
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1715–1724
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1715

Multi-Agent Mutual Learning at Sentence-Level and Token-Level for
Neural Machine Translation

Baohao Liao Yingbo Gao Hermann Ney

Human Language Technology and Pattern Recognition Group

Computer Science Department

RWTH Aachen University

D-52056 Aachen, Germany

baohao.liao@rwth-aachen.de

{ygao|ney}@cs.rwth-aachen.de

Abstract

Mutual learning, where multiple agents learn

collaboratively and teach one another, has

been shown to be an effective way to dis-

till knowledge for image classification tasks.

In this paper, we extend mutual learning to

the machine translation task and operate at

both the sentence-level and the token-level.

Firstly, we co-train multiple agents by us-

ing the same parallel corpora. After conver-

gence, each agent selects and learns its poorly

predicted tokens from other agents. The

poorly predicted tokens are determined by the

acceptance-rejection sampling algorithm. Our

experiments show that sequential mutual learn-

ing at the sentence-level and the token-level

improves the results cumulatively. Absolute

improvements compared to strong baselines

are obtained on various translation tasks. On

the IWSLT’14 German-English task, we get a

new state-of-the-art BLEU score of 37.0. We

also report a competitive result, 29.9 BLEU

score, on the WMT’14 English-German task.

1 Introduction

Neural machine translation (NMT) has achieved

significant progress over recent years (Sutskever

et al., 2014; Bahdanau et al., 2015; Gehring et al.,

2017; Vaswani et al., 2017; Edunov et al., 2018).

Conventional training of the NMT models with

hard targets limits the models’ generalization abil-

ity (Szegedy et al., 2016; Pereyra et al., 2017). This

has led to a rapid growth of research in developing

more regularized models. Teacher-student (T/S)

learning (Li et al., 2014; Hinton et al., 2015; Meng

et al., 2019) is an effective method to handle this

problem. It has been widely applied in many cases,

e.g. model compression (Li et al., 2014; Hinton

et al., 2015), domain adaptation (Li et al., 2017;

Meng et al., 2018) and low-resource machine trans-

lation (Chen et al., 2017).

T/S learning is a strategy that trains a student

model with both hard targets and soft posteriors

produced by a pre-trained teacher model (Li et al.,

2014). Because training with soft targets provides

smoother output distribution, T/S learning could

outperform the single model training (Li et al.,

2014; Hinton et al., 2015; Meng et al., 2018).

However, does a teacher always outperform a

student? In order to evaluate the pros and cons of

different models, we conduct experiments on two

different architectures. Table 1 shows the trans-

lation quality from various models. Arch1 out-

performs Arch2 for the translation tense, whereas

Arch2 outperforms Arch1 for certain word trans-

lation. Besides, the same architecture but initial-

ized differently also has tiny translation differences.

This phenomenon shows that a certain architecture

may not always be suitable to be a teacher.

In this paper, we propose a two-step multi-agent

mutual learning scheme, where one agent learns

from other agents at the sentence-level as the first

step, which we call sentence-wise mutual learning.

When it becomes “smart”, as the second step it

will compare its own predicted tokens with other

agents and only learn those poorly predicted tokens,

which we call token-wise mutual learning. Mutual

learning is first proposed by Zhang et al. (2018)

for image classification tasks. Compared to T/S

learning, there is no fixed teacher model. The co-

trained agents are teachers to one another.

For sentence-wise mutual learning, each agent

learns from other agents at sentence-level. When

all of the agents converge after the first step, they

continue to learn from other agents at the token-

level. Each agent selects and learns the tokens

that it predicts poorly. The poorly predicted tokens

are determined by acceptance-rejection sampling

(Chib and Greenberg, 1995). For every two agents,

the target tokens can be divided into two subsets,

where one agent performs poorly in one subset and
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Src die evolution ist ein andauerndes

thema hier auf der ted-konferenz

gewesen, aber heute möchte ich ih-

nen die ansicht eines zu dem thema

geben.

Ref evolution has been a perennial topic

here at the ted conference, but i want

to give you today one doctor’s take on

the subject.

Arch1
(Init1)

evolution has been a serious topic

here at the ted conference, but i want

to give you today the view of an ark

on the subject.

