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Abstract

Text summarization refers to the process that generates a shorter form of text from the source doc-
ument preserving salient information. Many existing works for text summarization are generally
evaluated by using recall-oriented understudy for gisting evaluation (ROUGE) scores. However,
as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning
correspondences between generated and reference summaries. Because Korean is an aggluti-
native language that combines various morphemes into a word that express several meanings,
ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics
that reflect semantic meanings of a reference summary and the original document, Reference
and Document Aware Semantic Score (RDASS). We then propose a method for improving
the correlation of the metrics with human judgment. Evaluation results show that the correlation
with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.

1 Introduction

The task of text summarization is to generate a reference summary that conveys all the salient information
of an original document. There are two strategies for this type of summarization (i.e., extractive and
abstractive summarization). With the extractive approach, the most noticeable key sentences are extracted
from the source and compiled into a reference (Zhong et al., 2019; Wang et al., 2019; Xiao and Carenini,
2019). The second approach is abstractive, with which a paraphrased summary is generated from the
source (Zhang et al., 2018; Guo et al., 2018; Wenbo et al., 2019). The generated summary may not
contain the same words that appear in the source document. Therefore, measuring factual alignment
between the generated summary and source document is important (Kryscinski et al., 2019).

Most summarization models are evaluated using recall-oriented understudy for gisting evaluation
(ROUGE) (Lin, 2004a), which measures n-gram overlaps between generated and reference sum-
maries. ROUGE has proven to have a high correlation with manual evaluation methods, such as pyra-
mid (Nenkova et al., 2007) and TAC AESOP (Owczarzak and Dang, 2011). However, Louis (2013)
showed that the correlation significantly decreased when only one reference summary was provided.
Additionally, considering the process by which a person manually summarizes a document, ROUGE is
limited, because it does not reflect semantic meanings between generated and reference summaries. For
example, when a person summarizes a document, they tend to use words that are implicit while not al-
ways using the explicit words from the original document. As the ROUGE score is computed based on an
n-gram overlap, the score can be low even if two words have the same semantic meaning. Table 1 shows
an example of the ROUGE limitation when applied to a Korean summarization. This tendency is partic-
ularly prevalent in Korean, which is an agglutinative language that combines various morphemes into a
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word to express several meanings and grammatical functions, unlike English. In this process, complex
morphological variations can occur. Therefore, leveraging ROUGE scores produces inaccurate results.

Article
‘슬기로운의사생활’이또다시최고시청률을경신하며고공행진을이어갔다. 26일방송된 tvN 2020목요스페셜 ‘슬기로운의
사생활’ 3회는케이블, IPTV,위성을통합한유료플랫폼에서가구평균 8.6%,최고 10%의시청률을기록했다. 3주연속시청률
상승세다.
The tv program “sage doctor life” set an all time record for its highest viewer ratings. On the 26th, TVN 2020 Thursday Special
“Sage Doctor Life,” aired on the 26th, recorded an average household rating of 8.6% and a maximum of 10% on a paid platform
incorporating cable, IPTV, and satellite. The ratings have been rising for three consecutive weeks.
Reference Summary
‘슬기로운의사생활’최고시청률 10%돌파. . . 3회연속상승세
The tv program “Sage doctor life” breaks its all time high 10% viewer ratings for 3 consecutive episodes.
Wrong Candidate
‘슬기로운의사생활’최저시청률 10%돌파... 3회연속하락세
The tv program “Sage doctor life” reached the lowest viewing rate of 10% for 3 times in a row.
Rouge scores with Reference Summary (R-1/R-2/R-L): 0.78/ 0.63/ 0.78
Ours (RDASS): 0.44
Correct Candidate
‘슬기로운의사생활’최고시청률경신... 3주연속상승세
The tv program “Sage doctor life” set an all time record for its highest viewer ratings for 3 consecutive episodes.
Rouge scores with Reference Summary (R-1/R-2/R-L): 0.71/ 0.53/ 0.71
Ours (RDASS): 0.56

Table 1: An example showing the limitations of ROUGE in Korean summarization. The incorrectly
generated summary has a high ROUGE score, but has the opposite semantic meaning. Text areas marked
in blue and red serve as indicators for distinguishing the factualness of the semantic comparisons, as
reflected by the our metrics shown.

