
Proceedings of the 24th Conference on Computational Natural Language Learning, pages 335–343
Online, November 19-20, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

335

“LazImpa”: Lazy and Impatient neural agents
learn to communicate efficiently

Mathieu Rita1 Rahma Chaabouni1,2

1Cognitive Machine Learning (ENS/EHESS/PSL Research University/CNRS/INRIA)
2Facebook AI Research

mathieu.rita@polytechnique.edu, {rchaabouni,dpx}@fb.com

Emmanuel Dupoux1,2

Abstract

Previous work has shown that artificial neu-
ral agents naturally develop surprisingly non-
efficient codes. This is illustrated by the fact
that in a referential game involving a speaker
and a listener neural networks optimizing accu-
rate transmission over a discrete channel, the
emergent messages fail to achieve an optimal
length. Furthermore, frequent messages tend to
be longer than infrequent ones, a pattern con-
trary to the Zipf Law of Abbreviation (ZLA) ob-
served in all natural languages. Here, we show
that near-optimal and ZLA-compatible mes-
sages can emerge, but only if both the speaker
and the listener are modified. We hence in-
troduce a new communication system, “Laz-
Impa”, where the speaker is made increasingly
lazy, i.e., avoids long messages, and the listener
impatient, i.e., seeks to guess the intended con-
tent as soon as possible.

1 Introduction
Recent emergent-communication studies, renewed by
the astonishing success of neural networks, are of-
ten motivated by a desire to develop neural network
agents eventually able to verbally interact with humans
(Havrylov and Titov, 2017; Lazaridou et al., 2017). To
facilitate such interaction, neural networks’ emergent
language should possess many natural-language-like
properties. However, it has been shown that, even if
these emergent languages lead to successful communi-
cation, they often do not bear core properties of natural
language (Kottur et al., 2017; Bouchacourt and Baroni,
2018; Lazaridou et al., 2018; Chaabouni et al., 2020).

In this work, we focus on one basic property of nat-
ural language that resides on the tendency to use mes-
sages that are close to the informational optimum. This
is illustrated in the Zipf’s law of Abbreviation (ZLA),
an empirical law that states that in natural language,
the more frequent a word is, the shorter it tends to be
(Zipf, 1949; Teahan et al., 2000; Sigurd et al., 2004;
Strauss et al., 2007). Crucially, ZLA is considered to
be an efficient property of our language (Gibson et al.,
2019). Besides the obvious fact that an efficient code

would be easier to process for us, it is also argued to be a
core property of natural language, likely to be correlated
with other fundamental aspects of human communica-
tion, such as regularity and compositionality (Kirby,
2001). Encouraging it might hence lead to emergent lan-
guages that are also more likely to develop these other
desirable properties.

Despite the importance of such property, Chaabouni
et al. (2019) showed that standard neural network agents,
when trained to play a simple signaling game (Lewis,
1969), develop an inefficient code, which even displays
an anti-ZLA pattern. That is, counterintuitively, more
frequent inputs are coded with longer messages than less
frequent ones. This inefficiency was related to neural
networks’ “innate preference” for long messages. In
this work, we aim at understanding which constraints
need to be introduced on neural network agents in order
to overcome their innate preferences and communicate
efficiently, showing a proper ZLA pattern.

To this end, we use a reconstruction game where we
have two neural network agents: speaker and listener.
For each input, the speaker outputs a sequence of sym-
bols (which constitutes the message) sent to the listener.
The latter needs then to predict the speaker’s input based
on the given message. Also, similarly to the previous
work, inputs are drawn from a power-law distribution.

We first describe the experimental and optimization
framework (see Section 2). In particular, we introduce a
new communication system called ‘LazImpa’, compris-
ing two different constraints (a) Laziness on the speaker
side and (b) Impatience on the listener side. The former
constraint is inspired by the least-effort principle which
is attested to be a ubiquitous pressure in human com-
munication (Piantadosi et al., 2011; Zipf, 1949; Kanwal
et al., 2017).