Arch1
(Init2)

evolution has been a severe subject

here at the ted conference, but today i

want to give you the view of a doctor.

Arch2 now, evolution is a continuous topic

in the ted conference today, but today

i want to give you the view of a doctor

on the subject.

Table 1: Arch1 and Arch2 denote Transformer

(Vaswani et al., 2017) and ConvS2S (Gehring et al.,

2017), respectively. Init1 and Init2 denote two random

initialization. The models with different architectures

tend to translate diversely. The models with the same

architecture but initialized differently have tiny differ-

ences.

learn those tokens from the other agent.

We train our agents on small-scale IWSLT’14

German-English and IWSLT’14 Dutch-English,

middle-scale WMT’16 Romanian-English and

large-scale WMT’14 English-German datasets.

We obtain significant improvements compared to

strong baselines. Up to +2.3, +2.2, +2.0 and +1.6
absolute BLEU scores are achieved on these four

tasks.

To the best of our knowledge, this is the first

work using multi-agent mutual learning for NMT

tasks. The token-level knowledge distillation is

also applied for the first time.

Our contributions are summarized as follows:

• We extend mutual learning to MT tasks and

develop a sentence-level and token-level train-

ing scheme. Performance is improved signifi-

cantly and consistently on various MT tasks.

• We compare our method with the similar train-

ing method, i.e. T/S learning and conditional

T/S learning (Meng et al., 2019), and provide

theoretical insights and practical evidences

why our method performs well.

• We further delve into the effect of various

factors, including the architecture diversity,

different methods for interpolation weight and

the number of co-trained agents.

2 Related Work

T/S Learning Knowledge distillation is first intro-

duced by Buciluǎ et al. (2006) and re-gains pop-

ularity due to Li et al. (2014) and Hinton et al.

(2015). Currently, T/S learning and its variants can

be roughly divided into two paradigms: a fixed

pre-trained teacher model (Li et al., 2014; Hinton

et al., 2015; Meng et al., 2019) and a dynamic co-

trained teacher model (Zhang et al., 2018; Bi et al.,

2019). For the former, the student learns from

both hard targets and soft posteriors generated by

a fixed teacher. For the latter, multiple co-trained

students are considered as a teacher to one another,

also known as mutual learning (Zhang et al., 2018).

Alternatively, an ensemble integrated by multiple

co-trained agents can also be treated as a teacher to

all agents (Bi et al., 2019).

Dual Learning Dual learning (He et al., 2016)

or multi-agent dual learning (Wang et al., 2018)

is to leverage the duality between the primal task

and the dual task. The source and target domains

for these two tasks are opposite. Even though both

dual learning and mutual learning introduce extra

models compared to traditional training method,

the source and target sentences for all agents in mu-

tual learning stay the same. There is only one task

for mutual learning, i.e. translation from source

sentences to target sentences.

MT at Sentence-Level and Token-Level Chen

et al. (2017) propose a training method at sentence-

level and token-level for pivot-based zero-resource

NMT. However, we have different definitions for

the sentence-level and token-level translation. Both

the sentence-level and token-level translation in

Chen et al. (2017) are considered as the sentence-

level translation in our work. The token-level trans-

lation in this paper means one agent only learns the

poorly predicted tokens from other agents.

3 Approach

3.1 General Mutual Learning

We consider a parallel sentence pair: a source sen-

tence fJ
1 with sentence length J , a target sentence
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Figure 1: Two-step mutual learning with three agents. The direction of arrow denotes the direction of knowledge

distillation. (a): General mutual learning schematic, each agent learns from all other agents. (b): Sentence-wise

mutual learning is the first training step. Without loss of generality, we assume Agent
1

performs best and Agent
3

performs worst for a certain training step here. Bidirectional arrows denote that these two agents distill knowledge

to each other for the whole sentence with the same cross entropy loss, i.e. symmetric SML. (c): The second training

step is token-wise mutual learning. Each agent learns its poorly predicted tokens from other agents. Unidirectional

arrows denote that one agent is only a teacher for another agent in one subset of the tokens.

eI1 with sentence length I . Indexed target token ei
takes value from {1, 2, ..., V } in the target vocabu-

lary, whose size is V . The probability of the token

êi being generated is conditioned on the whole

source sentence fJ
1 and the previously generated

tokens êi−1
1 :

p(êi) := p(êi|ê
i−1
1 , fJ

1 ) (1)

The conventional training criterion is cross entropy.