To overcome this limitation, an evaluation method that considers the semantic information of both
the generated and reference summary is required. It is important to examine the factuality between the
generated summary and source document, because the generated summary may contain false informa-
tion. Each person summarizes information in different manners, and it is difficult to agree, even after
cross-checking (Kryscinski et al., 2019). Therefore, the source document should also be considered with
generated and reference summary.

In this study, we propose metrics for evaluating a summarization model that consider both the source
document and reference summary together with the generated summary (see Table 1). Our contributions
can be summarized as follows:

• We propose the evaluation metrics that can be applied to a summarization model using deep seman-
tic information.

• We propose methods to improve the correlation between the proposed evaluation metrics and human
judgment.

• Via extensive evaluation, we demonstrate that the correlation with human judgment is significantly
higher for our proposed evaluation metrics than for ROUGE scores.

2 Related Work

Evaluation methods of text summarization are divided into two strategies: manual and automatic. Manual
evaluation is expensive and difficult (Nenkova and Passonneau, 2004; Passonneau et al., 2013). Several
studies have been conducted to develop automatic methods that facilitate fast and low-cost evaluations.
There are two types of automatic evaluation methods: extrinsic and intrinsic. An extrinsic automatic
method evaluates a summarization model based on how it affects the completion of tasks comprising the
judgment of document relevance (Dorr et al., 2004). The intrinsic automatic method evaluates quality via
a property analysis or by calculating its similarity to a manually generated summary. Intrinsic methods
include the pyramid method (Nenkova et al., 2007), the basic-elements method (Hovy et al., 2006),
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and ROUGE (Lin, 2004b). The pyramid method inspects various human-made summaries and creates
summary content units, each with a scoring weight. The basic-elements method is similar to the pyramid
method. ROUGE evaluates the similarity of the lexical overlap between the candidate and reference
summary.

As the ROUGE score is computed based on the n-gram overlap, it does not account for synony-
mous words or phrases. Many approaches have been proposed to overcome this limitation. ParaEval
(Zhou et al., 2006), ROUGE-WE (Ng and Abrecht, 2015), ROUGE 2.0 (Ganesan, 2018), and ROUGE-G
(ShafieiBavani et al., 2018) have been used to extend ROUGE to support synonymous constructs. ParaE-
val uses a matching method based on paraphrase tables. ROUGE-WE uses a lexical matching method
with a semantic similarity measure and the cosine distances between tokens. ROUGE 2.0 uses WordNet
as a synonym dictionary and computed token overlaps with all synonyms of matched words. ROUGE-
G uses lexical and semantic matching from WordNet. These approaches have limitations because they
require hand-crafted lexical and synonym dictionaries, which are particularly difficult to construct in
Korean. Our research is similar to (Zhang et al., 2019), which utilized BERT to compute semantic score
between the generated and reference sentence. However, (Zhang et al., 2019) does not consider the doc-
ument, whereas our research considers the document to be characterized in the evaluation of summariza-
tion tasks. Overall, our research is different from previous approaches in that 1) We propose a method to
evaluate generated summary by considering documents as well as reference summary. 2) In addition, our
evaluation model is robust to out of vocabulary (OOV) words because it leverages a pre-trained neural
network (SBERT) based on byte pair encoding (BPE) (Gage, 1994) tokenization method from unsuper-
vised learning. Considering the fact that Korean is an agglutinative language, this feature is essential. 3)
Finally, Our evaluation model can be further trained to capture more contextualized information both on
reference summary and document.

Text summarization models can be divided into abstractive, extractive, and hybrid. Abstractive mod-
els reword phrases and create summaries having novel phrases constructed from the original document.
Recent text summarization approaches have leveraged multi-task and multi-reward training (Jiang and
Bansal, 2018; Paulus et al., 2017; Pasunuru and Bansal, 2018; Guo et al., 2018), attention-with-copying
mechanisms (Tan et al., 2017; See et al., 2017; Cohan et al., 2018), and unsupervised training strategies
(Schumann, 2018; Chu and Liu, 2018). The extractive method extracts the most-suitable sentences (or
words) from the source document and copies them directly into the summary. Many researchers (Neto
et al., 2002; Colmenares et al., 2015; Filippova and Altun, 2013) have utilized domain expertise to de-
velop heuristics for refining summary texts. Recently, neural-based text summarization models have been
proposed to train the model for predicting whether a span of text should be included in the summary
(Nallapati et al., 2016; Narayan et al., 2017; Xu and Durrett, 2019; Liu et al., 2019a). Reinforcement
learning-based summarization models have also been proposed to directly optimize models (Wu and Hu,
2018; Dong et al., 2018; Narayan et al., 2018b). The hybrid approach uses both abstractive and extractive
methods. With this approach, the summarization process is divided into two phases: content selection and
paraphrasing (Gehrmann et al., 2018; Hsu et al., 2018; Chen and Bansal, 2018; Liu et al., 2018).