However, if such a constraint is applied too early, the
system does not learn an efficient system. We show that
incrementally penalizing long messages in the cost func-
tion enables an early exploration of the message space
(a kind of ‘babbling phase’) and prevents converging to
an inefficient local minimum.

The other constraint, on the listener side, relies on
the prediction mechanism, argued to be important in
language comprehension (e.g., Federmeier, 2007; Alt-
mann and Mirković, 2009), and is achieved by allowing
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the listener to reconstruct the intended input as soon as
possible. We also provide a two-level analytical method:
first, metrics quantifying the efficiency of a code; sec-
ond, a new protocol to measure its informativeness (see
Section 3). Applying these metrics, we demonstrate that,
contrary to the standard speaker/listener agents, our new
communication system ‘LazImpa’ leads to the emer-
gence of an efficient code. The latter follows a ZLA-like
distribution, close to natural languages (see Sections 4.1
and 4.2). Besides the plausibility of the introduced con-
straints, our new communication system is, first, task-
and architecture-agnostic (requires only communicating
with sequences of symbols), and second allows stable
optimization of the speaker/listener. We also show how
both listener and speaker constraints are fundamental to
the emergence of a ZLA-like distribution, as efficient as
natural language (see Section 4.3).

2 Experimental framework

We explore the properties of emergent communication
in the context of referential games where neural network
agents, Speaker and Listener, have to cooperatively com-
municate in order to win the game.

Speaker network receives an input i ∈ I and gener-
ates a message m of maximum length max_len. The
symbols of the message belong to a vocabulary V =
{s1, s2, ..., svoc_size−1,EOS} of size voc_size
where EOS is the ‘end of sentence’ token indicating the
end of Speaker’s message. Listener network receives
and consumes the message m. Based on this message,
it outputs î. The two agents are successful if Listener
manages to guess the right input (i.e., î = i).

We make two main assumptions. First inputs are
drawn from I following a power-law distribution, where
I is composed of 1000 one-hot vectors.

Consequently, the probability of sampling the kth

most frequent input is: 1/k∑1000
j=1 1/j

modelling words’ dis-

tribution in natural language (Zipf, 2013) (see details in
Appendix A.1.1). Second, we experiment in the main
paper with max_len = 30 and voc_size = 40.1

We further discuss the influence of these assumptions in
Appendix. A.4.2 and show the robustness of our results
to assumptions change.

In our analysis, we only consider the successful runs,
i.e., the runs with a uniform accuracy strictly higher than
97% over all possible 1000 inputs. An emergent lan-
guage consists then of the input-message mapping. That
is, for each input i ∈ I fed to Speaker after successful
communication, we note its output m.

ByM, we define the set of messages m used by our
agents after succeeding in the game.

1This combination makes our setting comparable to natural
languages; the latter has no upper bound on the maximum
length, also a vocabulary size of 40 is close to the alphabet
size of the natural languages we study of mean vocabulary
size equal to 41.75. See Chaabouni et al. (2019) for more
details.

2.1 Agent architectures
In our experiments, we compare two communication
systems:

• Standard Agents: as a baseline, composed of Stan-
dard Speaker and Standard Listener;

• ‘LazImpa’: composed of Lazy Speaker and
Impatient Listener.

For both Speaker and Listener, we experiment with ei-
ther standard or modified LSTM architectures (Hochre-
iter and Schmidhuber, 1997).

2.1.1 Standard Agents
Standard Speaker. Standard Speaker is a single-
layer LSTM. First, Speaker’s inputs i are mapped by
a linear layer into an initial hidden state of Speaker’s
LSTM cell. Then, the message m is generated symbol
by symbol: the current sequence is fed to the LSTM cell
that outputs a new hidden state. Next, this hidden state
is mapped by a linear layer followed by a softmax to
a Categorical distribution over the vocabulary. During
the training phase, the next symbol is sampled from this
distribution. During the testing phase, the next symbol
is deterministically selected by taking the argmax of the
distribution.