For a given sentence pair, we minimize the cross

entropy loss between the empirical distribution and

the model distribution p, which can be written as:

L = −
I

∑

i=1

V
∑

v=1

✶{ei = v}logp(êi = v) (2)

where ✶{·} is the indicator function.

The objective function only takes care of the

probabilities of target tokens and omit the probabili-

ties of rival tokens according to Equation (2), where

no explicit regularization is introduced. One could

make the model generalize better by discounting a

certain probability mass from the one-hot target dis-

tribution and interpolate with a uniform prior over

the vocabulary (Szegedy et al., 2016; Pereyra et al.,

2017; Gao et al., 2020a,b), which is also known as

label smoothing. Then the loss function is:

L = −
I

∑

i=1

V
∑

v=1

pr(ei)logp(êi = v) (3)

with:

pr(ei) =

{

1− α , if ei = v
α

V−1 , otherwise
(4)

with the discounted probability mass α, where

0 ≤ α ≤ 1. Empirically, we choose α = 0.1.

Compared to using hard targets, label smoothing

assigns some probability mass to the rival labels.

Apart from label smoothing, mutual learning

(ML) (Zhang et al., 2018) is another method to

regularize the models. Multi-agent ML with three

agents is illustrated in Figure 1a. Some studies

have shown that one agent could perform better

by learning soft posteriors from other agents (Li

et al., 2014; Hinton et al., 2015; Meng et al., 2018).

This is because soft posteriors provide smoother

distribution than hard targets.

Building on top of ML, we propose a two-step

ML method: sentence-wise mutual learning and

token-wise mutual learning. Firstly, we co-train

multiple agents with sentence-wise mutual learn-

ing until convergence. Each agent learns from both

hard targets and soft posteriors at sentence-level.

The agents are then again co-trained with token-

wise mutual learning until convergence. Even

though they still learn from both hard and soft tar-

gets, they only learn their poorly predicted tokens

from other agents. With both sentence-wise mutual

learning and token-wise mutual learning, we can

improve the performance cumulatively.

3.2 Sentence-wise Mutual Learning

Sentence-wise mutual learning (SML) with three

agents is illustrated in Figure 1b. The cross entropy

loss between empirical distribution and model dis-

tributions, and among different model distributions

are minimized together with different interpolation

weights. So each agent learns from both hard tar-

gets and soft posteriors.
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Each agent sees the same source sentence and

the same target sentence for each step. Suppose

we have K agents (with the same or different ar-

chitectures) and p1, p2, ..., pK are the probability

distributions of a certain time step for each agent.

L1,L2, ...,LK are the label smoothing losses (see

Equation (3)) for each agent. We introduce an extra

loss between different agents:

LSML
k,l =

{

H(pk, pl) , if Lk ≤ Ll
H(pl, pk) , otherwise

(5)

with cross entropy loss H(·, ·):

H(f, g) = −

I
∑

i=1

V
∑

v=1

f(êi = v)logg(êi = v)

(6)

So the better performing agent is always used as f

and serves as a teacher. The overall loss function

of kth agent is:

Lktotal =λLk + (1− λ)
1

K − 1

K
∑

l=1,l 6=k

LSML
k,l (7)

with interpolation weight λ, where 0 ≤ λ ≤ 1.

The interpolation weight could be a static hyper-

parameter that stays the same for the whole SML

procedure or a dynamic hyper-parameter which

decreases for each epoch:

λ = 0.5 + β
0.5

n
(8)

with the number of training epochs n and the de-

creasing rate β, where 0 < β ≤ 1.

The interpolation weight λ is always larger than

0.5 and decreases for the whole SML procedure

according to Equation (8). So the agent learning

focuses more on the soft posteriors as the training

progresses. The motivation for this is that soft pos-

teriors from agents contain little useful knowledge

about the data at the beginning of training. As

training goes on, they learn information from hard

targets and preserve more useful information. For

the static interpolation weight λ, we suggest to set

it larger than 0.5, so the agents can learn more from

hard targets than from other agents.