3 Methodology

From Table 1, we can observe the importance of considering both the document and reference summary
together for proper evaluation of the summarization model. In Subsection 3.1, we propose a method for
evaluating the generated summary with the reference summary to reflect deep semantic meaning. Next,
we propose a method for evaluating the generated summary with the original document and reference
summary together. The reference-document-aware evaluation metric model can be further trained to cap-
ture more contextualized information from both on reference summary and document (Subsection 3.2).

3.1 Reference and Document Aware Semantic Evaluation

Let us define the generated summary from the summarization model as yp = [w1, ..., wn] and refer-
ence summary as yr = [w1, ..., wm], where wi indicates each word. Then, each summary representation,
vp and vr, can be constructed using sentence-embedding methods. Neural-based sentence-embedding
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methods have been broadly studied. Conneau (2017) trained a siamese bidirectional long short-term
memory model with a max-pooling strategy on the Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015) and the MultiGenre Natural Language Inference (NLI) dataset (Williams et
al., 2017). Cer (2018) proposed the universal sentence encoder to train a transformer on the SNLI dataset.
Reimers (2019) recently proposed sentence-BERT(SBERT), which leverages a pre-trained BERT (De-
vlin et al., 2018), trained with a combination of the SNLI and multi-genre NLI, and showed state-of-the-
art sentence embedding performance. SBERT is suitable for semantic similarity searches and showed
faster inference speeds than previous state-of-the-art approaches, including BERT, RoBERTa (Liu et al.,
2019b), and the universal sentence encoder.

We leverage a pre-trained SBERT to construct summary representations. Each word representation, e,
is obtained from SBERT as

E = [ecls, e1, ..., en, esep] = SBERT([CLS], w1, ..., wn, .[SEP ]). (1)

Subsequently, mean-pooling is performed to construct vp as,

vp(j) =

n∑
i=0

ei[j]

n
(2)

where j represents an index of a word-embedding dimension, and n represents a length of E. vr can also
be obtained in the same manner.

The semantic similarity score, s(p, r), between vp and vr can be obtained as follows:

s(p, r) = cos(vp, vr) =
vTp · vr
‖vp‖ ‖vr‖

. (3)

Recall that it is important to consider factual consistency of generated summary with the source doc-
ument, and, given the same document, the method of summarizing important information varies from
person to person (Owczarzak et al., 2012; Kryscinski et al., 2019). Therefore, the source document
should also be considered with the generated summary when evaluating the summarization model.

Given a document, D = [w1, ..., wk], the document representation, vd, can be obtained using Eqs. (1)
and (2). Thus, the similarity score between vp and vd can be defined as,

s(p, d) = cos(vp, vd) =
vTp · vd
‖vp‖ ‖vd‖

. (4)

Given a reference and source document, the reference-document-aware semantic score (RDASS) of
the generated summary is defined by averaging s(p, r) and s(p, d):

RDASS =
s(p, r) + s(p, d)

2
. (5)

We also experimented with a sum, max and min operation between s(p, r) and s(p, d), but averaging the
two scores reports highest correlation with human judgment.

3.2 Fine-tuning SBERT with the Abstractive Summarization Model
As SBERT is a trainable metric model, it can be further trained to capture more contextualized informa-
tion about the reference summary and source document. We propose a fine-tuning method for SBERT
that uses the abstractive summarization model.