Standard Listener. Standard Listener is also a single-
layer LSTM. Once the message m is generated by
Speaker, it is entirely passed to Standard Listener. Stan-
dard Listener consumes the symbols one by one, until
the EOS token is seen (the latter is included and fed to
Listener). At the end, the final hidden state is mapped to
a Categorical distribution L(m) over the input indices
(linear layer + softmax). This distribution is then used
during the training to compute the loss. During the test-
ing phase, we take the argmax of the distribution as a
reconstruction candidate.

Standard loss Lstd. For Standard Agents, we merely
use the cross-entropy loss between the ground truth one-
hot vector i and the output Categorical distribution of
Listener L(m).

2.1.2 LazImpa
Lazy Speaker. Lazy Speaker has the same architec-
ture as Standard Speaker. The ‘Laziness’ comes from a
cost on the length of the message m directly applied to
the loss.

Impatient Listener. We introduce Impatient Listener,
designed to guess the intended content as soon as possi-
ble. As shown in Figure 1, Impatient Listener consists
of a modified Standard Listener that, instead of guessing
i after consuming the entire messagem = (m0, ...,mt),
makes a prediction îk for each symbol mk.2 This mod-
ification takes advantage of the recurrent property of
the LSTM, however, could be adapted to any causal
sequential neural network model.

2mt=EOS by construction.
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At training, a prediction of Impatient Listener, at a
position k, is a Categorical distribution L(m:k), con-
structed using a shared single linear layer followed
by a softmax (with m:k = (m0, ...,mk)). Eventu-
ally, we get a sequence of t+ 1 distributions L(m) =
(L(m:0), ..., L(m:t)), one for each reading position of
the message.

At test time, we only take the argmax of the distribu-
tion generated by Listener when it reads the EOS token.

Figure 1: Impatient Listener architecture. The agent is
composed of a single-layer LSTM cell and one shared
linear layer followed by a softmax. It generates a pre-
diction at each time step.

LazImpa Loss Llaz . LazImpa loss is composed of
two parts that model ‘Impatience’ (Llaz/L) and ‘Lazi-
ness’ (Llaz/S), such that,

Llaz(i,m,L(m)) = Llaz/L(i, L(m)) + Llaz/S(m). (1)

On one hand, Llaz/L forces Impatient Listener to
guess the right candidate as soon as possible when
reading the message m. For this purpose, with i the
ground-truth input and L(m) = (L(m:0), ..., L(m:t))
the sequence of intermediate distributions, the Impa-
tience Loss is defined as the mean cross-entropy loss
between i and the intermediate distributions:

Llaz/L(i, L(m)) =
1

t+ 1

t∑
k=0

Lstd(i, L(m:k)), (2)

Hence, all the intermediate distributions contribute to
the loss function according to the following principle:
the earlier the Listener predicts the correct output, the
larger the reward is.

On the other hand, Llaz/S consists of an adap-
tive penalty on message lengths. The idea is to first
let the system explore long and discriminating mes-
sages (exploration step) and then, once it reaches
good enough communication performances, we apply
a length cost (reduction step). With |m| the length of
the message associated with the input i and ‘acc’ the es-
timation of the accuracy (proportion of inputs correctly
communicated weighted by appearance frequency), the
Laziness Loss is defined as:

Llaz/S(m) = α(acc)|m| (3)

To schedule this two-step training, we model α as
shown in Figure 2. The regularization is mainly com-
posed of two branches: (1) exploration step and (2) re-
duction step. The latter starts only when the two agents
become successful.

Figure 2: Scheduling of the regularization parameter
α as a function of the accuracy. We distinguish two
different regimes: the exploration and the reduction
regimes. See the mathematical description in Appendix
A.1.4

2.2 Optimization

The overall setting, which can be seen as a discrete auto-
encoder, cannot be differentiated directly, as the latent
space is discrete. We use a hybrid optimization between
REINFORCE for Speaker (Williams, 1992) and classic
back-propagation for Listener (Schulman et al., 2015).

