wrong Intent (Alarm) 7 5.79%
Wrong Question 6 4.96%
Total Bad Cases 23 19.01%

Table 6: Generation case study for the Alarm Query intent.

4 Related Work

Generative Data Augmentation for SLU Gen-
erative data augmentation methods alleviates the
problem of lacking data by creating artificial train-
ing data with generation models. Recent works
(Wei and Zou, 2019; Malandrakis et al., 2019; Yoo

et al., 2019) have explored this idea for SLU tasks
like intent detection. Wei and Zou (2019) provide
data augmentation ability for natural language with
simple language transformation rules like insert,
delete and swap. Malandrakis et al. (2019) and
Yoo et al. (2019) utilize variational autoencoders
(Kingma and Welling, 2013) to generate training
data for SLU tasks. Malandrakis et al. (2019) in-
vestigates templated-based text generation model
to augment the training data for intelligent artificial
agents. Yoo et al. (2019) generate fully annotated
utterances to alleviate the data scarcity issue in spo-
ken language understanding tasks. These models
utilize LSTM as encoders (Hochreiter and Schmid-
huber, 1997) with limited model capacity. Xia et al.
(2020) provide the first work that combines CVAE
with BERT to generate utterances for generalized
few-shot intent detection.

Recently, large-scale pre-trained language mod-
els are proposed for conditiaonal text generation
tasks (Dathathri et al., 2019; Keskar et al., 2019),
but they are only evaluated by human examination.
They are not aiming at improving downstream clas-
sification tasks in low-resource conditions.
Contrastive Learning in NLP Contrastive learn-
ing that learns the differences between the pos-
itive data from the negative examples has been
widely used in NLP (Gutmann and Hyvärinen,
2010; Mikolov et al., 2013; Cho et al., 2019). Gut-
mann and Hyvärinen (2010) leverage the Noise
Contrastive Estimation (NCE) metric to discrimi-
nate the observed data from artificially generated
noise samples. Cho et al. (2019) introduce con-
trastive learning for multi-document question gen-
eration by generating questions closely related to
the positive set but far away from the negative set.
Different from previous works, our contrastive loss
learn a positive example against a negative example
together with label information.

5 Conclusion
In this paper, we propose a novel model, Composed
Variational Natural Language Generator (CLANG)
for few-shot intents. An intent is defined as a com-
bination of a domain and an action to build connec-
tions between existing intents and few-shot intents.
CLANG has a bi-latent variational encoder that
uses two latent variables to learn disentangled se-
mantic features corresponding to different parts in
the intent. These disentangled features are com-
posed together to generate training examples for
few-shot intents. Additionally, a contrastive loss is
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adopted to regularize the generation process. Exper-
imental results on two real-world intent detection
datasets show that our proposed method achieves
state-of-the-art performance for GFSID.
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