Most neural approaches for abstractive summarization are based on an encoder–decoder architec-
ture (See et al., 2017). Formally, given a document, D = [w1, ..., wk], the objective is to generate a
summary, yp = [w1, ..., wn], from a hidden representation, hp = [h1, ..., hn]. The hidden representation
is the output vector of the decoder. We leverage the hidden representation of the decoder to fine-tune the
SBERT.
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Following (Reimers and Gurevych, 2019), we adopt a triplet objective to fine-tune the SBERT. Given
an anchor hp, a positive reference representation vpr , a negative representation vnr , and a Euclidean dis-
tance d, the triplet objective for generated and reference summaries J(p, r) is then defined as

J(p, r) = max(0, ε+ d(hp, v
p
r )− d(hp, vnr )), (6)

where ε represents a margin that ensures hp is closer to vpr than vnr . We set ε as 1. Similarly, the triplet
objective for generated summary and document can be defined as

J(p, d) = max(0, ε+ d(hp, v
p
d)− d(hp, v

n
d )). (7)

Thus, the final objective for SBERT is to minimize the combined two triplet objectives as

J = J(p, r) + J(p, d). (8)

The objective function SBERT J is jointly optimized with the abstractive summarization objective. Usu-
ally, the negative log-likelihood objective between the generated and reference summaries is used for
abstractive summarization (See et al., 2017; Narayan et al., 2018a). We refer to the fine-tuned SBERT
with abstractive summarization model as “FWA-SBERT.”

4 Experimental Setup

4.1 Dataset
We trained and evaluated our models using the Korean Daum/News dataset1, comprising 10 topics, such
as politics, economy, international, culture, information technology, and others. From this, we extracted
3-million news articles. The number of articles for training, validating, and testing was 2.98M , 0.01M ,
and 0.01M respectively. We refer to this dataset as Daum/News. We used Daum/News to fully under-
stand the content of the article and conduct a proper evaluation. The dataset contains articles from 143
newspapers, each having different summary styles, and the effectiveness of the proposed methods is
exemplified using it. Therefore, we expect that our research can be applied to different languages.

4.2 Summarization Model
We adopted abstractive summarization model of (Liu and Lapata, 2019) 2. Liu (2019) leveraged pre-
trained BERT as an encoder and a six-layered transformer as a decoder, showing state-of-the-art re-
sults on Cable News Network/DailyMail (Hermann et al., 2015), New York Times (Sandhaus, 2008),
and XSum (Narayan et al., 2018a) datasets. We set all environments according to (Liu and Lapata,
2019), except that we leveraged the pre-trained BERT trained on Korean dataset (Subsection 4.3) instead
of english-bert-base-uncased. We trained the abstractive summarization model on Korean Daum/News
dataset.

4.3 SBERT
To leverage SBERT, we first pre-trained BERT (bert-base-uncased) on Korean dataset, comprising 23M
sentences and 1.6M documents, including Wiki, Sejong corpus, and web documents. Next, we trained
SBERT with classification and regression objectives from NLI (Bowman et al., 2015; Williams et al.,
2017) and the semantical textual similarity (STS) benchmark (STSb) (Cer et al., 2017). Because NLI
and STSb datasets are in English, we leveraged the Korean NLI and STS dataset 3 (Ham et al., 2020)
which translated from Kakao Machine Translator 4. Evaluation of the STS benchmark test dataset was
conducted, showing an 80.52 Spearman’s rank correlation result. Subsequently, the pre-trained SBERT
model was fine-tuned with the abstractive summarization model to capture more contextualized infor-
mation of the reference summary and source document with a generated summary (Subsection 3.2). All
training was conducted on the Kakao Brain Cloud with 4 Tesla V100 graphical processing units.

1https://media.daum.net/
2https://github.com/nlpyang/PreSumm
3https://github.com/kakaobrain/KorNLUDatasets
4https://translate.kakao.com
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4.4 Human Judgment
To demonstrate the effectiveness of the reference-document-aware semantic metric, we evaluated its
correlation with human judgment. Following (Kryscinski et al., 2019), we asked annotators to score
relevance, consistency, and fluency. Relevance represents the degree of appropriateness of the document,
consistency represents the degree of factualness, and fluency represents the degree of the quality of
generated summary. Additionally, human avg represents the average value of the scores for the three
indicators. Given a document, reference summary, and generated summary, each annotator scored in
the range of 1 to 5 points for the evaluation indicator (i.e., relevance, consistency, fluency). The human
judgment was conducted by 6 judges having a PhD (3 judges) or a MS (3 judges) degree in computer
science. The averaged human score of relevance was 3.8, consistency was 3.6, and fluency was 3.9 for
200 sampled summaries from Korean Daum/News test dataset.