With L the loss of the system, i the ground-truth input
and L(m) the output distribution of Listener that takes
the message m as input, the training task consists in
minimizing the expectation of the loss E[L(i, L(m))].
The expectation is computed w.r.t the joint distribution
of the inputs and the message sequences. Let’s denote
θL and θS Listener and Speaker parameters respectively.
The optimization task requires to compute the gradient
∇θS∪θLE[L(i, L(m))]. An unbiased estimate of this
gradient is the gradient of the following function:

E[L(i, L(m; θL))︸ ︷︷ ︸
(A)

+({L(i, L(m; θL))} − b) logPS(m|θS)︸ ︷︷ ︸
(B)

],

(4)
where {.} is the stop-gradient operation, PS(m|θS)

the probability that Speaker generates the message m,
b the running-mean baseline used to reduce variance
(Williams, 1992). We also promote exploration by en-
couraging Speaker’s entropy (Williams and Peng, 1991).

The gradient of (4) w.r.t θL is found via conventional
back-propagation (A) while gradient w.r.t θS is found
with a REINFORCE-like procedure estimating the gra-
dient via a Monte-Carlo integration calculated over sam-
ples of the messages (B). Once the gradient is estimated,
it is eventually passed to the Adam optimizer (Kingma
and Ba, 2014).
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In Appendix A.3.1, we show that LazImpa leads
to a stable convergence. We use the EGG toolkit
(Kharitonov et al., 2019) as a starting framework. For
reproducibility, the code can be found at https://
github.com/MathieuRita/Lazimpa and the set of
hyper-parameters used is presented in Appendix A.1.

3 Analytical method
As ZLA is defined informally, we first introduce refer-
ence distributions for comparison. Then, we propose
some simple metrics to evaluate the overall efficiency
of our emergent codes. Eventually, we provide a sim-
ple protocol to analyze the distribution of information
within the messages.

3.1 Reference distributions
We compare the emergent languages to the reference
distributions introduced in Chaabouni et al. (2019). We
provide below a brief description of the different dis-
tributions, however, we invite readers to refer to the
reference paper for more details.

Optimal Coding (Cover and Thomas, 2006) guaran-
tees the shortest average message length with max_len
= 30 and voc_size = 40. To do so, we determin-
istically associate the shortest messages to the most
frequent inputs. See Ferrer i Cancho et al. (2013) for
more details about the derivation of Optimal Coding.

Natural Language We also compare emergent lan-
guages with several human languages. In particular,
we consider the same languages of the reference paper
(English, Arabic, Russian, and Spanish). These refer-
ences consist of the mapping from the frequency of the
top 1000 most frequent words in each language to their
length (approximated by the number of characters of
each word).3

3.2 Efficiency metrics
In this work, we examine the constraints needed for neu-
ral agents to develop efficient languages. We use three
metrics to evaluate how efficient the different codes are.
For all metrics, N denotes the total number of messages
(=1000) and l(m) the length of a message m.

Mean message length Ltype: measures the mean
length of the messages assuming a uniform weight for
each input/message:

Ltype =
1

N

∑
m∈M

l(m), (5)

Mean weighted message length Ltoken : measures
the average length of the messages weighted by their
generation frequency:

Ltoken =
∑
m∈M

p(m)l(m), (6)

3We use the frequency lists from http://corpus.
leeds.ac.uk/serge/.

where p(m) is the probability of message m (equal
to the probability of input i denoted by m) such that∑
m∈M p(m) = 1. Formally, the message m referring

to the kth most frequent input would have a probability
1/k∑1000

1 1/j
.

Note that, the Optimal Coding is the one that minimizes
Ltoken (Cover and Thomas, 2006; Ferrer i Cancho et al.,
2013).

ZLA significance score pZLA: Let’s note (li)i∈I a
distribution of message lengths of a code. As a ZLA
distribution is the one that minimizes Ltoken, we can
check if (li)i∈I follows ZLA by testing if its Ltoken is
lower than any random permutation of its frequency-
length mapping. This is the idea of the randomization
test proposed by Ferrer i Cancho et al. (2013).