Each agent learns from all other agents, even

though some agents perform worse than it (see

Equation (5) and (7)). Zhang et al. (2018) propose

an asymmetric learning method for image classi-

fication, i.e. other agents are always used as f in

Equation (6). However, learning from better agents

and from worse agents is symmetric in our work,

i.e. the better performing agent is always used as f

and the worse performing agent is used as g. Empir-

ically, we obtain better results with such symmetric

learning for machine translation tasks.

3.3 Token-wise Mutual Learning

After SML, each agent becomes “smart”. Instead

of learning from other agents at sentence-level, they

only learn the poorly predicted tokens from other

agents. The token-wise mutual learning (TML)

scheme is illustrated in Figure 1c.

Algorithm 1 Acceptance-Rejection Sampling

Input: Parallel sentence (fJ
1 , e

I
1)

1: for i← 1 to I do

2: γi ←
pk(êi=ei)
c·pl(êi=ei)

3: ui ∼ U(0, 1)
4: if ui ≤ γi then

5: i ∈ Sl,k

6: else

7: i ∈ Sk,l

8: end if

9: end for

Inspired by the acceptance-rejection sampling

method (Chib and Greenberg, 1995), the poorly

predicted tokens are determined by the probability

ratios, γi, of the target tokens between two agents

as in Algorithm 1. If value ui obtained by uniform

sampling fulfills ui ≤ γi, we consider agentk to

be performing better on the target token ei than

agentj . Then for this time step, agentj needs to

learn from agentk. Normally, we set the scale

factor c as:

c = max
i∈{1,2,...,I}

pk(êi = ei)

pl(êi = ei)
(9)

With the acceptance-rejection sampling method,

we obtain two target token subsets for each parallel

sentence pair between agentk and agentl: Sk,l and

Sl,k. Agentk predicts poorly in the subset Sk,l and

needs to learn these tokens from agentl. Agentl
predicts poorly in the subset Sl,k and needs to learn

these tokens from agentk.

Different from SML, each agent only learns its

poorly predicted tokens from other agents for TML.

Other agents are always used as f in Equation (6).
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De-En Nl-En Ro-En En-De

# train 153k 153k 612k 4.5M

# val. 7k 7k 2k 3k

# test 7k 5k 2k 3k

# voc. 10k 10k 20k 32k

Table 2: The amount of parallel sentence pairs and vo-

cabulary sizes for IWSLT’14 De-En, IWSLT’14 Nl-En,

WMT’16 Ro-En and WMT’14 En-De. Val. denotes

validation set. Voc. denotes vocabulary size.

The extra loss function is defined as:

LTML
k,l = −

∑

i∈Sk,l

V
∑

v=1

pl(êi = v)logpk(êi = v)

(10)

The overall loss definition for agentk at this step

stays the same as Equation (7) for SML (replace

LSML
k,l by LTML

k,l ). Since all agents preserve much

more useful information than hard targets after the

convergence for SML, they simply need to be fine-

tuned for some iterations with TML. All agents

are also more stable and reliable after SML, we

only need to use static interpolation weight and set

λ < 0.5. So the learning focus more on the soft

posteriors than the hard targets.

4 Experimental Setup

Datasets In this paper, we run experiments on

multiple benchmark MT datasets to evaluate the

effectiveness of the proposed method, including

IWSLT’14 German-English (De-En), IWSLT’14

Dutch-English (Nl-En), WMT’16 Romanian-

English (Ro-En) and WMT’14 English-German

(En-De). The amount of parallel sentence pairs for

different MT tasks is shown in Table 2.

Following Edunov et al. (2017), we split

IWSLT’14 De-En, IWSLT’14 Nl-En and WMT’16

Ro-En datasets into various amounts of parallel

sentence pairs for training, validation and testing.

On WMT’14 En-De, we choose the WMT’16 train-

ing set and sample 4.5M parallel sentence pairs for

training (Ott et al., 2018), employ newstest 2013

as the validation set and use newstest 2014 as the

testing set (Vaswani et al., 2017). For all language

pairs, we use byte-pair encoding (Sennrich et al.,

2015) with shared vocabularies.