5 Results

In this section, we first report the performance of the summarization model using the ROUGE and pro-
posed evaluation metrics (Subsection 3.1). Next, we report how the proposed evaluation metrics corre-
lated to human judgment. We also report the correlation of the proposed evaluation metrics to ROUGE
to show that the proposed methods complement ROUGE. Finally, through qualitative evaluation, we
demonstrate the limitations of ROUGE and the superiority of the proposed evaluation metrics.

5.1 Performance of the Summarization Model

Model
Proposed Evaluation Metrics ROUGE
s(p, r) s(p, d) RDASS 1 2 L

Reference Summary 1.00 0.55 0.78 1.00 1.00 1.00
Lead-1 0.71 0.64 0.68 0.13 0.03 0.13
Lead-3 0.66 0.79 0.73 0.07 0.01 0.07

BERTSUMABS (Liu and Lapata, 2019) 0.83 0.46 0.65 0.35 0.15 0.35

Table 2: Performance of the summarization model on the DAUM/NEWS dataset.

The abstractive summarization model is based on the neural architecture of (Liu and Lapata, 2019).
We trained the summarization model on the Daum/News dataset. To evaluate the summarization model,
we used ROUGE and the proposed evaluation metrics. The fine-tuned FWA-SBERT was then used to
evaluate the proposed semantic scores (s(p, r), s(p, d), and RDASS). Table 2 shows the performance of
the summarization model with baseline methods (Reference Summary, Lead 1, and 3) on the Daum/News
dataset.

We set the reference summary as upper-bound. In the case of the reference summary, the reporter tends
to use implicit words when summarizing the document, so the s(p, d) score is relatively low compared to
the Lead baselines. However, because the s(p, r) score is 1.00, the reference summary shows the highest
RDASS score. For Lead-1, s(p, r) shows higher performance than s(p, d), and for Lead-3, s(p, d) shows
higher performance than s(p, r). The reason for this performance is that Lead-3 contains more sentences
from the document, so the similarity with the reference summary s(p, r) is low, but the similarity with the
document s(p, d) is increased. In the case of ROUGE performance of lead baselines, relatively low per-
formance can be confirmed compared to other researches (Kryscinski et al., 2019) conducted in English
dataset. The reason is that in the case of Korean, the same semantic meaning is expressed differently be-
cause of the nature of the language of the agglutinative language. A detailed example of this is described
in Table 5 below. However, it can be seen that the RDASS score of lead baselines is similar to that of
the reference summary. Through this, we can confirm that the proposed evaluation method can reflect
the semantic meaning of the reference summary and document well. In the case of the (Liu and Lapata,
2019), it shows higher similarity with the reference summary than the Lead baselines, but since it is
based on the generation model, it does not extract the sentence from the document as the Lead baselines.
As a result, it shows the relatively low s(p, d) score. We describe how these results are correlated with
human judgment in the next section.
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5.2 Correlation with Human Judgment
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Figure 1: Pearson correlations and Kendall rank of the proposed evaluation metrics with human judg-
ment.

Figures (1a) and (1b) show the Pearson correlation and Kendall rank, respectively, of the proposed
evaluation metrics with human judgment on the 200 sampled summaries. Pearson correlation measure
whether the two variables are linearly related, where 1 indicates positive linear correlation and -1 in-
dicates negative linear correlation. And Kendall rank measure the rank correlation of the two variables,
where 1 indicates two variables are similar and -1 indicates dissimilar. Both correlation measure methods
are widely used in summarization task to analyze correlation with human judgment.

In the Pearson correlation matrix, the correlation with human judgment was significantly higher for
the proposed evaluation metrics than for ROUGE scores. Additionally, in the Kendall rank matrix, the
proposed evaluation metrics showed highest correlation with human judgment than did the ROUGE
scores. Among the proposed evaluation metrics, s(p, r) showed higher performance than s(p, d) and
RDASS showed the highest correlation with human judgment. These results indicate that the proposed
evaluation metrics can reflect deep semantic meaning overcoming the limitations of ROUGE which based
on n-gram overlap.