The test checks whether Ltoken coincides with∑
i∈I lifσ(i), with σ(i) a random permutation of in-

puts. We can eventually compute a p-value pZLA (at
threshold α) that measures to which extent Ltoken is
likely to be smaller than any other weighted mean mes-
sage length of a frequency-length mapping. pZLA < α
indicates that any random permutation would have most
likely longer weighted mean length. Thus (li)i∈I fol-
lows significantly a ZLA distribution. Additional details
are provided in Appendix A.3.2.

3.3 Information analysis

We also provide an analytical protocol to evaluate how
information is distributed within the messages. We con-
sider a symbol to be informative if replacing it ran-
domly has an effect on Listener’s prediction. Formally,
let’s take the message m = (m0, ...,mt) associated
to the ground truth input i after training. To evalu-
ate the information contained in the symbol at posi-
tion k, mk, we substitute it randomly by drawing an-
other symbol rk uniformly from the vocabulary (ex-
cept the EOS token). Then, we feed this new message
m̃ = (m1, ..., rk, ...,mt) into Listener that outputs õm,k
(index m indicates that the original message was m,
index k indicates that the kth symbol of the original
message has been replaced). We define Λm,k a boolean
score that evaluates whether the symbol replaced at
position k has an impact on the prediction, such that
Λk,m = 1(õm,k 6= i). If Λm,k = 1, the kth symbol of
message m is considered as informative. If Λm,k = 0,
it is considered as non-informative. We do not con-
sider misreconstructed inputs, neither the position t, as
mt=EOS.4 This token is needed for Listener’s predic-
tion at test time.

This test allows us to introduce some variables that
quantify to which extent information is effectively dis-
tributed within the messages. As previously, we note
l(m) the length of message m and N the total number
of messages.

4As we only consider successful runs, more than 97% of
inputs are, by definition, well-reconstructed.
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Positional encoding (Λ.,k)1≤k≤max_len : ana-
lyzes the position of informative symbols within an
emergent code. We assign a score Λ.,k for each position
k that counts the proportion of informative symbols over
all the messages of a language:

Λ.,k =
1

N(k)

∑
m∈M

Λm,k, (7)

where N(k) is the number of messages that have a
symbol (different from EOS) at position k.

Effective length Leff : measures the mean number of
informative symbols by message:

Leff =
1

N

∑
m∈M

l(m)−1∑
k=1

Λm,k. (8)

Leff counts the average number of symbols Listener
relies on (removing all the uninformative symbols for
which Λm,k = 0). A message with only informative
symbols would have Leff = Ltype − 1.5

Information density ρinf : measures the fraction of
informative symbols in a language:

ρinf =
1

N

∑
m∈M

1

l(m)− 1

l(m)−1∑
k=1

Λm,k. (9)

We integrate over the first l(m) − 1 positions as we
disregard EOS that occurs in all messages.6 0 ≤ ρinf ≤
1. If ρinf = 1, messages are limited to the informative
symbols (all used by Listener to decode the message).
The lower ρinf is, the more non-informative symbols
are in the message.

As we do not have Listener when generating Optimal
Coding, we compute these metrics for the latter refer-
ence by considering all symbols, but EOS, informative.

4 Results

In this section, we study the code of our new commu-
nicative system, LazImpa, and compare it to the Stan-
dard Agents baseline and the different reference distri-
butions. We show that LazImpa leads to near-optimal
and ZLA-compatible languages. Eventually, we demon-
strate how both Impatience and Laziness are required to
get human-level efficiency. All the quantitative results
of the considered codes are gathered in Table 1.

4.1 LazImpa vs. Standard Agents

We compare here LazImpa to the baseline system Stan-
dard Agents both in terms of the length efficiency and
the allocation of information.

5We subtract 1 as we disregard EOS in all messages.
6By convention, for the case where m=(EOS), 0

0
=1.