Model Architecture We mainly employ three

types of the Transformer model (Vaswani et al.,

2017), i.e. Transformer small, Transformer base

and Transformer big, implemented in the fairseq-

py toolkit (Ott et al., 2019). Transformer base and

Transformer big stay the same as Vaswani et al.

(2017). The difference between Transformer small

and Transformer base is that each encoder and de-

coder layer in Transformer small employs a word

representation size of 512, a feed-forward layer

dimension of 1024 and 4 attention heads.

Transformer small is used for the small-scale

IWSLT’14 De-En and IWSLT’14 Nl-En datasets

with a dropout rate of 0.3. Transformer base is

applied for the middle-scale WMT’16 Ro-En and

large-scale WMT’14 En-De with a dropout rate of

0.1. Transformer big is also employed for the large-

scale WMT’14 En-De with a dropout probability

of 0.3. We also train a convolutional sequence

to sequence network (ConvS2S) (Gehring et al.,

2017) and a seven encoder and decoder layer Trans-

former small (Transformer small7) on IWSLT’14

De-En and IWSLT’14 Nl-En as our baselines.

Optimization and Evaluation We use the same

settings for the optimization and the learning

rate decay rule as Vaswani et al. (2017) for

Transformer small, Transformer small7, Trans-

former base and Transformer big with an initial

learning rate of 5e-4. We use a batch size (the num-

ber of tokens) of 4K for Transformer small and

Transformer small7, a batch size of 25K for Trans-

former base and Transformer big. If the batch size

can not be set as the number above because of

memory limit, we accumulate gradients to match it.

We use the same settings for the optimization and

learning rate as Gehring et al. (2017) for ConvS2S

with a batch size of 4K. We use beam search with

a beam size of five and length penalty of 0.6 to

generate translations for all of the models. The

evaluation metric is BLEU (Papineni et al., 2002).

For IWSLT’14 De-En and IWSLT’14 Nl-En, we

use a single Nvidia GTX 1080Ti GPU to train 2, 3

and 4 co-trained Transformer small for 1.5, 2 and

3 days, respectively. For WMT’16 Ro-En, we use

a single GPU to train 2, 3 and 4 co-trained Trans-

former base for 2, 3.5 and 4.5 days, respectively.

For WMT’14 En-De, we use four GPUs to train 2,

3 and 4 Transformer base for 10, 13 and 18 days,

respectively. For WMT’14 En-De, we also use four

GPUs to train 2, 3 and 4 Transformer big for 12,

18 and 21 days, respectively.
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Method IWSLT’14

De-En Nl-En

Transformer small 34.7 37.7

T/S 35.0 38.1

Conditional T/S 34.2 37.0

Asymmetric SML 35.3 38.4

Symmetric SML 36.2 38.9

Table 3: BLEU scores for different training methods

with two agents. Both agents are Transformer small.

T/S and conditional T/S: The scores are from the stu-

dent model. Asymmetric and symmetric SML: The

scores are from the best co-trained agent.

5 Results

SML and TML are conducted sequentially. Firstly,

we train our multiple agents at the sentence-level

until convergence. Secondly, we train again the

agents with the best performance from SML at the

token-level till convergence.

5.1 Results for SML

Different Training Methods T/S learning and its

variants, i.e. Conditional T/S learning (Meng et al.,

2019) and asymmetric ML (Zhang et al., 2018),

perform well on various tasks. We reproduce these

methods on our tasks to study the effectiveness of

SML. As shown in Table 3, our proposed method

(symmetric SML) outperforms other methods and

achieves +1.5 and +1.2 BLEU scores on IWSLT’14

De-En and IWSLT’14 Nl-En, respectively.

T/S and conditional T/S employ a fixed pre-

trained teacher model. Empirically, the size of

the teacher model need to be much bigger than

the student model to obtain a better student model.

In our case, we observe there is no significant im-

provement when the teacher and student share the

same architecture for T/S and conditional T/S (see

Table 3). Compared to asymmetric SML, symmet-

ric SML obtain +0.9 and +0.5 BLEU scores, which

is different from the results reported in Zhang

et al. (2018), where they obtain similar results from

asymmetric and symmetric ML on image classifi-

cation tasks.