To demonstrate the effectiveness of fine-tuning SBERT with an abstractive summarization model,
we set baseline methods depending on which sentence representation methods to use for the proposed
methods (Subsection 3.1) as follows:

Multilingual Universal Sentence Encoder (MUSE): MUSE (Yang et al., 2019) is a multilingual
sentence encoder that embeds text from 16 languages into a single semantic space using multi-task
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Sentence Representation
Relevance Consistency Fluency Human Avg

Pearson Kendall Pearson Kendall Pearson Kendall Pearson Kendall

MUSE
s(p, r) 0.29 0.19 0.18 0.10 0.22 0.08 0.25 0.13
s(p, d) 0.09 0.05 0.13 0.06 0.15 0.04 0.13 0.06
RDASS 0.29 0.19 0.24 0.12 0.23 0.09 0.28 0.14

P-SBERT
s(p, r) 0.34 0.22 0.27 0.17 0.25 0.09 0.32 0.18
s(p, d) 0.24 0.13 0.27 0.15 0.22 0.09 0.27 0.15
RDASS 0.37 0.22 0.34 0.20 0.29 0.11 0.37 0.21

FWA-SBERT
s(p, r) 0.35 0.24 0.28 0.17 0.25 0.10 0.32 0.19
s(p, d) 0.26 0.13 0.28 0.15 0.24 0.09 0.29 0.15
RDASS 0.39 0.24 0.36 0.21 0.29 0.12 0.38 0.22

Table 3: Performance comparison depended upon which sentence representation was used.

learning. This model was trained on more than 1-billion question-answer pairs and showed competitive
state-of-the-art results on semantic (Gillick et al., 2018), bitext retrival (Ziemski et al., 2016), and retrieval
question-answering (Yang et al., 2019).

Pre-trained SBERT: We only leveraged pre-trained SBERT without fine-tuning. We refer to this as
“P-SBERT.”

Table 3 show the performance comparison depended upon which sentence representation was used. P-
SBERT shows the high correlation coefficient with humans than MUSE. Overall, when the FWA-SBERT
was used, it showed the closest correlation with human judgment.

Through quantitative evaluation, we demonstrated that the proposed evaluation metrics had a high
correlation with human judgment and that the method of fine-tuning SBERT improved the performance
of the proposed evaluation metrics.

We also experimented to understand how each evaluation metric was correlated to each other. As
shown in Table 4, there was a high correlation among the ROUGE metrics. However, the proposed eval-
uation metrics had a relatively low correlation with ROUGE. This indicates that the proposed evaluation
metrics reflected semantic meaning, in our case, that ROUGE could not. Thus, we believe it complements
ROUGE metrics.

ROUGE-1 ROUGE-2 ROUGE-L s(p, r) s(p, d) RDASS
ROUGE-1 1.00 0.84 0.99 0.64 0.16 0.54
ROUGE-2 1.00 0.85 0.52 0.09 0.45
ROUGE-L 1.00 0.63 0.17 0.53
s(p, r) 1.00 0.32 0.77
s(p, d) 1.00 0.69
RDASS 1.00

Table 4: Pearson correlation of ROUGE and the proposed evaluation metrics.

5.3 Qualitative Analysis

In this section, through qualitative analysis, we demonstrate the effectiveness of our evaluation metrics.
Table 5 shows ROUGE, RDASS and human evaluation results for the generated summaries for the two
articles.