Length efficiency of the communication. Contrary
to Standard Agents, LazImpa develops an efficient com-
munication as presented in Figure 3. Indeed, its average
length of the messages is significantly lower than the
Standard Agents system (average Ltype=29.6 for Stan-
dard Agents vs. Ltype=5.49 for LazImpa). The latter
demonstrates length distributions almost constant and
close to the maximum length we set (=30). We demon-
strate in Appendix A.2.1 how the exploration of long
messages in Standard Agents is key for agents’ suc-
cess in the reconstruction game, even though, in theory,
shorter messages are sufficient.

Interestingly, both systems do not only differ by their
average length, but also by the distribution of messages
length. Specifically, the Standard Agents system follows
significantly an anti-ZLA distribution (see Appendix
A.3.2 for quantitative support of this claim) while Laz-
Impa has an average Ltoken=3.78 showing a ZLA pat-
tern: the shortest messages are associated to the most
frequent inputs. The randomization test gives quantita-
tive support of this observation (pZLA < 10−5).

Figure 3: Average message length across successful
runs as a function of input frequency rank.

Informativeness of the communication. When con-
sidering how Standard Agents system allocates informa-
tion, shown in Figure 4a, we can make two striking ob-
servations. First, only a very small part of the messages
are informative (on average ρinf = 11%). Therefore,
even if long messages seem necessary for the agents to
succeed, most of the symbols are not used by Listener.
In particular, if Ltype = 29.6 on average, the average
number of symbols used by Standard Listener (Leff )
is only equal to 3.33 (which is even smaller than nat-
ural languages’ mean message length Ltype = 5.46).
Surprisingly, we also observe that, if we restrict the
messages to their informative symbols (i.e. removing
positions k with Λk,. = 0), the length statistics follow a
ZLA-like distribution (see Figure 9 in Appendix A.2.2).
Second, in all our experiments, the information is lo-
calized at the very end of the messages. That is, there
is almost no actual information in the messages about
Speaker’s inputs before the last symbols.

Contrarily, Figure 4d shows a completely different
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Class Code Ltype Ltoken pZLA Leff ρinf
Emergent Standard Agents 29.6± 0.4 29.91± 0.07 > 1− 10−5 3.33± 0.46 0.11± 0.02

LazImpa 5.49± 0.67 3.78± 0.34 < 10−5* 2.67± 0.07 0.60± 0.07

References Mean natural languages 5.46± 0.61 3.55± 0.14 < 10−5* / /
Optimal Coding 2.96 2.29 < 10−5* 1.96 1.00

Table 1: Efficiency and information analysis of emergent codes and reference distribution. For each metric, we
report the mean value and the standard deviation when relevant (across seeds when experimenting with emergent
languages and across the natural languages presented in Section 3.1 for Mean natural languages). Ltype is the mean
message length, Ltoken is the mean weighted message length, pZLA the ZLA significance score, Leff the effective
length and ρinf the information density. ‘/’ indicates that the metric cannot be computed. For pZLA, ‘*’ indicates
that the p-value is significant (< 0.001).

(a) Standard Agents (b) Standard Speaker + Impatient Listener

(c) Lazy Speaker + Standard Listener (d) LazImpa

Figure 4: Fraction of informative symbols at each position k averaged across all emergent messages of successful
runs ((Λk,.)0≤k≤29). Each box represents the proportion of informative symbols at a given position Λk,. mapped
to a color according to a gray gradient (black=0 ; white=1). The red vertical lines mark the mean message length
Ltype across successful runs.

spectrum for LazImpa. Indeed, Impatient Listener relies
on ρinf = 60% of the symbols. This corresponds to
a big increase compared to ρinf = 19% when using
Standard Agents. Yet, we are still far from the 100%
observed in Optimal Coding. That is, even with the
introduction of a length cost (with Lazy Speaker), we
still encounter non-informative symbols. Finally, these
informative symbols are localized in the first positions,
opposite to what we observed with Standard Agents. We
will show in Section 4.3 how this immediate presence
of information is crucial for the length reduction of the
messages.