Agents with Different or Identical Architec-

tures We assess the impact of the architecture di-

versity of agents. From Table 4, we observe that

the agents with the identical architecture outper-

form the agents with different architectures. For

the co-training of the agents with different archi-

Model IWSLT’14

De-En Nl-En

a. ConvS2S 32.8 35.5

b. Transformer small 34.7 37.7

c. Transformer small7 34.9 37.8

a / b 30.8/34.5 33.8/35.5

b / c 34.4/33.9 35.4/34.9

b × 2 36.0/36.2 38.9/38.4

Table 4: BLEU scores for two-agent SML with differ-

ent or identical architectures.

tectures, similar architectures (Transformer small

and Transformer small7) or completely different

architectures (ConvS2S and Transformer small),

the results even get worse than single model train-

ing. This is different from Bi et al. (2019), where

better results are reported for the teacher model

integrated by students with different architectures.

We believe the reason is: Bi et al. (2019) first pre-

train multiple students independently and co-train

them as the second step. All of the student models

have converged after the first step. They are only

fine-tuned with the second step. In this paper, we

co-train multiple agents from scratch. It is diffi-

cult to balance their performance for each iteration

when the architectures are different. The agents

with the identical architecture but initialized differ-

ently obtain at most +1.4 and +1.2 BLEU scores

on IWSLT’14 De-En and IWSLT’14 Nl-En.

Figure 2 shows the training procedure of these

models. When the architectures vary significantly,

the performance of them become far away from

each other. When the architectures are similar, the

performance of them is close at the beginning and

the end of the training. When these agents share

the same architecture, the performance of them are

always close. These phenomena imply that the

agents with different architectures could not effec-

tively distill knowledge to one another since differ-

ent architectures have various learning capabilities.

One could obtain better results with independent

learning scheduling for these two agents, like the

training of generative adversarial networks (Good-

fellow et al., 2014). This is our future work. The

results below are obtained by training the agents

sharing the identical architecture.

Static or Dynamic Interpolation Weight We

employ both static and dynamic interpolation

weights (see Equation 8). Figure 3 shows that the
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Figure 2: Cross entropy loss (see Equation 2) of two co-trained agents for SML on IWSLT’14 De-En. Left: Two

models with different architectures. Middle: Two models with similar architectures. Right: Two models with the

same architecture but initialized differently.
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Figure 3: Box plots with 95% confidence interval for

two-agent SML with static or dynamic interpolation

weights on IWSLT’14 Nl-En. The static interpolation

weight λ = 0.1, 0.2, ..., 0.9. The decreasing rate for the

dynamic interpolation weight β=0.1,0.2,...,0.9.

performance of the agent is less sensitive to the

dynamic interpolation weight. For all values of

the decreasing rate β (=0.1,0.2,...,0.9), all of the

results are better than the baseline. We believe

the reason is: the dynamic interpolation weight

gets smaller and smaller with increasing number

of epochs. Compared to the scale of the epoch

number, the difference of β does not matter signifi-

cantly. Besides, the amount of distilled knowledge

becomes less and less with increasing number of

epochs. The agent does not learn much from other

agents when it becomes “smart”.

Even though the results are sensitive to the static

interpolation weight, we can obtain the best result

from the fine-tuning of it. Empirically, We can

get better results with a static interpolation weight

λ = 0.6 or 0.7 or with a decreasing rate β = 1.0
or 0.7 for the dynamic interpolation weight.

Number of Agents We also investigate the influ-

ence of the number of co-trained agents for SML.

As shown in Table 5, we can obtain better results on

IWSLT’14 De-En, IWSLT’14 Nl-En and WMT’14

En-De with increasing number of agents. How-

ever, the improvement might become saturated,

e.g. the best result on WMT’16 Ro-En is ob-

tained from three-agent SML. Overall, we achieve

at most +2.0, +1.8, +1.5 and +1.5 BLEU scores on

IWSLT’14 De-En, IWSLT’14 Nl-En, WMT’16 Ro-

En and WMT’14 En-De with only SML compared

to strong baselines, respectively.