In article-1, the generated summary “On the 30th birthday of Messi, he had a good time with his
family” has the same semantic meaning as the reference summary “Messi’s 30th birthday with his wife
and son”. However, since the sentence having the same semantic meaning can be variously expressed in
Korean, which has the characteristics of agglutinative language, the ROUGE score is low while human
evaluation scores are high. Likewise, the generated summary “Samsung Electronics launches new ‘qled
tv’ in Brazil” in article-2 has a same semantic meaning as the reference summary “Samsung Electronics
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Article-1
리오넬 메시(30 · fc바르셀로나)가 자신의 서른 번째 생일을 가족과 함께 오붓하게 보냈다. 지난 24일 만 서른 살이 된 메시는
자신의인스타그램에집에서가족들과함께보낸생일상을찍은사진을올렸다.메시는오랜그의여자친구이자,이제아내가
되는안토넬라로쿠조(29),아들티아고가함께다정하게사진을찍었다.
Lionel Messi (30 fc Barcelona) spent his thirtieth birthday with his family. Messi, who turned thirty on the 24th, posted a picture of
his birthday on Instagram with his family at home. Messi was tenderly photographed by his longtime girlfriend, Antonella Rokujo
(29), and his son, Thiago.
Reference Summary
메시가 30번째생일함께한이는아내와아들
Messi’s 30th birthday with his wife and son.
Generated Summary
메시 30번째생일,가족과함께오붓하게보내
On the 30th birthday of Messi, he had a good time with his family.
Rouge(1/ 2/ L): 0.14/ 0.00/ 0.14
RDASS: 0.81
Human Evaluation (relevance/ consistency/ fluency): 4.4/ 4.2/ 4.2
Article-2
삼성전자는 19일(현지시간) 브라질 상파울루의 팔라시오 탕가라 호텔에서 ‘QLED TV 론칭 이벤트’를 열고 2017년형 QLED
TV 라인업을 선보였다고 23일 밝혔다. 4월 중남미에서는 처음으로 멕시코에서 QLED TV를 출시한 뒤 파나마, 콜롬비아 등
으로확대하다이번에중남미최대시장인브라질에제품을출시한것이다.브라질은전체중남미 TV시장의 40%(금액기준)
이상을차지할정도로중요한 TV시장이다.올해 1∼4월브라질 TV시장은작년같은기간보다 13%(수량기준)성장했고,특히
프리미엄 TV 시장인 UHD(초고화질) TV는 작년보다 50% 이상 시장이 커졌다. 특히 삼성전자는 브라질 UHD TV 시장에서
올해 1∼4월 56%(수량기준)점유율로압도적 1위를차지했다.
Samsung Electronics announced on the 23rd that it held a ‘QLED TV launching event’ at the Palacio Tangara Hotel in Sao Paulo,
Brazil on the 19th (local time) and introduced the 2017 QLED TV lineup. In April, it launched the QLED TV in Mexico for the
first time in Latin America, and then expanded to Panama, Colombia, etc. This time it launched the product in Brazil, the largest
market in Latin America. Brazil is an important TV market, accounting for more than 40% of total Latin American TV market. In
January-April this year, the Brazilian TV market grew 13% (in quantity) from the same period last year. In particular, the UHD
(Ultra High Definition) TV, a premium TV market, was 50% larger than last year. In particular, Samsung Electronics took the
dominant position in the UHD TV market in Brazil with 56% (based on quantity) in January-April this year.
Reference Summary
삼성전자,중남미최대시장브라질에 qled tv론칭
Samsung Electronics launches ‘qled tv’ in Brazil, the largest market in Latin America.
Generated Summary
삼성전자,브라질서 ‘qled tv’신제품출시
Samsung Electronics launches new ‘qled tv’ in Brazil.
Rouge(1/ 2/ L): 0.14/ 0.00/ 0.14
RDASS: 0.71
Human Evaluation(relevance/ consistency/ fluency): 4.6/ 4.4/ 4.4

Table 5: Example articles from the DAUM/News test dataset. ROUGE, RDASS and human evaluation
results for the generated summaries are represented.

launches ‘qled tv’ in Brazil, the largest market in Latin America”. The generated summary in both
articles is correct, but the ROUGE score is low. On the other hand, the RDASS score indicates a higher
score, and indicates that the generated summary is the correct answer.

6 Conclusion

In this paper, we pointed out the limitation of the widely used ROUGE evaluation metric when adopting
Korean summarization. Since Korean is an agglutinative language, the generated summary having the
same semantic meaning with reference summary can be variously expressed. Therefore, only leverag-
ing ROUGE metric can produce inaccurate evaluation results. To overcome this limitation, we proposed
RDASS (Reference and Document Aware Semantic Score) evaluation metric. The RDASS can reflect
deep semantic relationships of a generated, reference summary, and document. Through extensive evalu-
ations, we demonstrated that the correlation with human judgment is higher for the proposed evaluation
metric (RDASS) than for ROUGE scores. In future work, we will demonstrate the effectiveness of the
proposed method in English summarization dataset.
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