In sum, if we consider only informative/effective po-
sitions, Standard Agents use efficient and ZLA-like (ef-
fective) communicative protocol. However, they make
it maximally long adding non-informative symbols at
the beginning of each message. Introducing LazImpa re-
verses the length distribution. Indeed, we observe with
LazImpa the emergence of efficient and ZLA-obeying
languages, with significantly larger ρinf .

4.2 LazImpa vs. reference distributions
We demonstrated above how LazImpa leads to codes
with length significantly shorter than the one obtained
with Standard Agents.

We compare it here with stricter references, namely
natural languages and Optimal Coding. We show that
LazImpa results in languages as efficient as natural lan-
guages both in terms of length statistics and symbols
distribution. However, agents do not manage to reach

optimality.

Comparison with natural languages. We see in Fig-
ure 5a that the message lengths in the emergent com-
munication are analogous to the words lengths in nat-
ural languages: close average Ltoken and Ltype (see
Table 1).

We further compare their unigram distributions.
Chaabouni et al. (2019) showed that Standard Agents
develop repetitive messages with a skewed unigram dis-
tribution. Our results, in Figure 5b, show that, on top
of a ZLA-like code, LazImpa enables the emergence of
natural-language-like unigram distribution, without any
particular repetitive pattern. Intriguingly, this similarity
with natural languages is an unexpected property as a
uniform distribution of unigrams would lead to a more
efficient protocol.

Comparison with Optimal Coding. If LazImpa
leads to significantly more efficient languages compared
to Standard Agents, these emergent languages are still
not as efficient as Optimal Coding (see Figure 3). One
obvious source of sub-optimality is the addition of unin-
formative symbols at the end of the messages (i.e. the
difference between Leff=2.67 and Ltype-1=4.49). In-
terestingly, when analyzing the intermediate predictions
of Impatient Listener, we see that this model is actually
able to guess the right input only reading approximately
the Leff first positions (see Appendix A.4.1 for details).
However, we still can note that the informative length
Leff is slightly sub-optimal (Leff = 2.67 for LazImpa,
Leff = 1.96 for Optimal Coding). This difference
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(a) Message length of natural languages and LazImpa (aver-
aged across successful runs) as a function of input frequency
rank. For readability, the curves have been smoothed using
a sliding average of 20 consecutive lengths, see the real
curves in Appendix A.4.3. The light blue interval shows 1
standard deviation for LazImpa’s distribution.

(b) Unigrams distribution of natural languages and LazImpa
(averaged across successful messages) ranked by unigram
frequency. The light blue interval shows 1 standard devia-
tion for LazImpa’s unigrams distribution.

Figure 5: Comparison of LazImpa’ statistics and natural languages.

can be explained by the non-uniform use of unigrams.
Specifically, we show in Appendix A.4.1 that effec-
tive lengths of LazImpa messages approximate Optimal
Coding when the latter uses the same skewed unigram
distribution.

4.3 Ablation study

We have just seen that our new communication system
LazImpa allows agents to develop an efficient and ZLA-
obeying language whose statistical properties are close
to those of natural languages. In this section, we analyze
the effects of the modeling choices we have made.

We first look at the effect of Laziness. To do so, we
compare LazImpa to the system “Standard Speaker +
Impatient Listener” (i.e. removing the length regulariza-
tion). Figure 6a shows the joint evolution of the mean
length of messages (Ltype) and game accuracy. We
observe that our non-regularized system, similarly to
LazImpa, initially explores long messages while being
more successful (exploration step). Surprisingly, even
in the absence of Laziness, the exploration step does
not continue to maximally long messages, as it is the
case for Standard Agents, but breaks at length ≈ 20.
However, contrary to LazImpa, “Standard Speaker +
Impatient Listener” does not present a reduction step
(a reduction of mean length for a fixed good accuracy).
Thus, as expected, the introduction of Laziness in Laz-
Impa is responsible for the reduction step, and hence
for a shorter and more efficient communication proto-
col. However, we note in Figure 6b, that Impatience
alone is sufficient for the emergence of ZLA. Moreover,
when looking at the information spectrum, comparing
“Standard Speaker + Impatient Listener” (Figure 4b) to
LazImpa (Figure 4d), we observe how alike both sys-
tems allocate information and differ only by their mean
length.