5.2 Results for SML + TML

Number of Agents After SML, the agents become

“smarter”. There is only slight difference between

them (see Figure 2). For further improvement, they

only learn their poorly predicted tokens from one

another. As shown in Table 5, training with both

SML and TML consistently obtains better scores

on various MT tasks compared to the scores from

SML. Similar to SML, this improvement can be sat-

urated, with only slight improvement on WMT’14

En-De as the number of agents increases to 4. Over-

all, compared to strong baselines, we obtain at

most +2.3, +2.2, +2.0 and +1.6 BLEU scores on

IWSLT’14 De-En, IWSLT’14 Nl-En, WMT’16 Ro-

En and WMT’14 En-De, respectively.

Effect of Beam Size Figure 4 illustrates the sen-

sitivity of the agent against beam size. Without ML,

the agent obtains better result with increasing beam

size. After the two-step ML, the performances of

the agent are less sensitive to the beam size. The

line tends to be stable after beam size equals to

three.

Effect of Ensemble Figure 5 and Table 5 show

the performances of independent ensembles and

ensembles with ML. We observe that ensembles

with ML consistently outperform independent en-
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Model Method IWSLT’14 WMT’16 WMT’14

De-En Nl-En Ro-En En-De

base big

Vaswani et al. (2017) - - - - 27.3 28.4

Bi et al. (2019) - 36.3 - - - 29.7

1 agent 1 - 34.7 37.7 34.1 27.1 28.3

2 agents
SML 36.2 38.9 34.8 27.8 28.9

SML+TML 36.6 39.5 35.3 28.3 29.4

3 agents
SML 36.4 39.2 35.6 28.1 29.4

SML+TML 36.8 39.9 35.9 28.4 29.8

4 agents

SML 36.7 39.5 35.5 28.2 29.8

SML+TML 37.0 39.8 36.1 28.7 29.9

Independent ensemble 36.8 38.2 35.8 28.6 29.2

ML ensemble 38.0 40.3 36.4 28.8 30.1

Table 5: BLEU scores for two-step training of agents with the same architecture. Transformer smalls are trained

on IWSLT’14 De-En and IWSLT’14 Nl-En. Transformer bases are trained on WMT’16 Ro-En and WMT’16

En-De. Transformer bigs are trained on WMT’16 En-De. The agents with the best performance from SML are

further trained at the token-level. Cumulative improvements are obtained with TML following SML. Compared to

independent ensemble, better results are reported by ensemble with ML.

1 2 4 6 8 10 12 14 16 18

beam size

36.5

37

37.5

38

38.5

39

39.5

40

B
L

E
U

 s
co

re

1 agent

SML+TML

Figure 4: BLEU scores against beam size on

IWSLT’14 Nl-En. The result of the red line is from

the best agent of three-agent SML+TML.

sembles. Compared to four co-trained agents with

ML, the ensembling results are improved less sig-

nificantly for larger datasets.

6 Conclusion

We extend mutual learning to machine translation

tasks at both the sentence-level and the token-level,

where multiple agents are co-trained and distill

1The results in this row are obtained with the average
checkpoint from top 10 checkpoints. In this way, we can
have strong baselines. The other results are obtained from
the best checkpoint of the best agent. The trick of checkpoint
averaging does not improve the results for ML.

2 3 4

number of agents

36

37

38

39

40

41

B
L

E
U

 s
co

re

independent on Nl-En

ML on Nl-En

independent on De-En

ML on De-En

Figure 5: BLEU scores for model ensemble on

IWSLT’14 De-En and IWSLT’14 Nl-En.

knowledge to one another throughout the training

procedure. Firstly, the agents learn the whole sen-

tence from one another. After convergence, they

only learn the poorly predicted tokens from other

agents. Sampling of poorly predicted tokens is

done with acceptance-rejection sampling.

With our two-step mutual learning, agents could

learn from one another at different levels and are

improved cumulatively. Extensive experiments

show significant improvements for both steps.

We improve the state-of-the-art for IWSLT’14

German-English from 36.3 (Bi et al., 2019) to

37.0 points without using additional data. On
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WMT’14 English-German, we report 28.7 and 29.9

vs. 27.3 and 28.4 (Vaswani et al., 2017) with Trans-

former base and Transformer big, respectively.

We plan to extend the work by looking into

more sophisticated training schedules for the agents

with different architectures and applying back-

translation to ML.
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