Second, we investigate the role of Impatience. We see
in Figure 6a that the system “Lazy Speaker + Standard
Listener” admits a visually different dynamic compared

to LazImpa. In particular, the exploration step leads
to significantly longer messages, close to max_len.
Interestingly, if we demonstrated above the necessity
of Laziness for the reduction step, alone, it does not
induce it: no reduction step in the “Lazy Speaker +
Standard Listener” system is observed. This is due to
the necessity of long messages when experimenting with
Standard Listener. Specifically, as informative symbols
are present only at the last positions (see Figure 4c),
introducing a length regularization provokes a drop in
accuracy, which in turn cancels the regularization. In
other words, the length regularization scheduling stops
at the exploration step, which makes the system almost
equivalent to Standard Agents (this could be also seen
experimentally in Figures 6a and 6b).

Taken together, our analysis emphasizes the impor-
tance of both Impatience and Laziness for the emer-
gence of efficient communication.

5 Conclusion

We demonstrated that a standard communication sys-
tem, where standard Speaker and Listener LSTMs are
trained to solve a simple reconstruction game, leads to
long messages, close to the maximal threshold. Sur-
prisingly, if these messages are long, LSTM agents rely
only on a small number of informative message sym-
bols, located at the end. We then introduce LazImpa, a
constrained system that consists of Lazy Speaker and
Impatient Listener. On the one hand, Lazy Speaker is
obtained by introducing a cost on messages length once
the communication is successful. We found that early
exploration of potentially long messages is crucial for
successful convergence (similar to the exploration in RL
settings). On the other hand, Impatient Listener aims to
succeed at the game as soon as possible, by predicting
Speaker’s input at each message’s symbol.

We show that both constraints are necessary for the
emergence of a ZLA-like protocol, as efficient as natu-
ral languages. Specifically, Lazy Speaker alone would
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(a) Joint evolution of the accuracy and mean length
for the different models. Each point shows the couple
(Ltype,accuracy) of one training episode. Arrows represent
the average joint evolution of the two variables.

(b) Average message length as a function of input frequency
rank for the different systems. Light color intervals show 1
standard deviation.

Figure 6: Comparison of different communication systems.

fail to shorten the messages. We connect this to the
importance of the Impatience mechanism to locate use-
ful information at the beginning of the messages. If
the function of this mechanism is subject to a standing
debate (e.g., Jackendoff, 2007; Anderson and Chemero,
2013), many prior works had pointed to its necessity
to human language understanding (e.g., Friston, 2010;
Clark, 2013). We augment this line of works and sug-
gest that impatience could be at play in the emergence
of ZLA-obeying languages. However, if impatience
leads to ZLA, it is not sufficient for human-level effi-
ciency. In other words, efficiency needs constraints both
on Speaker and Listener sides.

Our work highlights the importance of introducing
the right pressures in the communication system. In-
deed, to construct automated agents that would eventu-
ally interact with humans, we need to introduce task-
agnostic constraints, allowing the emergence of more
human-like communication. Moreover, while being
general, LazImpa provides a more stable optimization
compared to the unconstrained system. Finally, this
study opens several lines of research. One would be
to investigate further the gap from optimality. Indeed,
while LazImpa emergent languages show human-level
efficiency, they do not reach optimal coding. Specif-
ically, emergent languages still have non-informative
symbols at the end of the messages. If these additional
non-useful symbols drift the protocol from optimality,
we encounter similar trend in human (Marslen-Wilson,
1987) and animal communication (McLachlan and Ma-
grath, 2020). We leave the understanding of the role of
these non-informative symbols and how we can reach
optimal coding for future works. A second line of re-
search would be to apply this system to other games or
NLP problems and study how it affects other properties
of the language such as regularity or compositionality.
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